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Abstract

Vajda and Buttyan (VB) proposed a set of five lightweight RFID authentication protocols.
Defend, Fu, and Juels (DFJ) did cryptanalysis on two of them — XOR and SUBSET. To the XOR
protocol, DFJ proposed repeated keys attack and nibble attack. In this paper, we identify the
vulnerability existed in the original VB’s successive session key permutation algorithm. We
propose three enhancements to prevent DFJ’s attacks and make XOR protocol stronger without
introducing extra resource cost.

1 INTRODUCTION

Along with the massive deployment of Radio Frequency Identification (RFID) systems in variety
of applications, many security issues and privacy concerns have been brought up. Some
consumer right protection organizations, like CASPIAN (Consumers Against Supermarket
Privacy Invasion and Numbering), are against the use of RFID [2].

In general an RFID system consists of three kinds of components: many (thousands to millions)
RFID tags (or transponders), several RFID readers (or interrogators), and a few backend
computer servers. A RFID tag is a tiny microchip equipped with radio frequency antenna. it is
capable of emitting the identification and other related data for the tagged item. A reader is
another electronic device located between tags and backend server. A reader gets information
from or sends information to the tag. It communicates with (updates) the backend server. A
backend server runs applications software, hosts databases, processes tag information received
from a reader. A server acts as a gateway. It communicates (through wireless or wire) with
readers on one end and with the enterprise network (the Internet) infrastructure on the other end.
The wireless communication links between tags and readers are considered the most vulnerable
to security and privacy threats. As documented in many literature [1, 7, 13], RFID and security
experts have devoted a lot of efforts to address these threats. Among those efforts, new RFID
authentication protocols and analysis are active areas of research [3, 5, 6, 8, 9, 10, 12].

Adding security features to low-cost RFID tags is a daunting and challenging task because these
tags are extremely resource limited and cannot afford for strong cryptographic algorithms.
Practical RFID authentication protocols should have the following characteristics: lightweight,
anonymity (un-traceability), mutual authentication.

Vajda and Buttyan (VB) [14] proposed a set of five lightweight RFID authentication protocols
and also gave a brief analysis. Each one of the protocols is extremely lightweight in terms of
resources required, and is considered suitable for resource limited devices, like RFID tags.



Defend, Fu, and Juels (DFJ) [4] did cryptanalysis to two of them — XOR and SUBSET. DFJ
proposed repeated keys attack and nibble attack to compromise the XOR protocol. In this paper,
we identify the vulnerability existed in the original VB’s successive session key permutation
algorithm. We propose three enhancements, removing bad shuffles, hopping the runs, and
authenticating mutually, to prevent DFJ’s attacks and make XOR protocol stronger without
introducing extra resource cost.

2 ORIGINAL XOR PROTOCOL AND REPEATED KEYS ATTACK

The original XOR protocol by VB [14] is a challenge-response protocol. (see Figure 1).
Providing the following assumptions, (1) the readers and tags share a piece of secret key k'
initially, (2) both reader and tag are capable of calculating a permutation [] (given soon), (3)
reader and tag maintain a synchronized counter i to indicate the current run of authentication,
the challenge-response process at the ith run can be described as:

Reader — Tag: a¥ =x0 @ k0
// Reader picks a random number x(i), calculates k(i), then sends a challenge al = x@ (5] K o Tag.
Tag —> Reader: b = x¥ @ k'

// Tag calculates k(i), extracts the challenge x0 by K D a(i), then send a response p = x D ko
Reader. Then the Reader verifies the Tag, because only the Tag knows K,

Here k¥ = H(k(i'l)), and []: {0, 1}" —> {0, 1}" is a permutation starting from the initial secret key
k. That is k" = k), k? = 11k, ..., K"V = 1k"?), k¥ = 1(k""), .... Because x is
random, so are a = x @ k' and b® = x® @ k. If the x is truly random, no information

0

about the secret k" are revealed from the communication.

Suppose n = 128 bit as key length, the steps of the permutation [] is given as follows:

e Step-1: In run (i-1), the session key k" is split into 16 bytes, then cut each byte into two
nibbles of 4-bit each. Then concatenate all left nibbles k{'", k'™, ..., k(" to form

k{'™, concatenate all right nibbles k5", k", ..., k{2 to form k§".

e Step-2: For the run (i) the right half key k{"is a permutation of k{ ™" controlled by k'™":

i.e., swapping the 0-th and the k{'"-th, the 1-st and the k{\ " -th, ..., the 15-th and the
k(i -th nibbles of ki .

o Step-3: The left half key k" for round (i) is a permutation of k'™ controlled by k{™" in
the similar nibble swaps.

e Step-4: Finally the next run session key k" is the obtained from rearranging (interleav-
ing) the half bytes of k" and k", i.e, k@ =k} |k{'} [k} [k'a| - [k [kPs,

here “|” represents concatenation.



Observation: The problem we see here is the step-4 of the permutation. This step adds a perfect
shuffle to []. No matter what we do out-shuffle k' =k{ |k{'y [k') [kx| - [k [kig or

in-shufflek® = k{'% [ k") | k'a [k} - kY% [k, after some number of shuffles the

sequence will return to the original order [11]. That is the culprit why this permutation suffers
from short cycles, as DFJ [4] identified, and makes the protocol vulnerable to their repeated keys
attack.

Based on experiments by DFJ [4] given a initial key k© the successive session keys k™, k@, ...,
k®, ..., k"% which are generated by the permutation [], cycle after an average of 68 sessions.
They also found that about 32% of session keys have cycle 1, and all of tested session keys
eventually repeat and only one thousandth of keys have the maximum cycle of 36. Let ¢
represents a cycle, then k¥ = k"9,

Suppose k® = k"2, the adversary model for the repeated keys attack [4] is shown in Figure 1.

The eavesdropper Eve is able to form a valid response without knowing k' or x, therefore she
can impersonate a valid tag.

Ty a0 = x® @ |

i Realder (in run i) i > i Tag (inruni) !
| pick x AN . . | o) Oy !
| calculate k¥ =TT (k@) + ™ b = xV @ K@ + calculate k" = [T (k')
: b - X' : 0= {0 gy !
+ challenge Tag by a¥ - v extractx=a" @k
e S .-~ ! respond Reader by b |

Eve (inruni-2, i

calculate e = 2™ @ b*? = (k' @ k)
D= ®
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Figure 1. Adversary model for repeated keys attack.

3 ENHANCEMENTS TO XOR PROTOCOL

In this section we propose three enhancements to the original XOR protocol, namely Removing
bad shuffles, Hopping the runs, and Authenticating mutually.



3.1 Enhancement I — Removing Bad Shuffles
In the step-4 of the original VB’s permutation algorithm, we don’t interleaving nibbles of k"

and k{ to create k. Instead, we just simply concatenate k"’ and k{’ to form k*, i.e.,

k@ =k k. In this way we remove that out-shuffles from the permutation, the short cycles

disappear, and the DFJ’s repeated key attack is prevented. And we argue that without the out-
shuffle step, the permutation [] is a Knuth shuffle [15]", i.e., an algorithm for generating a
random permutation of a finite set. In the case of 128-bit key length, there are two finite sets with

16 nibbles (0 ~ F in hexadecimal) each. The algorithm [] to the left and right nibble sets (k" and

k(") will give 16! permutations each, in theory there are 16!*16! (about 2%) in total.

Here is an example to illustrate how the permutation [ without out-shuffles works. We use a

pseudo-random key generation program to create a 128-bit k” in hexadecimal as: C3 47 3F
BB 8D B4 C1 EO 5F 4C 2D 8B 2B A6 BD 98, then split it into left and right nibble sets as

k”:C43B8BCE54282ABY9,
k”:37FBD410FCDBBG®6D 8.

Then under the control of k{” /k” we permute k{” /k{” to obtain k" /k{’ as follows:
k":4C 98 BA 2B 52 84 CB E3 and

k{’: BD 1B C7 3D 48 60 DB FF.

k@ is the concatenation of k(" and k¢’ as:

k®:4C 98 BA 2B 52 84 CB E3 BD 1B C7 3D 48 60 DB FF.

The second run starts fromk": 4C 98 BA 2B 52 84 CB E3 BD 1B C7 3D 48 60 DB FF,
again we split it into left and right nibble sets as

k”:49B258CEB1C3460DF,

k’:C 8 AB24B3DB7D8O0BF.

Then controlled by k{’/k"” permute k" / k{’to obtain k*/ k& as follows:
k®:1B 5E 8C 2B 4C 3D 64 9F and

ki”:28 BC 7D OB AB BD 43 8F.

k@ is the concatenation of k" and k¢’ as:

k®:1B 5E 8C 2B 4C 3D 64 9F 28 BC 7D OB AB BD 43 8F.

And so on so forth, we can get k| k', k® ...

k®:04 A5 6B 88 24 3B 27 19 FD CB 38 4D FB BD CE CB,
k¥:23 4F 06 1C 3A BC 82 CF 49 B5 DD 48 BB BD B7 8E,
k®:18 0B D4 8B 42 BB B3 C4 3C 6F 58 9B EC D7 2F DA.

! “Knuth shuffle is to the identity permutation or any other any permutation, then go through the positions 1 through n—1, and for
each position i swap the element currently there with an arbitrarily chosen element from positions i through n, inclusive. It's easy
to verify that any permutation of n elements will be produced by this algorithm with probability exactly 1/n!, thus yielding a
uniform distribution over all such permutations.”



Observation: the permutation [] does not create the new nibbles (hexadecimal symbols), instead
it just move all existing nibbles around by each run. If an ideal pseudo-random key generator is
used during the initial key generation, within k” nibbles (0 ~ F) should uniformly distributed
and unbiased. Theoretically, the random permutation [ can guarantee 16!*16! permutations for a
128-bit sequence. However, if the distribution of 16 nibbles is not uniform (as the above example
shows the frequencies of the 16 hex symbols are: 0(1), 1(1), 2(2), 3(2), 4(3), 5(1), 6(1), 7(1),
8(3), 9(1), A(1), B(6), C(3), D(3), E(1), F(2) ), the total number of permutations is less than
16!*16!, but still a huge number.

In practice, before installation of a k'’s to a tag, this k'” should be tested to make sure this k!
can be used to generate enough number (5*16! is already big enough) of session keys without
repetition. This procedure is used to eliminate weak keys. If key length is 128-bit, there are in
total 2'*® key®’s. Even only one good strong key among every one hundred keys, still the
number of strong keys is about 2'*', it’s huge.

For curiosity we carried out an experiment, similarly as in [4], with a 128-bit key length. We
generated 1000 different k'””s, and from each k© we permutated 10000 times to get session keys
kM, k@, kD KO KD K199 6 put them into a file. We obtained 1000 such files with
each containing 10000 session keys. As far as our experiment concerns, we did not find a repeat
session key within these 1000 files. So the repeated keys attack is prevented.

3.2 Enhancement Il — Hopping the Runs

The reason of making the session keys hop is that the next session key does not have to be the
one immediately successor of the current session key. This makes the nibble attack [4] much
harder, if it’s not impossible.

Here is how the nibble attack [4] works. Starts from run i, the attacker Eve builds a table over the
following number of runs. Two columns are the challenges and responses between Reader and

Tag, i.e., a’s and b’s. The next column is the xor’ed result the previous two columns, i.e., aV @

b =k @ k©@. The last column is the xor’ed result of two consecutive rows from the fourth

column, which will give us the xor’ed result of two consecutive session keys. As observed when
a nibble of this last column becomes 0, the corresponding nibble of the session key k™ becomes
known. Because in the original permutation case, the two continuous session keys are

) _ 1M (i) (OREH0) @1, @) [ (D) O] (i)
k - ko,L | kO,R | k1,L | kl,R | k7,Lk7,R | ks,Lks,R | le,L | le,R »
(i+1) _ 1, (i+1) | I, Gi+D) |, (i+]) |1, (i+1) (i+1) | I, G+1) [ 1, (i+1) | |, (i+]) (i+1) | 1, (i+1)
k = ko,l_ | ko,R | kl,L | kl,R k7,|_ | k7,R | kS,L | kS,R ‘ k15,|_ | le,R .

If Eve detects that the second nibble of (k" & k") is “0000”, then she has k{'s"” =k} . Since
k' is obtained by swapping 0-th and k", -th elements of k{’, if k{'z” =k{'y then k{'y swaps
with itself. It means ké')L = 0. From the fourth column of Table 1 Eve knows that the first nibble
of (k® @ k) is the k. Likewise, if the 18-th nibble of (k""" @ k™) is “0000”, then she has



kéf;” = k(') Since k('“) is obtained by swapping 8-th and k(') -th elements of k(') if kg';” ké',;
then k{'y swaps with itself. It means k| =8 =(1000),. From the fourth column of Table 1 Eve

knows that xor’ing the 18-th nibble of (k” @ k') with “1000” is the k{ . Gradually all other
nibbles of k' could be obtained by the attacker in this way.

And in the permutation without out-shuffles situation (see Enhancement I), two consecutive
session keys are

KO =k Tk | ROk TRk, K
O = R T T e KD TR SR TG [0 T

Now the nibble attack only applies to gain two nibbles of k©@: 17-th and 32-th nibbles, if the first
nibble of (k*" @ k™) is “0000”, then she has k{';"

th and kéfz{ -th elements of k,(_i) ,if kéftl)

=k{" . Since kéffl) is obtained by swapping 0-
=k{"} then k| swaps with itself. It means k{'y =0.
From the fourth column of Table 1 Eve knows that the 17-th nibble of (k(i) @ k(0)) is the the 17-
th nibble of k'”. Similar argument for gaining 16-th nibble of k', if k'Y’ =k, then

k¥, =15=(1111),. So the 16-th nibble of k' is the xor’ed result of 16-th nibble of (k" @ k")
and “11117. All other nibbles of the k' will not easily be recovered by observing “0000” nibbles

from the last column of the Table 1.

run hop a b adb=c c(i+1) @ c(i)
i h0=h(k(i)) x(i) @ k(i) x() @kO) | k() ®k(0) undefined
O+ | hI=h(kGEHhOHD) | (+ho+1) @ x(itho+1) @ | k(i+h0o+1) @ k(i+h0+1) @
k(i+h0-+1) k(0) k(0) k(i)

i=ith0+1 | h2=h(k(ith1+])) | x(i+h1+2) @ x(i+h1+2) @ | k(i+h1+2) @ k(i+h1+2) @
ithl+1 K(i+h1+2) K(0) K(0) k(1)
i=ithl+l | h3=h(k(+h2t])) | (i+m243) @ x(ith2+3)@ | k(i+h2+3) @ k(i+h2+3) @
ith2+1 K(i+h2+3) K(0) K(0) K(i+2)

Table 1. Nibble attack table. In original XOR protocol, hopping offsets hg, hy, h, ..

and 1 does not update. With the hopping the runs, these offsets hy, hy, hy, ...
current session keys, e.g., h, =h(k").

.are all 0’s,

are functions of

The hopping function is simply defined as a resulting nibble of xor’ing first eight nibbles of the

current session key. For instance, the hopping offset h, = h(k™) =

k(') here k" is the m-th




nibble of the session key k. [This hopping_offset formula could be changed to a something
like a simple hash.]

With this hopping the runs mechanism equipped in the XOR protocol, even attacker Eve finds
“0000” nibble in the last column of the Table 1, she has no way of knowing hopping offsets
besides the brute force guessing. Therefore the nibble attack is prevented.

This enhancement makes the nibble attack impossible. Meanwhile it may slow down the
calculation speed a little bit, since the next session key is not just one iteration of the
permutation, it is (hopping_offset +1) iterations. Note, that “+1” is just to prevent repeat session
keys in case of hopping_offset = 0.

3.3 Enhancement 11 — Authenticating Mutually

In general a 3-pass mutual authentication protocol works as follows. Both parties Alice and Bob
have a piece of shared secret k. Alice initiates the first pass by sending a challenge Fx(Ra), Fx is a
kind of encryption (or cryptographic hash) function controlled by K, Ra is a random number
chosen by Alice. Bob responds with Fy(Rg)+Ra in the second pass, Rg is random number chosen
by Bob. In this second pass, Bob is authenticated by Alice, because only Bob is able to extract
the random number Ra. In the third pass, Alice acknowledges Bob by sending Fy(Rg+Ra) back.
In this final pass, Alice is authenticated by Bob, since only Alice is able to restore Rg with their
shared secret k.

In RFID system, mutual authentication is very important. Without mutual authentication, Reader
and Tag could be out of synchronization for the further communication. Because the challenges
and responses between Reader and Tag have to keep changing to avoid traceability of the Tag.
The XOR protocol is a 2-pass protocol, only Tag is authenticated by Reader and reader is not
authenticated by tag. We need to add the third pass to make it a mutual authentication protocol as
in Figure 2.

To illustrate we use hopping the runs XOR protocol, we change the next session key index as
i+hopping_offset+2 (in stead of “+1”” in Enhancement-II) in order to leave a middle permutation

for the acknowledge message ¢ of the third pass. Itis ¢ = x® @ kK™ +2/2) here hi is the
hopping_offset, L(hi +2)/ 2J takes the greatest integer less than or equal to (h, +2)/2.

® 3. authenticate Reader
()

3. create and send ¢

C(i) = X(i) &) k(i+(hi+2)/2) by checking c

! . Lo ) _ @ i | . . |
. Reader (inruni) | g = x® &) Kk : Tag (in run i) |
L 1. pick xO | > | receive o |
' calculate k¥ =7 (k) | . 0 © !
| challenge Tag by a®” ! b(l) — X(l) fas) k(o) | calculate(il: 7(1!1 k (i)) !
i 2. authenticate Tag by L i extractx” =a” @ k" !
1 checking b® P + 2. respond Reader by b” |

v

Figure 2. Hopped XOR mutual authentication protocol.



In the first pass, Reader sends a challenge a¥=x" @k to Tag. In the second pass, Tag

responds by sending b =x" @ k©. Because only legitimate tag is able to extract the challenge
x? and create the response b". By receiving b"”, reader authenticates the tag. In the third pass,
reader sends ¢ = x© @ k1*{™*2/2) back to Tag. Because only legitimate Reader knows x?

is able to generate K+l +2/2) , therefore ¢V, After receiving ¢ Tag knows it comes from the
right Reader, so Tag authenticates Reader.

and

4 CYCLE COMPARISON EXPERIMENT

In this section, we provide results that compare the cycles of session keys from original VB’s
XOR algorithm, and the XOR algorithm without that bad shuffle step. Because for a 128-bit key,
there are 16 symbols (0 ~ F), the total number of random permutation of 16!*16! is too big to test
on PC, we tested two shorter cases: 4-symbol (0 ~ 3) and 8-symbol (0 ~ 7).

For 4-symbol situation, each symbol can be represented in two bits in binary. The key consists of
two sets of those 4 symbols, and the key (and session key) length is 2*4*2 bits, i.e., 2 bytes. In
ideal case, the number of random permutations for concatenated two sets of 4-symbol is: 4! * 4!
= 576.

For 8-symbol situation, each symbol can be represented in 3 bits in binary. The key consists of
two sets of those 8 symbols, and the key (and session key) length is 3*8*2 bits, i.e., 6 bytes. In
ideal case, the total number of random permutations for concatenated two sets of 8-symbol is: 8!
*81'=1,625,702,400. The testing results are given in Table 2. Shorter cycles for the XOR
without bad shuffle are caused due to too biased distributions of symbols in the initial keys
(those weak initial keys), see Appendix A for the detailed explanation and elimination of weak
keys.

Table 2. Cycle testing results for two XOR algorithms

16-bit session key | 48-bit session key
Number of different initial keys 1,000 100
Number of session keys generated from one initial key 500 10,000
Cycle of the original XOR algorithm 4 32
Cycle of the XOR without bad shuffle 22 9,482

5 CONCLUSIONS

In this paper we identify the weakness in the XOR authentication protocol proposed by Vajda
and Buttyan. We made three enhancements to this protocol: removing bad shuffles, hopping the
runs, and authenticating mutually. By these enhancements the XOR protocol is stronger to
repeated key attack and nibble attacks proposed by Defend, Fu, and Juels. Our enhancements to



the XOR protocol do not introduce extra resource cost. The storage resource needed for the XOR
protocol is only 128-bit plus some temporary storage for permutation use, it is extremely light.
We believe it’s suitable for majority low-cost RFID system application scenarios.
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APPENDIX A. 48-BIT SESSION KEY

Generated 100 initial keys are given in Table A-1. Table A-2 and A-3 are cycles for the original XOR and
XOR without bad shuffle algorithms.

Table A-1. 100 initial keys

# # # #

00 | 4242430171626237 | 25| 5447002436535363 | 50 | 5144536531505710 | 75 | 66451643 74 534243
01 | 4640223710253357 | 26 | 1347153404371061 | 51 | 0644 211422145476 | 76 | 254551 32 5433 53 25
02 | 3143502360546604 | 27 | 4043501024315133 | 52 | 5040111167004313 | 77 | 004737 54362611 14
03 | 7241 606020744371 | 28 | 1346612066002567 | 53 | 43405063 11634142 | 78 | 2243 60 76 10 51 00 05
04 | 414173564523 1572 | 29 | 7443315134150513 | 54 | 004001 1407720273 | 79 | 1343 555146244534
05 | 7440033024204044 | 30 | 3246070254375453 | 55 | 474434277641 7730 | 80 | 0341 657167624510
06 | 0242444061455146 | 31 | 2540340223325746 | 56 | 43457122 11325567 | 81 | 5445555513 156747
07 | 2547577647004625 | 32 | 2044025441736117 | 57 | 7447314106313465 | 82 | 2541301761 2647 34
08 | 5041145337676463 | 33 | 5042621077243701 | 58 | 1244120577764121 | 83 | 1247137015420513
09 [ 2440035531664721 | 34 | 1346574527726260 | 59 | 5446303246127402 | 84 | 3343 466262740542
10 | 5641370637427243 | 35 | 5046710455241733 | 60 | 26402577 16755227 | 85 | 22421617 1376 27 33
11 |1 0243666350015104 | 36 | 7146342345065616 | 61 | 6543215557773433 | 86 | 224146607262 13 14
12 1 2042210432117206 | 37 | 7044 133217546372 | 62 | 764662565617 1517 | 87 | 3046 1251 07 14 04 62
13 12145453032453423 | 38 | 0441 130514224737 | 63 | 5346546450001502 | 88 | 22427113 75374653
14 | 7244 712565506007 | 39 | 1241501351503372 | 64 | 3241164366537351 | 89 | 7246541707104513
15 1 4040435212456020 | 40 | 6141451337553552 | 65 | 4745042377120540 | 90 | 2741 61 53 52 55 23 60
16 | 1443750462765730 | 41 | 1647441465121553 | 66 | 0541643044101000 | 91 | 414067401072 11 35
17 | 5646315733615531 | 42| 7244207372071606 | 67 | 6041367760534505 | 92 | 054126754260 24 33
18 | 7345215743436527 | 43 | 4643123251726016 | 68 | 0644204634467603 | 93 | 304271 0510363734
19 1 2246301403600646 | 44 | 3744705323 636654 | 69 | 3346034001655565 | 94 | 34416310317671 14
20 | 4441035720746460 | 45 | 6045152524577725 | 70 | 0144077011457553 | 95 | 46432267010017 56
21 | 6546473744077372 | 46 | 1247513502511755 | 71 | 6743037573501625 | 96 | 75472053 62256312
22 1 6045214050330311 | 47 | 7140177315034527 | 72 | 7341 665500552613 | 97 | 7342671111 3064 51
23 14041514640566442 | 48 | 5245463301220211 | 73 | 2241244140424522 | 98 | 5244357253543212
24 1 2446470354443273 | 49 | 3647526140175762 | 74 | 3443522210531662 | 99 | 644704 71041207 47

Table A-2. Shortest cycles for XOR without bad shuffle for session keys from the 100 initial keys

# | cycle # cycle # cycle # cycle # # # # # #

0 | 10000 [ 10 | 10000 | 20 | 10000 | 30 | 10000 | 40 | 10000 | 50 | 10000 | 60 | 10000 | 70 | 10000 | 80 | 10000 | 90 | 10000
1| 10000 | 11 | 10000 | 21 | 10000 | 31 | 10000 | 41 | 10000 | 51 | 10000 | 61 | 10000 | 71 | 10000 | 81 | 10000 | 91 | 10000
2 [ 10000 [ 12 | 3216 | 22 | 10000 | 32 | 10000 | 42 | 10000 | 52 | 10000 | 62 | 10000 | 72 | 10000 | 82 | 10000 | 92 | 10000
3 | 10000 | 13 | 10000 | 23 | 10000 | 33 | 10000 | 43 | 10000 | 53 | 10000 | 63 | 10000 | 73 | 10000 | 83 | 10000 | 93 | 10000
4 | 10000 | 14 | 10000 | 24 | 10000 | 34 | 10000 | 44 | 10000 | 54 | 2593 | 64 | 10000 | 74 | 443 | 84 | 10000 | 94 | 10000
5 | 10000 | 15 | 10000 | 25 | 10000 | 35 | 10000 | 45 | 10000 | 55 | 10000 | 65 | 10000 | 75 | 10000 | 85 | 10000 | 95 | 10000
6 | 10000 | 16 | 10000 | 26 | 10000 | 36 | 10000 | 46 | 3019 | 56 | 10000 | 66 | 4428 | 76 | 5043 | 86 | 10000 | 96 | 10000
7 | 10000 [ 17 | 10000 | 27 | 10000 | 37 | 10000 | 47 | 10000 | 57 | 10000 | 67 | 10000 | 77 | 10000 | 87 | 10000 | 97 | 10000
8 | 10000 | 18 | 10000 | 28 | 10000 | 38 | 10000 | 48 | 10000 | 58 | 10000 | 68 | 10000 | 78 | 10000 | 88 | 10000 | 98 | 10000
9 | 10000 | 19 | 2327 | 29 | 10000 | 39 | 7190 | 49 | 10000 | 59 | 10000 | 69 | 10000 | 79 | 10000 | 89 | 10000 | 99 | 10000

Table A-3. Shortest cycles for original XOR al

orithm for session keys from the 100 initial keys

# # # # # # # # # #

0| 36| 10| 55| 20 41 30 18| 40| 12| 50 41 60 5| 701267 | 80| 36| 90 2
1 18| 11 6| 21 14 31| 48| 41| 33| 51 41 61 65| 71 6| 81 6| 91| 35
2| 54| 12| 155] 22 6| 32| 10| 42| 30| 52 7] 62 3| 72 6| 82| 42| 92 8
31127 ] 13 41 23 10 | 33 2| 43 41 53 2| 63 41 73 10 | 83 10| 93| 16
4 8| 14 (414 | 24 2| 34 2| 44 6| 54| 74| 64| 25| 74130 | 84| 15| 94 2
5] 80| 15 6| 25 3] 35| 34| 45 41 55| 24| 65| 12| 75 18 | 85 21 95| 24
6 6| 16| 10| 26102 | 36| 18| 46 | 184 | 56| 94| 66| 20| 76 2| 86295 | 9% 6
70 18] 171 10| 27| 26| 37 5| 47 9| 57 6| 67| 16| 77 6| 87 51 97 6
8 3 18 3| 28 6| 38| 11| 48 10 | 58 8] 68| 10| 78 4] 88| 48| 98 4
91 28] 19| 38| 29 21 39 6| 4991 20 59| 10| 69 61 79 6| 8] 44| 99| 32
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Let’s examine those initial keys that yield shorter cycles for XOR without bad shuffle.

Initial key: Cycle Cause of bias

key-12:204221 043211 72 06 3216 five 2, three 1, three 0 (one 11)

key-19:22 46 30 14 03 60 06 46 2327 four 0, four 6, three 4 (one 22)

key-39: 1241 50 13 51 5033 72 7190 four 1, three 5, three 3 (two 50, one 33)
key-46: 1247 513502 51 17 55 3019 five 5, four 1 (one 55)

key-54: 0040 01 14 07 72 02 73 2593 six 0, three 7 (one 00)

key-66: 05 41 64 3044 10 10 00 4428 six 0, four 4, three 1 (two 10, one 00, one 44)
key-73:22 4124 41 40 42 45 22 443  six 2, six 4 (two 22, two 41)

key-76: 25 45 51 32 54 33 53 25 5043 six 5, four 3, three 2 (two 25, one 33)

A balanced initial key should contain all 8 symbols twice. The symbol distribution of the above
initial keys are very biased, we can treat these initial keys as weakkeys. In extreme situation, like
the key-66, the actual unique symbols are 2, 4, 1, 0, 5, it makes the cycle so short.

We can have a filter to eliminate weakkeys. We did a simple experiment, changing one most
frequent symbol to another symbol that was not originally in the initial key, and then all cycles
will be maximal to 10000. The following red symbols are changed ones.

key-12: 20452104 32 11 72 06
key-19: 22 47 30 14 03 60 06 46
key-39: 1246 50 13 51 50 33 72
key-46: 1247 61 3502 51 17 55
key-54: 004501 14 07 72 02 73
key-66: 75 41 64 30 44 10 10 00
key-73:22 41 74 41 40 42 45 22
key-76: 2545 71 32 54 33 53 25

From these experiments, we can see that if symbol distribution in a initial key is not too biased,

then through the enhanced XOR algorithm we can generate enough number of session keys for
the subsequent authentication uses.
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