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Abstract 
Vajda and Buttyan (VB) proposed a set of five lightweight RFID authentication protocols. 
Defend, Fu, and Juels (DFJ) did cryptanalysis on two of them – XOR and SUBSET. To the XOR 
protocol, DFJ proposed repeated keys attack and nibble attack. In this paper, we identify the 
vulnerability existed in the original VB’s successive session key permutation algorithm. We 
propose three enhancements to prevent DFJ’s attacks and make XOR protocol stronger without 
introducing extra resource cost. 

1  INTRODUCTION 
 
Along with the massive deployment of Radio Frequency Identification (RFID) systems in variety 
of applications, many security issues and privacy concerns have been brought up. Some 
consumer right protection organizations, like CASPIAN (Consumers Against Supermarket 
Privacy Invasion and Numbering), are against the use of RFID [2].  
 
In general an RFID system consists of three kinds of components: many (thousands to millions) 
RFID tags (or transponders), several RFID readers (or interrogators), and a few backend 
computer servers. A RFID tag is a tiny microchip equipped with radio frequency antenna.  it is 
capable of emitting the identification and other related data for the tagged item. A reader is 
another electronic device located between tags and backend server.  A reader gets information 
from or sends information to the tag. It communicates with (updates) the backend server. A 
backend server runs applications software, hosts databases, processes tag information received 
from a reader. A server acts as a gateway.  It communicates   (through wireless or wire) with 
readers on one end and with the enterprise network (the Internet) infrastructure on the other end. 
The wireless communication links between tags and readers are considered the most vulnerable 
to security and privacy threats. As documented in many literature [1, 7, 13], RFID and security 
experts have devoted a lot of efforts to address these threats. Among those efforts, new RFID 
authentication protocols and analysis are active areas of research [3, 5, 6, 8, 9, 10, 12].  
 
Adding security features to low-cost RFID tags is a daunting and challenging task because these 
tags are extremely resource limited and cannot afford for strong cryptographic algorithms. 
Practical RFID authentication protocols should have the following characteristics: lightweight, 
anonymity (un-traceability), mutual authentication.  
 
Vajda and Buttyan (VB) [14] proposed a set of five lightweight RFID authentication protocols 
and also gave a brief analysis.  Each one of the protocols is extremely lightweight in terms of 
resources required, and is considered suitable for resource limited devices, like RFID tags.  
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Defend, Fu, and Juels (DFJ) [4] did cryptanalysis to two of them – XOR and SUBSET.  DFJ 
proposed repeated keys attack and nibble attack to compromise the XOR protocol. In this paper, 
we identify the vulnerability existed in the original VB’s successive session key permutation 
algorithm. We propose three enhancements, removing bad shuffles, hopping the runs, and 
authenticating mutually, to prevent DFJ’s attacks and make XOR protocol stronger without 
introducing extra resource cost.  
 

2  ORIGINAL XOR PROTOCOL AND REPEATED KEYS ATTACK 
The original XOR protocol by VB [14] is a challenge-response protocol.    (see Figure 1). 
Providing the following assumptions, (1) the  readers and tags share a piece of secret key k(0) 
initially, (2) both reader and tag are capable of calculating a permutation ∏ (given soon), (3) 
reader and tag maintain a synchronized counter i to indicate the current run of authentication,  
the challenge-response process at the ith run can be described as: 

Reader –> Tag: a(i) = x(i) ⊕ k(i)  

// Reader picks a random number x(i), calculates k(i), then sends a challenge a(i) =  x(i) ⊕ k(i) to Tag. 

Tag –> Reader: b(i) = x(i) ⊕ k(0) 

// Tag calculates k(i), extracts the challenge x(i) by k(i) ⊕ a(i), then send a response b(i) =  x(i) ⊕ k(0) to 

Reader. Then the Reader verifies the Tag, because only the Tag knows k(0). 
 
Here k(i) = ∏(k(i-1)), and ∏: {0, 1}n –> {0, 1}n is a permutation starting from the initial secret key 
k(0). That is k(1) =  ∏(k(0)), k(2) =  ∏(k(1)), …, k(i-1) =  ∏(k(i-2)), k(i) =  ∏(k(i-1)), …. Because x(i) is 
random, so are a(i) = x(i) ⊕ k(i) and b(i) = x(i) ⊕ k(0). If the x(i) is truly random, no information 
about the secret k(0) are revealed  from the communication. 
 
Suppose n = 128 bit as key length, the steps of the permutation ∏ is given as follows: 
 

• Step-1: In run (i-1), the session key k(i-1) is split into 16 bytes, then cut each byte into two 
nibbles of 4-bit each. Then concatenate all left nibbles , , …,  to form 

, concatenate all right nibbles , , …,  to form .  
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• Step-2: For the run (i) the right half key is a permutation of  controlled by : 
i.e., swapping the 0-th and the -th, the 1-st and the -th, …, the 15-th and the 

-th nibbles of .  
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• Step-3: The left half key  for round (i) is a permutation of  controlled by  in 
the similar nibble swaps.  
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• Step-4: Finally the next run session key  is the obtained from rearranging (interleav-

ing) the half bytes of  and , i.e., , 
here “|” represents concatenation.  
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Observation: The problem we see here is the step-4 of the permutation. This step adds a perfect 
shuffle to ∏. No matter what we do out-shuffle  or 

in-shuffle , after some number of shuffles the 
sequence will return to the original order [11]. That is the culprit why this permutation suffers 
from short cycles, as DFJ [4] identified, and makes the protocol vulnerable to their repeated keys 
attack. 
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Based on experiments by DFJ [4] given a initial key k(0) the successive session keys k(1), k(2), …, 
k(i), …, k(10000), which are generated by the permutation ∏, cycle after an average of 68 sessions. 
They also found that about 32% of session keys have cycle 1, and all of tested session keys 
eventually repeat and only one thousandth of keys have the maximum cycle of 36. Let c 
represents a cycle, then k(i) = k(i+c).  
 
Suppose k(i) = k(i-2), the adversary model for the repeated keys attack [4] is shown in Figure 1. 
The eavesdropper Eve is able to form a valid response without knowing k(0) or x(i), therefore she 
can impersonate a valid tag. 
 

a(i) = x(i) ⊕ k(i)

b(i) = x(i) ⊕ k(0)

Reader (in run i) 
pick x(i) 
calculate k(i) = ∏ (k(0)) 
challenge Tag by a(i)  

Tag (in run i) 

calculate k(i) = ∏ (k(0)) 
extract x(i) = a(i) ⊕ k(i) 
respond Reader by b(i)  

calculate e(i-2) = a(i-2) ⊕ b(i-2) = (k(i-2) ⊕ k(0)) 
since k(i-2)=k(i) 
she calculates a(i) ⊕ e(i-2) = (x(i) ⊕ k(i)) ⊕(k(i-2) ⊕ k(0)) 

                       =(x(i) ⊕ k(0)), which is b(i) 

Eve (in run i-2, i) 

 
 

Figure 1. Adversary model for repeated keys attack. 
 
 

3  ENHANCEMENTS TO XOR PROTOCOL 
In this section we propose three enhancements to the original XOR protocol, namely Removing 
bad shuffles, Hopping the runs, and Authenticating mutually. 
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3.1  Enhancement I – Removing Bad Shuffles 
In the step-4 of the original VB’s permutation algorithm, we don’t interleaving nibbles of  
and  to create . Instead, we just simply concatenate  and  to form , i.e., 

= | .  In this way we remove that out-shuffles from the permutation, the short cycles 
disappear, and the DFJ’s repeated key attack is prevented. And we argue that without the out-
shuffle step, the permutation ∏ is a Knuth shuffle [15]
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1, i.e., an algorithm for generating a 
random permutation of a finite set. In the case of 128-bit key length, there are two finite sets with 
16 nibbles (0 ~ F in hexadecimal) each. The algorithm ∏ to the left and right nibble sets (  and 

) will give 16! permutations each, in theory there are 16!*16! (about 289) in total. 
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Here is an example to illustrate how the permutation ∏ without out-shuffles works. We use a 
pseudo-random key generation program to create a 128-bit in hexadecimal as: C3 47 3F 
BB 8D B4 C1 E0 5F 4C 2D 8B 2B A6 BD 98, then split it into left and right nibble sets as  

)

)0(k

0(
Lk : C 4 3 B 8 B C E 5 4 2 8 2 A B 9, 

)0(
Rk : 3 7 F B D 4 1 0 F C D B B 6 D 8. 

Then under the control of / we permute / to obtain /  as follows:   )0(
Rk )0(

Lk )0(
Lk )0(

Rk )1(
Lk )1(

Rk
)1(

Lk : 4C 98 BA 2B 52 84 CB E3 and 
)1(

Rk : BD 1B C7 3D 48 60 DB FF. 
)1(k  is the concatenation of  and  as:   )1(

Lk )1(
Rk

)1(k : 4C 98 BA 2B 52 84 CB E3 BD 1B C7 3D 48 60 DB FF.  
 
The second run starts from : 4C 98 BA 2B 52 84 CB E3 BD 1B C7 3D 48 60 DB FF, 
again we split it into left and right nibble sets as  

)1(k

)1(
Lk : 4 9 B 2 5 8 C E B 1 C 3 4 6 D F, 

)1(
Rk : C 8 A B 2 4 B 3 D B 7 D 8 0 B F. 

Then controlled by / permute / to obtain / as follows:   )1(
Rk )1(

Lk )1(
Lk )1(

Rk )2(
Lk )2(

Rk
)2(

Lk : 1B 5E 8C 2B 4C 3D 64 9F and 
)2(

Rk : 28 BC 7D 0B AB BD 43 8F. 
)1(k  is the concatenation of  and  as:   )1(

Lk )1(
Rk

)2(k : 1B 5E 8C 2B 4C 3D 64 9F 28 BC 7D 0B AB BD 43 8F. 
 
And so on so forth, we can get , , , …  )3(k )4(k )5(k

)3(k : 04 A5 6B 88 24 3B 27 19 FD CB 38 4D FB BD CE CB,  
)4(k : 23 4F 06 1C 3A BC 82 CF 49 B5 DD 48 BB BD B7 8E,  
)5(k : 18 0B D4 8B 42 BB B3 C4 3C 6F 58 9B EC D7 2F DA. 

                                                 
1 “Knuth shuffle is to the identity permutation or any other any permutation, then go through the positions 1 through n−1, and for 
each position i swap the element currently there with an arbitrarily chosen element from positions i through n, inclusive. It's easy 
to verify that any permutation of n elements will be produced by this algorithm with probability exactly 1/n!, thus yielding a 
uniform distribution over all such permutations.” 
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Observation: the permutation ∏ does not create the new nibbles (hexadecimal symbols), instead 
it just move all existing nibbles around by each run. If an ideal pseudo-random key generator is 
used during the initial key generation, within k(0) nibbles (0 ~ F) should uniformly distributed 
and unbiased. Theoretically, the random permutation ∏ can guarantee 16!*16! permutations for a 
128-bit sequence. However, if the distribution of 16 nibbles is not uniform (as the above example 
shows the frequencies of the 16 hex symbols are: 0(1), 1(1), 2(2), 3(2), 4(3), 5(1), 6(1), 7(1), 
8(3), 9(1), A(1), B(6), C(3), D(3), E(1), F(2) ), the total number of permutations is less than 
16!*16!, but still a huge number.  
 
In practice, before installation of a k(0)’s to a tag, this k(0) should be tested to make sure this k(0) 
can be used to generate enough number (5*16! is already big enough) of session keys without 
repetition. This procedure is used to eliminate weak keys. If key length is 128-bit, there are in 
total 2128 key(0)’s. Even only one good strong key among every one hundred keys, still the 
number of strong keys is about 2121, it’s huge.  
 
For curiosity we carried out an experiment, similarly as in [4], with a 128-bit key length. We 
generated 1000 different k(0)’s, and from each k(0) we permutated 10000 times to get session keys 
k(1), k(2), …, k(i-1), k(i), k(i+1), …, k(10000) to put them into a file. We obtained 1000 such files with 
each containing 10000 session keys. As far as our experiment concerns, we did not find a repeat 
session key within these 1000 files. So the repeated keys attack is prevented. 

3.2  Enhancement II – Hopping the Runs 
The reason of making the session keys hop is that the next session key does not have to be the 
one immediately successor of the current session key. This makes the nibble attack [4] much 
harder, if it’s not impossible.  
 
Here is how the nibble attack [4] works. Starts from run i, the attacker Eve builds a table over the 
following number of runs. Two columns are the challenges and responses between Reader and 
Tag, i.e., a’s and b’s. The next column is the xor’ed result the previous two columns, i.e., a(i) ⊕ 

b(i) = k(i) ⊕ k(0). The last column is the xor’ed result of two consecutive rows from the fourth 
column, which will give us the xor’ed result of two consecutive session keys. As observed when 
a nibble of this last column becomes 0, the corresponding nibble of the session key k(i) becomes 
known. Because in the original permutation case, the two continuous session keys are 
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If Eve detects that the second nibble of (k(i+1) ⊕ k(i)) is “0000”, then she has . Since 

is obtained by swapping 0-th and -th elements of , if  then  swaps 

with itself. It means . From the fourth column of Table 1 Eve knows that the first nibble 

of (k(i) ⊕ k(0)) is the . Likewise, if the 18-th nibble of (k(i+1) ⊕ k(i)) is “0000”, then she has 
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R kk =+ . Since is obtained by swapping 8-th and -th elements of , if  

then  swaps with itself. It means . From the fourth column of Table 1 Eve 

knows that xor’ing the 18-th nibble of (k(i) ⊕ k(0)) with “1000” is the . Gradually all other 
nibbles of k(0) could be obtained by the attacker in this way.    
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And in the permutation without out-shuffles situation (see Enhancement I), two consecutive 
session keys are 
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Now the nibble attack only applies to gain two nibbles of k(0): 17-th and 32-th nibbles, if the first 
nibble of (k(i+1) ⊕ k(i)) is “0000”, then she has . Since is obtained by swapping 0-

th and -th elements of , if  then  swaps with itself. It means . 

From the fourth column of Table 1 Eve knows that the 17-th nibble of (k(i) ⊕ k(0)) is the the 17-
th nibble of k(0). Similar argument for gaining 16-th nibble of k(0), if , then 

. So the 16-th nibble of k(0) is the xor’ed result of 16-th nibble of (k(i+1) ⊕ k(i)) 
and “1111”. All other nibbles of the k(0) will not easily be recovered by observing “0000” nibbles 
from the last column of the Table 1. 
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run hop a b a ⊕ b = c c(i+1) ⊕ c(i) 
i h0=h(k(i)) x(i) ⊕ k(i) x(i) ⊕ k(0) k(i) ⊕ k(0) undefined 

i+h0+1 h1=h(k(i+h0+1)) x(i+h0+1) ⊕ 
k(i+h0+1) 

x(i+h0+1) ⊕ 
k(0) 

k(i+h0+1) ⊕ 
k(0) 

k(i+h0+1) ⊕ 
k(i) 

i=i+h0+1 
i+h1+1 

h2=h(k(i+h1+1)) x(i+h1+2) ⊕ 
k(i+h1+2) 

x(i+h1+2) ⊕ 
k(0) 

k(i+h1+2) ⊕ 
k(0) 

k(i+h1+2) ⊕ 
k(i+1) 

i=i+h1+1 
i+h2+1 

h3=h(k(i+h2+1)) x(i+h2+3) ⊕ 
k(i+h2+3) 

x(i+h2+3) ⊕ 
k(0) 

k(i+h2+3) ⊕ 
k(0) 

k(i+h2+3) ⊕ 
k(i+2) 

…  … … … … 
 
Table 1. Nibble attack table. In original XOR protocol, hopping offsets h0, h1, h2, … are all 0’s, 
and i does not update. With the hopping the runs, these offsets h0, h1, h2, … are functions of 
current session keys, e.g., . )( )(

0
ikhh =

 
 
The hopping function is simply defined as a resulting nibble of xor’ing first eight nibbles of the 

current session key. For instance, the hopping offset , here  is the m-th )(
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nibble of the session key . [This hopping_offset formula could be changed to a something 
like a simple hash.] 

)(ik

 
With this hopping the runs mechanism equipped in the XOR protocol, even attacker Eve finds 
“0000” nibble in the last column of the Table 1, she has no way of knowing hopping offsets 
besides the brute force guessing. Therefore the nibble attack is prevented. 
 
This enhancement makes the nibble attack impossible. Meanwhile it may slow down the 
calculation speed a little bit, since the next session key is not just one iteration of the 
permutation, it is (hopping_offset +1) iterations. Note, that “+1” is just to prevent repeat session 
keys in case of hopping_offset = 0.  
 

3.3  Enhancement III – Authenticating Mutually 
In general a 3-pass mutual authentication protocol works as follows. Both parties Alice and Bob 
have a piece of shared secret k. Alice initiates the first pass by sending a challenge Fk(RA), Fk is a 
kind of encryption (or cryptographic hash) function controlled by k, RA is a random number 
chosen by Alice. Bob responds with Fk(RB)+RA in the second pass, RB is random number chosen 
by Bob. In this second pass, Bob is authenticated by Alice, because only Bob is able to extract 
the random number RA. In the third pass, Alice acknowledges Bob by sending Fk(RB+RA) back. 
In this final pass, Alice is authenticated by Bob, since only Alice is able to restore RB with their 
shared secret k. 
 
In RFID system, mutual authentication is very important. Without mutual authentication, Reader 
and Tag could be out of synchronization for the further communication. Because the challenges 
and responses between Reader and Tag have to keep changing to avoid traceability of the Tag. 
The XOR protocol is a 2-pass protocol, only Tag is authenticated by Reader and reader is not 
authenticated by tag. We need to add the third pass to make it a mutual authentication protocol as 
in Figure 2.  
 
To illustrate we use hopping the runs XOR protocol, we change the next session key index as 
i+hopping_offset+2 (in stead of “+1” in Enhancement-II) in order to leave a middle permutation 
for the acknowledge message c(i) of the third pass. It is  , here hi is the 
hopping_offset,  takes the greatest integer less than or equal to .  
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a(i) = x(i) ⊕ k(i) 

b(i) = x(i) ⊕ k(0) 

Reader (in run i) 
1. pick x(i) 
calculate k(i) = ∏ (k(0)) 
challenge Tag by a(i)  
2. authenticate Tag by 
checking b(i) 
3. create and send c(i) 

Tag (in run i) 

1.  receive a(i)   
calculate k(i) = ∏ (k(0)) 
extract x(i) = a(i) ⊕ k(i) 
2. respond Reader by b(i)  
3. authenticate Reader  
by checking c(i) c(i) = x(i) ⊕ k(i+(hi+2)/2)

Figure 2. Hopped XOR mutual authentication protocol. 
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In the first pass, Reader sends a challenge a(i) = x(i) ⊕ k(i) to Tag. In the second pass, Tag 

responds by sending b(i) = x(i) ⊕ k(0). Because only legitimate tag is able to extract the challenge 
x(i) and create the response b(i). By receiving b(i), reader authenticates the tag. In the third pass, 
reader sends  back to Tag. Because only legitimate Reader knows x(i) and 
is able to generate , therefore c(i). After receiving c(i) Tag knows it comes from the 
right Reader, so Tag authenticates Reader. 

⎣ )2/)2(()()( ++⊕= ihiii kxc ⎦
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4  CYCLE COMPARISON EXPERIMENT 
 
In this section, we provide results that compare the cycles of session keys from original VB’s 
XOR algorithm, and the XOR algorithm without that bad shuffle step. Because for a 128-bit key, 
there are 16 symbols (0 ~ F), the total number of random permutation of 16!*16! is too big to test 
on PC, we tested two shorter cases: 4-symbol (0 ~ 3) and 8-symbol (0 ~ 7).  
 
For 4-symbol situation, each symbol can be represented in two bits in binary. The key consists of 
two sets of those 4 symbols, and the key (and session key) length is 2*4*2 bits, i.e., 2 bytes. In 
ideal case, the number of random permutations for concatenated two sets of 4-symbol is: 4! * 4! 
= 576.  
 
For 8-symbol situation, each symbol can be represented in 3 bits in binary. The key consists of 
two sets of those 8 symbols, and the key (and session key) length is 3*8*2 bits, i.e., 6 bytes. In 
ideal case, the total number of random permutations for concatenated two sets of 8-symbol is: 8! 
* 8! = 1,625,702,400. The testing results are given in Table 2. Shorter cycles for the XOR 
without bad shuffle are caused due to too biased distributions of symbols in the initial keys 
(those weak initial keys), see Appendix A for the detailed explanation and elimination of weak 
keys.  
 

Table 2. Cycle testing results for two XOR algorithms 
 16-bit session key 48-bit session key
Number of different initial keys 1,000 100 
Number of session keys generated from one initial key 500 10,000 
Cycle of the original XOR algorithm 4 32 
Cycle of the XOR without bad shuffle  22 9,482 
 

5  CONCLUSIONS 
 
In this paper we identify the weakness in the XOR authentication protocol proposed by Vajda 
and Buttyan. We made three enhancements to this protocol: removing bad shuffles, hopping the 
runs, and authenticating mutually. By these enhancements the XOR protocol is stronger to 
repeated key attack and nibble attacks proposed by Defend, Fu, and Juels. Our enhancements to 
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the XOR protocol do not introduce extra resource cost. The storage resource needed for the XOR 
protocol is only 128-bit plus some temporary storage for permutation use, it is extremely light. 
We believe it’s suitable for majority low-cost RFID system application scenarios. 
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APPENDIX A. 48-BIT SESSION KEY 
 
Generated 100 initial keys are given in Table A-1. Table A-2 and A-3 are cycles for the original XOR and 
XOR without bad shuffle algorithms. 
 

Table A-1. 100 initial keys 
#  #  #  #  
00 42 42 43 01 71 62 62 37 25 54 47 00 24 36 53 53 63 50 51 44 53 65 31 50 57 10 75 66 45 16 43 74 53 42 43 
01 46 40 22 37 10 25 33 57 26 13 47 15 34 04 37 10 61 51 06 44 21 14 22 14 54 76 76 25 45 51 32 54 33 53 25 
02 31 43 50 23 60 54 66 04 27 40 43 50 10 24 31 51 33 52 50 40 11 11 67 00 43 13 77 00 47 37 54 36 26 11 14 
03 72 41 60 60 20 74 43 71 28 13 46 61 20 66 00 25 67 53 43 40 50 63 11 63 41 42 78 22 43 60 76 10 51 00 05 
04 41 41 73 56 45 23 15 72 29 74 43 31 51 34 15 05 13 54 00 40 01 14 07 72 02 73 79 13 43 55 51 46 24 45 34 
05 74 40 03 30 24 20 40 44 30 32 46 07 02 54 37 54 53 55 47 44 34 27 76 41 77 30 80 03 41 65 71 67 62 45 10 
06 02 42 44 40 61 45 51 46 31 25 40 34 02 23 32 57 46 56 43 45 71 22 11 32 55 67 81 54 45 55 55 13 15 67 47 
07 25 47 57 76 47 00 46 25 32 20 44 02 54 41 73 61 17 57 74 47 31 41 06 31 34 65 82 25 41 30 17 61 26 47 34 
08 50 41 14 53 37 67 64 63 33 50 42 62 10 77 24 37 01 58 12 44 12 05 77 76 41 21 83 12 47 13 70 15 42 05 13 
09 24 40 03 55 31 66 47 21 34 13 46 57 45 27 72 62 60 59 54 46 30 32 46 12 74 02 84 33 43 46 62 62 74 05 42 
10 56 41 37 06 37 42 72 43 35 50 46 71 04 55 24 17 33 60 26 40 25 77 16 75 52 27 85 22 42 16 17 13 76 27 33 
11 02 43 66 63 50 01 51 04 36 71 46 34 23 45 06 56 16 61 65 43 21 55 57 77 34 33 86 22 41 46 60 72 62 13 14 
12 20 42 21 04 32 11 72 06 37 70 44 13 32 17 54 63 72 62 76 46 62 56 56 17 15 17 87 30 46 12 51 07 14 04 62 
13 21 45 45 30 32 45 34 23 38 04 41 13 05 14 22 47 37 63 53 46 54 64 50 00 15 02 88 22 42 71 13 75 37 46 53 
14 72 44 71 25 65 50 60 07 39 12 41 50 13 51 50 33 72 64 32 41 16 43 66 53 73 51 89 72 46 54 17 07 10 45 13 
15 40 40 43 52 12 45 60 20 40 61 41 45 13 37 55 35 52 65 47 45 04 23 77 12 05 40 90 27 41 61 53 52 55 23 60 
16 14 43 75 04 62 76 57 30 41 16 47 44 14 65 12 15 53 66 05 41 64 30 44 10 10 00 91 41 40 67 40 10 72 11 35 
17 56 46 31 57 33 61 55 31 42 72 44 20 73 72 07 16 06 67 60 41 36 77 60 53 45 05 92 05 41 26 75 42 60 24 33 
18 73 45 21 57 43 43 65 27 43 46 43 12 32 51 72 60 16 68 06 44 20 46 34 46 76 03 93 30 42 71 05 10 36 37 34 
19 22 46 30 14 03 60 06 46 44 37 44 70 53 23 63 66 54 69 33 46 03 40 01 65 55 65 94 34 41 63 10 31 76 71 14 
20 44 41 03 57 20 74 64 60 45 60 45 15 25 24 57 77 25 70 01 44 07 70 11 45 75 53 95 46 43 22 67 01 00 17 56 
21 65 46 47 37 44 07 73 72 46 12 47 51 35 02 51 17 55 71 67 43 03 75 73 50 16 25 96 75 47 20 53 62 25 63 12 
22 60 45 21 40 50 33 03 11 47 71 40 17 73 15 03 45 27 72 73 41 66 55 00 55 26 13 97 73 42 67 11 11 30 64 51 
23 40 41 51 46 40 56 64 42 48 52 45 46 33 01 22 02 11 73 22 41 24 41 40 42 45 22 98 52 44 35 72 53 54 32 12 
24 24 46 47 03 54 44 32 73 49 36 47 52 61 40 17 57 62 74 34 43 52 22 10 53 16 62 99 64 47 04 71 04 12 07 47 
 

Table A-2. Shortest cycles for XOR without bad shuffle for session keys from the 100 initial keys 
# cycle # cycle # cycle # cycle #  #  #  #  #  #  
0 10000 10 10000 20 10000 30 10000 40 10000 50 10000 60 10000 70 10000 80 10000 90 10000 
1 10000 11 10000 21 10000 31 10000 41 10000 51 10000 61 10000 71 10000 81 10000 91 10000 
2 10000 12 3216 22 10000 32 10000 42 10000 52 10000 62 10000 72 10000 82 10000 92 10000 
3 10000 13 10000 23 10000 33 10000 43 10000 53 10000 63 10000 73 10000 83 10000 93 10000 
4 10000 14 10000 24 10000 34 10000 44 10000 54 2593 64 10000 74 443 84 10000 94 10000 
5 10000 15 10000 25 10000 35 10000 45 10000 55 10000 65 10000 75 10000 85 10000 95 10000 
6 10000 16 10000 26 10000 36 10000 46 3019 56 10000 66 4428 76 5043 86 10000 96 10000 
7 10000 17 10000 27 10000 37 10000 47 10000 57 10000 67 10000 77 10000 87 10000 97 10000 
8 10000 18 10000 28 10000 38 10000 48 10000 58 10000 68 10000 78 10000 88 10000 98 10000 
9 10000 19 2327 29 10000 39 7190 49 10000 59 10000 69 10000 79 10000 89 10000 99 10000 

 
Table A-3. Shortest cycles for original XOR algorithm for session keys from the 100 initial keys 

#  #  #  #  #  #  #  #  #  #  
0 36 10 55 20 4 30 18 40 12 50 4 60 5 70 267 80 36 90 2 
1 18 11 6 21 14 31 48 41 33 51 4 61 65 71 6 81 6 91 35 
2 54 12 155 22 6 32 10 42 30 52 7 62 3 72 6 82 42 92 8 
3 127 13 4 23 10 33 2 43 4 53 2 63 4 73 10 83 10 93 16 
4 8 14 414 24 2 34 2 44 6 54 74 64 25 74 130 84 15 94 2 
5 80 15 6 25 3 35 34 45 4 55 24 65 12 75 18 85 2 95 24 
6 6 16 10 26 102 36 18 46 184 56 94 66 20 76 2 86 295 96 6 
7 18 17 10 27 26 37 5 47 9 57 6 67 16 77 6 87 5 97 6 
8 3 18 3 28 6 38 11 48 10 58 8 68 10 78 4 88 48 98 4 
9 28 19 38 29 2 39 6 49 20 59 10 69 6 79 6 89 44 99 32 
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Let’s examine those initial keys that yield shorter cycles for XOR without bad shuffle. 
 
Initial key:    Cycle Cause of bias 
key-12: 20 42 21 04 32 11 72 06   3216 five 2, three 1, three 0 (one 11) 
key-19: 22 46 30 14 03 60 06 46  2327 four 0, four 6, three 4 (one 22) 
key-39: 12 41 50 13 51 50 33 72  7190 four 1, three 5, three 3 (two 50, one 33) 
key-46: 12 47 51 35 02 51 17 55  3019 five 5, four 1 (one 55) 
key-54: 00 40 01 14 07 72 02 73  2593 six 0, three 7 (one 00) 
key-66: 05 41 64 30 44 10 10 00  4428 six 0, four 4, three 1 (two 10, one 00, one 44) 
key-73: 22 41 24 41 40 42 45 22  443 six 2, six 4 (two 22, two 41) 
key-76: 25 45 51 32 54 33 53 25  5043 six 5, four 3, three 2 (two 25, one 33) 
 
A balanced initial key should contain all 8 symbols twice. The symbol distribution of the above 
initial keys are very biased, we can treat these initial keys as weakkeys. In extreme situation, like 
the key-66, the actual unique symbols are 2, 4, 1, 0, 5, it makes the cycle so short.  
 
We can have a filter to eliminate weakkeys. We did a simple experiment, changing one most 
frequent symbol to another symbol that was not originally in the initial key, and then all cycles 
will be maximal to 10000. The following red symbols are changed ones.  
 
key-12: 20 45 21 04 32 11 72 06 
key-19: 22 47 30 14 03 60 06 46 
key-39: 12 46 50 13 51 50 33 72 
key-46: 12 47 61 35 02 51 17 55 
key-54: 00 45 01 14 07 72 02 73 
key-66: 75 41 64 30 44 10 10 00 
key-73: 22 41 74 41 40 42 45 22 
key-76: 25 45 71 32 54 33 53 25 
 
From these experiments, we can see that if symbol distribution in a initial key is not too biased, 
then through the enhanced XOR algorithm we can generate enough number of session keys for 
the subsequent authentication uses. 
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