
Enhancements to A Lightweight RFID Authentication Protocol

Xiaowen Zhang1, Zhanyang Zhang1, Xinzhou Wei2

1Dept. of Computer Science, College of Staten Island / CUNY, Staten Island, NY 10314
2Dept. of ETET, New York City College of Technology / CUNY, Brooklyn, NY 11201

Abstract
Vajda and Buttyan (VB) proposed a set of five lightweight RFID authentication protocols.
Defend, Fu, and Juels (DFJ) did cryptanalysis on two of them – XOR and SUBSET. To the XOR
protocol, DFJ proposed repeated keys attack and nibble attack. In this paper, we identify the
vulnerability existed in the original VB’s successive session key permutation algorithm. We
propose three enhancements to prevent DFJ’s attacks and make XOR protocol stronger without
introducing extra resource cost.

1 INTRODUCTION

Along with the massive deployment of Radio Frequency Identification (RFID) systems in variety
of applications, many security issues and privacy concerns have been brought up. Some
consumer right protection organizations, like CASPIAN (Consumers Against Supermarket
Privacy Invasion and Numbering), are against the use of RFID [2].

In general an RFID system consists of three kinds of components: many (thousands to millions)
RFID tags (or transponders), several RFID readers (or interrogators), and a few backend
computer servers. A RFID tag is a tiny microchip equipped with radio frequency antenna. it is
capable of emitting the identification and other related data for the tagged item. A reader is
another electronic device located between tags and backend server. A reader gets information
from or sends information to the tag. It communicates with (updates) the backend server. A
backend server runs applications software, hosts databases, processes tag information received
from a reader. A server acts as a gateway. It communicates (through wireless or wire) with
readers on one end and with the enterprise network (the Internet) infrastructure on the other end.
The wireless communication links between tags and readers are considered the most vulnerable
to security and privacy threats. As documented in many literature [1, 7, 13], RFID and security
experts have devoted a lot of efforts to address these threats. Among those efforts, new RFID
authentication protocols and analysis are active areas of research [3, 5, 6, 8, 9, 10, 12].

Adding security features to low-cost RFID tags is a daunting and challenging task because these
tags are extremely resource limited and cannot afford for strong cryptographic algorithms.
Practical RFID authentication protocols should have the following characteristics: lightweight,
anonymity (un-traceability), mutual authentication.

Vajda and Buttyan (VB) [14] proposed a set of five lightweight RFID authentication protocols
and also gave a brief analysis. Each one of the protocols is extremely lightweight in terms of
resources required, and is considered suitable for resource limited devices, like RFID tags.

 1

Defend, Fu, and Juels (DFJ) [4] did cryptanalysis to two of them – XOR and SUBSET. DFJ
proposed repeated keys attack and nibble attack to compromise the XOR protocol. In this paper,
we identify the vulnerability existed in the original VB’s successive session key permutation
algorithm. We propose three enhancements, removing bad shuffles, hopping the runs, and
authenticating mutually, to prevent DFJ’s attacks and make XOR protocol stronger without
introducing extra resource cost.

2 ORIGINAL XOR PROTOCOL AND REPEATED KEYS ATTACK
The original XOR protocol by VB [14] is a challenge-response protocol. (see Figure 1).
Providing the following assumptions, (1) the readers and tags share a piece of secret key k(0)
initially, (2) both reader and tag are capable of calculating a permutation ∏ (given soon), (3)
reader and tag maintain a synchronized counter i to indicate the current run of authentication,
the challenge-response process at the ith run can be described as:

Reader –> Tag: a(i) = x(i) ⊕ k(i)

// Reader picks a random number x(i), calculates k(i), then sends a challenge a(i) = x(i) ⊕ k(i) to Tag.

Tag –> Reader: b(i) = x(i) ⊕ k(0)

// Tag calculates k(i), extracts the challenge x(i) by k(i) ⊕ a(i), then send a response b(i) = x(i) ⊕ k(0) to

Reader. Then the Reader verifies the Tag, because only the Tag knows k(0).

Here k(i) = ∏(k(i-1)), and ∏: {0, 1}n –> {0, 1}n is a permutation starting from the initial secret key
k(0). That is k(1) = ∏(k(0)), k(2) = ∏(k(1)), …, k(i-1) = ∏(k(i-2)), k(i) = ∏(k(i-1)), …. Because x(i) is
random, so are a(i) = x(i) ⊕ k(i) and b(i) = x(i) ⊕ k(0). If the x(i) is truly random, no information
about the secret k(0) are revealed from the communication.

Suppose n = 128 bit as key length, the steps of the permutation ∏ is given as follows:

• Step-1: In run (i-1), the session key k(i-1) is split into 16 bytes, then cut each byte into two
nibbles of 4-bit each. Then concatenate all left nibbles , , …, to form

, concatenate all right nibbles , , …, to form .

)1(
,0
−i
Lk)1(

,1
−i
Lk)1(

,15
−i
Lk

)1(−i
Lk)1(

,0
−i
Rk)1(

,1
−i
Rk)1(

,15
−i
Rk)1(−i

Rk

• Step-2: For the run (i) the right half key is a permutation of controlled by :
i.e., swapping the 0-th and the -th, the 1-st and the -th, …, the 15-th and the

-th nibbles of .

)(i
Rk)1(−i

Rk)1(−i
Lk

)1(
,0
−i
Lk)1(

,1
−i
Lk

)1(
,15
−i
Lk)1(−i

Rk

• Step-3: The left half key for round (i) is a permutation of controlled by in
the similar nibble swaps.

)(i
Lk)1(−i

Lk)1(−i
Rk

• Step-4: Finally the next run session key is the obtained from rearranging (interleav-

ing) the half bytes of and , i.e., ,
here “|” represents concatenation.

)(ik
)(i

Lk)(i
Lk)(

,15
)(
,15

)(
,1

)(
,1

)(
,0

)(
,0

)(|||||| i
R

i
L

i
R

i
L

i
R

i
L

i kkkkkkk L=

 2

Observation: The problem we see here is the step-4 of the permutation. This step adds a perfect
shuffle to ∏. No matter what we do out-shuffle or

in-shuffle , after some number of shuffles the
sequence will return to the original order [11]. That is the culprit why this permutation suffers
from short cycles, as DFJ [4] identified, and makes the protocol vulnerable to their repeated keys
attack.

)(
,15

)(
,15

)(
,1

)(
,1

)(
,0

)(
,0

)(|||||| i
R

i
L

i
R

i
L

i
R

i
L

i kkkkkkk L=
)(
,15

)(
,15

)(
,1

)(
,1

)(
,0

)(
,0

)(|||||| i
L

i
R

i
L

i
R

i
L

i
R

i kkkkkkk L=

Based on experiments by DFJ [4] given a initial key k(0) the successive session keys k(1), k(2), …,
k(i), …, k(10000), which are generated by the permutation ∏, cycle after an average of 68 sessions.
They also found that about 32% of session keys have cycle 1, and all of tested session keys
eventually repeat and only one thousandth of keys have the maximum cycle of 36. Let c
represents a cycle, then k(i) = k(i+c).

Suppose k(i) = k(i-2), the adversary model for the repeated keys attack [4] is shown in Figure 1.
The eavesdropper Eve is able to form a valid response without knowing k(0) or x(i), therefore she
can impersonate a valid tag.

a(i) = x(i) ⊕ k(i)

b(i) = x(i) ⊕ k(0)

Reader (in run i)
pick x(i)
calculate k(i) = ∏ (k(0))
challenge Tag by a(i)

Tag (in run i)

calculate k(i) = ∏ (k(0))
extract x(i) = a(i) ⊕ k(i)
respond Reader by b(i)

calculate e(i-2) = a(i-2) ⊕ b(i-2) = (k(i-2) ⊕ k(0))
since k(i-2)=k(i)
she calculates a(i) ⊕ e(i-2) = (x(i) ⊕ k(i)) ⊕(k(i-2) ⊕ k(0))

 =(x(i) ⊕ k(0)), which is b(i)

Eve (in run i-2, i)

Figure 1. Adversary model for repeated keys attack.

3 ENHANCEMENTS TO XOR PROTOCOL
In this section we propose three enhancements to the original XOR protocol, namely Removing
bad shuffles, Hopping the runs, and Authenticating mutually.

 3

3.1 Enhancement I – Removing Bad Shuffles
In the step-4 of the original VB’s permutation algorithm, we don’t interleaving nibbles of
and to create . Instead, we just simply concatenate and to form , i.e.,

= | . In this way we remove that out-shuffles from the permutation, the short cycles
disappear, and the DFJ’s repeated key attack is prevented. And we argue that without the out-
shuffle step, the permutation ∏ is a Knuth shuffle [15]

)(i
Lk

)(i
Rk)(ik)(i

Lk)(i
Rk)(ik

)(ik)(i
Lk)(i

Rk

1, i.e., an algorithm for generating a
random permutation of a finite set. In the case of 128-bit key length, there are two finite sets with
16 nibbles (0 ~ F in hexadecimal) each. The algorithm ∏ to the left and right nibble sets (and

) will give 16! permutations each, in theory there are 16!*16! (about 289) in total.

)(i
Lk

)(i
Rk

Here is an example to illustrate how the permutation ∏ without out-shuffles works. We use a
pseudo-random key generation program to create a 128-bit in hexadecimal as: C3 47 3F
BB 8D B4 C1 E0 5F 4C 2D 8B 2B A6 BD 98, then split it into left and right nibble sets as

)

)0(k

0(
Lk : C 4 3 B 8 B C E 5 4 2 8 2 A B 9,

)0(
Rk : 3 7 F B D 4 1 0 F C D B B 6 D 8.

Then under the control of / we permute / to obtain / as follows:)0(
Rk)0(

Lk)0(
Lk)0(

Rk)1(
Lk)1(

Rk
)1(

Lk : 4C 98 BA 2B 52 84 CB E3 and
)1(

Rk : BD 1B C7 3D 48 60 DB FF.
)1(k is the concatenation of and as:)1(

Lk)1(
Rk

)1(k : 4C 98 BA 2B 52 84 CB E3 BD 1B C7 3D 48 60 DB FF.

The second run starts from : 4C 98 BA 2B 52 84 CB E3 BD 1B C7 3D 48 60 DB FF,
again we split it into left and right nibble sets as

)1(k

)1(
Lk : 4 9 B 2 5 8 C E B 1 C 3 4 6 D F,

)1(
Rk : C 8 A B 2 4 B 3 D B 7 D 8 0 B F.

Then controlled by / permute / to obtain / as follows:)1(
Rk)1(

Lk)1(
Lk)1(

Rk)2(
Lk)2(

Rk
)2(

Lk : 1B 5E 8C 2B 4C 3D 64 9F and
)2(

Rk : 28 BC 7D 0B AB BD 43 8F.
)1(k is the concatenation of and as:)1(

Lk)1(
Rk

)2(k : 1B 5E 8C 2B 4C 3D 64 9F 28 BC 7D 0B AB BD 43 8F.

And so on so forth, we can get , , , …)3(k)4(k)5(k

)3(k : 04 A5 6B 88 24 3B 27 19 FD CB 38 4D FB BD CE CB,
)4(k : 23 4F 06 1C 3A BC 82 CF 49 B5 DD 48 BB BD B7 8E,
)5(k : 18 0B D4 8B 42 BB B3 C4 3C 6F 58 9B EC D7 2F DA.

1 “Knuth shuffle is to the identity permutation or any other any permutation, then go through the positions 1 through n−1, and for
each position i swap the element currently there with an arbitrarily chosen element from positions i through n, inclusive. It's easy
to verify that any permutation of n elements will be produced by this algorithm with probability exactly 1/n!, thus yielding a
uniform distribution over all such permutations.”

 4

Observation: the permutation ∏ does not create the new nibbles (hexadecimal symbols), instead
it just move all existing nibbles around by each run. If an ideal pseudo-random key generator is
used during the initial key generation, within k(0) nibbles (0 ~ F) should uniformly distributed
and unbiased. Theoretically, the random permutation ∏ can guarantee 16!*16! permutations for a
128-bit sequence. However, if the distribution of 16 nibbles is not uniform (as the above example
shows the frequencies of the 16 hex symbols are: 0(1), 1(1), 2(2), 3(2), 4(3), 5(1), 6(1), 7(1),
8(3), 9(1), A(1), B(6), C(3), D(3), E(1), F(2)), the total number of permutations is less than
16!*16!, but still a huge number.

In practice, before installation of a k(0)’s to a tag, this k(0) should be tested to make sure this k(0)
can be used to generate enough number (5*16! is already big enough) of session keys without
repetition. This procedure is used to eliminate weak keys. If key length is 128-bit, there are in
total 2128 key(0)’s. Even only one good strong key among every one hundred keys, still the
number of strong keys is about 2121, it’s huge.

For curiosity we carried out an experiment, similarly as in [4], with a 128-bit key length. We
generated 1000 different k(0)’s, and from each k(0) we permutated 10000 times to get session keys
k(1), k(2), …, k(i-1), k(i), k(i+1), …, k(10000) to put them into a file. We obtained 1000 such files with
each containing 10000 session keys. As far as our experiment concerns, we did not find a repeat
session key within these 1000 files. So the repeated keys attack is prevented.

3.2 Enhancement II – Hopping the Runs
The reason of making the session keys hop is that the next session key does not have to be the
one immediately successor of the current session key. This makes the nibble attack [4] much
harder, if it’s not impossible.

Here is how the nibble attack [4] works. Starts from run i, the attacker Eve builds a table over the
following number of runs. Two columns are the challenges and responses between Reader and
Tag, i.e., a’s and b’s. The next column is the xor’ed result the previous two columns, i.e., a(i) ⊕

b(i) = k(i) ⊕ k(0). The last column is the xor’ed result of two consecutive rows from the fourth
column, which will give us the xor’ed result of two consecutive session keys. As observed when
a nibble of this last column becomes 0, the corresponding nibble of the session key k(i) becomes
known. Because in the original permutation case, the two continuous session keys are

)(
,15

)(
,15

)(
,8

)(
,8

)(
,7

)(
,7

)(
,1

)(
,1

)(
,0

)(
,0

)(||||||| i
R

i
L

i
R

i
L

i
R

i
L

i
R

i
L

i
R

i
L

i kkkkkkkkkkk LL= ,
)1(

,15
)1(

,15
)1(

,8
)1(

,8
)1(

,7
)1(

,7
)1(

,1
)1(

,1
)1(

,0
)1(

,0
)1(||||||||| +++++++++++ = i

R
i

L
i
R

i
L

i
R

i
L

i
R

i
L

i
R

i
L

i kkkkkkkkkkk LL .

If Eve detects that the second nibble of (k(i+1) ⊕ k(i)) is “0000”, then she has . Since

is obtained by swapping 0-th and -th elements of , if then swaps

with itself. It means . From the fourth column of Table 1 Eve knows that the first nibble

of (k(i) ⊕ k(0)) is the . Likewise, if the 18-th nibble of (k(i+1) ⊕ k(i)) is “0000”, then she has

)(
,0

)1(
,0

i
R

i
R kk =+

)1(
,0
+i
Rk)(

,0
i
Lk)(i

Rk)(
,0

)1(
,0

i
R

i
R kk =+)(

,0
i
Rk

0)(
,0 =i
Lk
)0(

,0 Lk

 5

)(
,8

)1(
,8

i
R

i
R kk =+ . Since is obtained by swapping 8-th and -th elements of , if

then swaps with itself. It means . From the fourth column of Table 1 Eve

knows that xor’ing the 18-th nibble of (k(i) ⊕ k(0)) with “1000” is the . Gradually all other
nibbles of k(0) could be obtained by the attacker in this way.

)1(
,8
+i
Rk)(

,8
i
Lk)(i

Rk)(
,8

)1(
,8

i
R

i
R kk =+

)(
,8
i
Rk 2

)(
,8)1000(8 ==i
Lk

)0(
,8 Lk

And in the permutation without out-shuffles situation (see Enhancement I), two consecutive
session keys are

)(
,15

)(
,15

)(
,8

)(
,8

)(
,7

)(
,7

)(
,1

)(
,1

)(
,0

)(
,0

)(||||||| i
R

i
L

i
R

i
L

i
R

i
L

i
R

i
L

i
R

i
L

i kkkkkkkkkkk LL= ,
)1(

,15
)1(

,14
)1(

,1
)1(

,0
)1(

,15
)1(

,14
)1(

,3
)1(

,2
)1(

,1
)1(

,0
)1(||||||||| +++++++++++ = i

R
i

R
i
R

i
R

i
L

i
L

i
L

i
L

i
L

i
L

i kkkkkkkkkkk LL .

Now the nibble attack only applies to gain two nibbles of k(0): 17-th and 32-th nibbles, if the first
nibble of (k(i+1) ⊕ k(i)) is “0000”, then she has . Since is obtained by swapping 0-

th and -th elements of , if then swaps with itself. It means .

From the fourth column of Table 1 Eve knows that the 17-th nibble of (k(i) ⊕ k(0)) is the the 17-
th nibble of k(0). Similar argument for gaining 16-th nibble of k(0), if , then

. So the 16-th nibble of k(0) is the xor’ed result of 16-th nibble of (k(i+1) ⊕ k(i))
and “1111”. All other nibbles of the k(0) will not easily be recovered by observing “0000” nibbles
from the last column of the Table 1.

)(
,0

)1(
,0

i
L

i
L kk =+)1(

,0
+i
Lk

)(
,0
i
Rk)(i

Lk)(
,0

)1(
,0

i
L

i
L kk =+)(

,0
i
Lk 0)(

,0 =i
Rk

)(
,15

)1(
,15

i
R

i
R kk =+

2
)(
,15)1111(15 ==i
Lk

run hop a b a ⊕ b = c c(i+1) ⊕ c(i)
i h0=h(k(i)) x(i) ⊕ k(i) x(i) ⊕ k(0) k(i) ⊕ k(0) undefined

i+h0+1 h1=h(k(i+h0+1)) x(i+h0+1) ⊕
k(i+h0+1)

x(i+h0+1) ⊕
k(0)

k(i+h0+1) ⊕
k(0)

k(i+h0+1) ⊕
k(i)

i=i+h0+1
i+h1+1

h2=h(k(i+h1+1)) x(i+h1+2) ⊕
k(i+h1+2)

x(i+h1+2) ⊕
k(0)

k(i+h1+2) ⊕
k(0)

k(i+h1+2) ⊕
k(i+1)

i=i+h1+1
i+h2+1

h3=h(k(i+h2+1)) x(i+h2+3) ⊕
k(i+h2+3)

x(i+h2+3) ⊕
k(0)

k(i+h2+3) ⊕
k(0)

k(i+h2+3) ⊕
k(i+2)

… … … … …

Table 1. Nibble attack table. In original XOR protocol, hopping offsets h0, h1, h2, … are all 0’s,
and i does not update. With the hopping the runs, these offsets h0, h1, h2, … are functions of
current session keys, e.g., .)()(

0
ikhh =

The hopping function is simply defined as a resulting nibble of xor’ing first eight nibbles of the

current session key. For instance, the hopping offset , here is the m-th)(
7

0

)(
0)(i

mm

i kkhh
=
⊕==)(i

mk

 6

nibble of the session key . [This hopping_offset formula could be changed to a something
like a simple hash.]

)(ik

With this hopping the runs mechanism equipped in the XOR protocol, even attacker Eve finds
“0000” nibble in the last column of the Table 1, she has no way of knowing hopping offsets
besides the brute force guessing. Therefore the nibble attack is prevented.

This enhancement makes the nibble attack impossible. Meanwhile it may slow down the
calculation speed a little bit, since the next session key is not just one iteration of the
permutation, it is (hopping_offset +1) iterations. Note, that “+1” is just to prevent repeat session
keys in case of hopping_offset = 0.

3.3 Enhancement III – Authenticating Mutually
In general a 3-pass mutual authentication protocol works as follows. Both parties Alice and Bob
have a piece of shared secret k. Alice initiates the first pass by sending a challenge Fk(RA), Fk is a
kind of encryption (or cryptographic hash) function controlled by k, RA is a random number
chosen by Alice. Bob responds with Fk(RB)+RA in the second pass, RB is random number chosen
by Bob. In this second pass, Bob is authenticated by Alice, because only Bob is able to extract
the random number RA. In the third pass, Alice acknowledges Bob by sending Fk(RB+RA) back.
In this final pass, Alice is authenticated by Bob, since only Alice is able to restore RB with their
shared secret k.

In RFID system, mutual authentication is very important. Without mutual authentication, Reader
and Tag could be out of synchronization for the further communication. Because the challenges
and responses between Reader and Tag have to keep changing to avoid traceability of the Tag.
The XOR protocol is a 2-pass protocol, only Tag is authenticated by Reader and reader is not
authenticated by tag. We need to add the third pass to make it a mutual authentication protocol as
in Figure 2.

To illustrate we use hopping the runs XOR protocol, we change the next session key index as
i+hopping_offset+2 (in stead of “+1” in Enhancement-II) in order to leave a middle permutation
for the acknowledge message c(i) of the third pass. It is , here hi is the
hopping_offset, takes the greatest integer less than or equal to .

⎣)2/)2(()()(++⊕= ihiii kxc ⎦

⎦⎣ 2/)2(+ih 2/)2(+ih

a(i) = x(i) ⊕ k(i)

b(i) = x(i) ⊕ k(0)

Reader (in run i)
1. pick x(i)
calculate k(i) = ∏ (k(0))
challenge Tag by a(i)
2. authenticate Tag by
checking b(i)
3. create and send c(i)

Tag (in run i)

1. receive a(i)
calculate k(i) = ∏ (k(0))
extract x(i) = a(i) ⊕ k(i)
2. respond Reader by b(i)
3. authenticate Reader
by checking c(i) c(i) = x(i) ⊕ k(i+(hi+2)/2)

Figure 2. Hopped XOR mutual authentication protocol.

 7

In the first pass, Reader sends a challenge a(i) = x(i) ⊕ k(i) to Tag. In the second pass, Tag

responds by sending b(i) = x(i) ⊕ k(0). Because only legitimate tag is able to extract the challenge
x(i) and create the response b(i). By receiving b(i), reader authenticates the tag. In the third pass,
reader sends back to Tag. Because only legitimate Reader knows x(i) and
is able to generate , therefore c(i). After receiving c(i) Tag knows it comes from the
right Reader, so Tag authenticates Reader.

⎣)2/)2(()()(++⊕= ihiii kxc ⎦

⎦⎣)2/)2((++ ihik

4 CYCLE COMPARISON EXPERIMENT

In this section, we provide results that compare the cycles of session keys from original VB’s
XOR algorithm, and the XOR algorithm without that bad shuffle step. Because for a 128-bit key,
there are 16 symbols (0 ~ F), the total number of random permutation of 16!*16! is too big to test
on PC, we tested two shorter cases: 4-symbol (0 ~ 3) and 8-symbol (0 ~ 7).

For 4-symbol situation, each symbol can be represented in two bits in binary. The key consists of
two sets of those 4 symbols, and the key (and session key) length is 2*4*2 bits, i.e., 2 bytes. In
ideal case, the number of random permutations for concatenated two sets of 4-symbol is: 4! * 4!
= 576.

For 8-symbol situation, each symbol can be represented in 3 bits in binary. The key consists of
two sets of those 8 symbols, and the key (and session key) length is 3*8*2 bits, i.e., 6 bytes. In
ideal case, the total number of random permutations for concatenated two sets of 8-symbol is: 8!
* 8! = 1,625,702,400. The testing results are given in Table 2. Shorter cycles for the XOR
without bad shuffle are caused due to too biased distributions of symbols in the initial keys
(those weak initial keys), see Appendix A for the detailed explanation and elimination of weak
keys.

Table 2. Cycle testing results for two XOR algorithms
 16-bit session key 48-bit session key
Number of different initial keys 1,000 100
Number of session keys generated from one initial key 500 10,000
Cycle of the original XOR algorithm 4 32
Cycle of the XOR without bad shuffle 22 9,482

5 CONCLUSIONS

In this paper we identify the weakness in the XOR authentication protocol proposed by Vajda
and Buttyan. We made three enhancements to this protocol: removing bad shuffles, hopping the
runs, and authenticating mutually. By these enhancements the XOR protocol is stronger to
repeated key attack and nibble attacks proposed by Defend, Fu, and Juels. Our enhancements to

 8

the XOR protocol do not introduce extra resource cost. The storage resource needed for the XOR
protocol is only 128-bit plus some temporary storage for permutation use, it is extremely light.
We believe it’s suitable for majority low-cost RFID system application scenarios.

ACKNOWLEDGEMENTS

We would like to thank Professor Michael Anshel for his encouragement and informative
discussions.

REFERENCES

[1] Gildas Avoine. Cryptography in Radio Frequency Identification and Fair Exchange Protocols. Ph.D Thesis,

Swiss Federal Institute of Technology, Switzerland, 2005.
[2] CASPIAN. http://www.nocards.org/.
[3] Christy Chatmon, Tri von Le and Mike Burmester, Secure Anonymous RFID Authentication Protocols.
[4] Benessa Defend, Keven Fu, and Ari Juels. Cryptanalysis of two lightweight RFID authentication schemes.

Proceedings of International Workshop on Pervasive Computing and Communication Security – PerSec 2007,
211 – 216, New York, USA, March 2007.

[5] H. Gilbert, M. Robshaw, and H. Sibert. An active attack against HB+ - a provably secure lightweight
authentication protocol. Cryptography ePrint Archive, Report 2005/237, IACR 2005.

[6] Ari Juels. Minimalist cryptography for low-cost RFID tags. Proc. of International Conference on Security in
Communication Networks – SCN 2004, pp. 149 – 164.

[7] Ari Juels, Ravikanth Pappu, Bryan Parno. Unidirectional key distribution across time and space with applications
to RFID security. Proc. of USENIX Security Symposium, August 2008.

[8] Ari Juels and S. Weis. Authenticating Pervasive Devices with Human Protocols. Crypto 2005, LNCS vol. 3621,
Springer-Verlag, pp. 293–308, 2005.

[9] Tri Van Le, Mike Burmester and Breno de Medeiros. Forward-secure RFID authentication and key exchange.
IACR ePrint, February 2007.

[10] Tieyan Li and Robert Deng. Vulnerability analysis of EMAP – an efficient RFID mutual authentication
protocol. Second International Conference on Availability, Reliability and Security – AReS 2007, Vienna,
Austria, April 2007.

[11] S. Brent Morris. Magic Tricks, Card Shuffling and Dynamic Computer Memories. The Mathematical
Association of America, 1998.

[12] Pedro Peris-Lopez, Julio Cesar Hernandez-Castro, Juan Estevez-Tapiador, Arturo Ribagorda. EMAP: An
Efficient Mutual Authentication Protocol for Low-cost RFID Tags. OTM Federated Conferences and
Workshop: IS Workshop – IS'06, 2006.

[13] Sanjay E. Sarma, Stephen A. Weis, and Daniel W. Engels, RFID systems and security and privacy implications.
Proc. of CHES 02, LNCS 2523, pp. 454 – 469, 2002.

[14] Istvan Vajda and Levente Buttyan. Lightweight authentication protocols for low-cost RFID tags. In the Second
Workshop on Security in Ubiquitous Computing – Ubicomp 2003, Seattle, WA, USA, October 2003.

[15] Wikipedia – The Free Encyclopedia. http://www.wikipedia.org.

Author’s E-mail Addresses:
Xiaowen Zhang: zhangx@mail.csi.cuny.edu
Zhanyang Zhang: zhangz@mail.csi.cuny.edu
Xinzhou Wei: xwei@CityTech.Cuny.Edu

 9

http://www.nocards.org/
http://www.wikipedia.org/
mailto:zhangx@mail.csi.cuny.edu
mailto:zhangz@mail.csi.cuny.edu
mailto:xwei@CityTech.Cuny.Edu

APPENDIX A. 48-BIT SESSION KEY

Generated 100 initial keys are given in Table A-1. Table A-2 and A-3 are cycles for the original XOR and
XOR without bad shuffle algorithms.

Table A-1. 100 initial keys

00 42 42 43 01 71 62 62 37 25 54 47 00 24 36 53 53 63 50 51 44 53 65 31 50 57 10 75 66 45 16 43 74 53 42 43
01 46 40 22 37 10 25 33 57 26 13 47 15 34 04 37 10 61 51 06 44 21 14 22 14 54 76 76 25 45 51 32 54 33 53 25
02 31 43 50 23 60 54 66 04 27 40 43 50 10 24 31 51 33 52 50 40 11 11 67 00 43 13 77 00 47 37 54 36 26 11 14
03 72 41 60 60 20 74 43 71 28 13 46 61 20 66 00 25 67 53 43 40 50 63 11 63 41 42 78 22 43 60 76 10 51 00 05
04 41 41 73 56 45 23 15 72 29 74 43 31 51 34 15 05 13 54 00 40 01 14 07 72 02 73 79 13 43 55 51 46 24 45 34
05 74 40 03 30 24 20 40 44 30 32 46 07 02 54 37 54 53 55 47 44 34 27 76 41 77 30 80 03 41 65 71 67 62 45 10
06 02 42 44 40 61 45 51 46 31 25 40 34 02 23 32 57 46 56 43 45 71 22 11 32 55 67 81 54 45 55 55 13 15 67 47
07 25 47 57 76 47 00 46 25 32 20 44 02 54 41 73 61 17 57 74 47 31 41 06 31 34 65 82 25 41 30 17 61 26 47 34
08 50 41 14 53 37 67 64 63 33 50 42 62 10 77 24 37 01 58 12 44 12 05 77 76 41 21 83 12 47 13 70 15 42 05 13
09 24 40 03 55 31 66 47 21 34 13 46 57 45 27 72 62 60 59 54 46 30 32 46 12 74 02 84 33 43 46 62 62 74 05 42
10 56 41 37 06 37 42 72 43 35 50 46 71 04 55 24 17 33 60 26 40 25 77 16 75 52 27 85 22 42 16 17 13 76 27 33
11 02 43 66 63 50 01 51 04 36 71 46 34 23 45 06 56 16 61 65 43 21 55 57 77 34 33 86 22 41 46 60 72 62 13 14
12 20 42 21 04 32 11 72 06 37 70 44 13 32 17 54 63 72 62 76 46 62 56 56 17 15 17 87 30 46 12 51 07 14 04 62
13 21 45 45 30 32 45 34 23 38 04 41 13 05 14 22 47 37 63 53 46 54 64 50 00 15 02 88 22 42 71 13 75 37 46 53
14 72 44 71 25 65 50 60 07 39 12 41 50 13 51 50 33 72 64 32 41 16 43 66 53 73 51 89 72 46 54 17 07 10 45 13
15 40 40 43 52 12 45 60 20 40 61 41 45 13 37 55 35 52 65 47 45 04 23 77 12 05 40 90 27 41 61 53 52 55 23 60
16 14 43 75 04 62 76 57 30 41 16 47 44 14 65 12 15 53 66 05 41 64 30 44 10 10 00 91 41 40 67 40 10 72 11 35
17 56 46 31 57 33 61 55 31 42 72 44 20 73 72 07 16 06 67 60 41 36 77 60 53 45 05 92 05 41 26 75 42 60 24 33
18 73 45 21 57 43 43 65 27 43 46 43 12 32 51 72 60 16 68 06 44 20 46 34 46 76 03 93 30 42 71 05 10 36 37 34
19 22 46 30 14 03 60 06 46 44 37 44 70 53 23 63 66 54 69 33 46 03 40 01 65 55 65 94 34 41 63 10 31 76 71 14
20 44 41 03 57 20 74 64 60 45 60 45 15 25 24 57 77 25 70 01 44 07 70 11 45 75 53 95 46 43 22 67 01 00 17 56
21 65 46 47 37 44 07 73 72 46 12 47 51 35 02 51 17 55 71 67 43 03 75 73 50 16 25 96 75 47 20 53 62 25 63 12
22 60 45 21 40 50 33 03 11 47 71 40 17 73 15 03 45 27 72 73 41 66 55 00 55 26 13 97 73 42 67 11 11 30 64 51
23 40 41 51 46 40 56 64 42 48 52 45 46 33 01 22 02 11 73 22 41 24 41 40 42 45 22 98 52 44 35 72 53 54 32 12
24 24 46 47 03 54 44 32 73 49 36 47 52 61 40 17 57 62 74 34 43 52 22 10 53 16 62 99 64 47 04 71 04 12 07 47

Table A-2. Shortest cycles for XOR without bad shuffle for session keys from the 100 initial keys
cycle # cycle # cycle # cycle # # # # # #
0 10000 10 10000 20 10000 30 10000 40 10000 50 10000 60 10000 70 10000 80 10000 90 10000
1 10000 11 10000 21 10000 31 10000 41 10000 51 10000 61 10000 71 10000 81 10000 91 10000
2 10000 12 3216 22 10000 32 10000 42 10000 52 10000 62 10000 72 10000 82 10000 92 10000
3 10000 13 10000 23 10000 33 10000 43 10000 53 10000 63 10000 73 10000 83 10000 93 10000
4 10000 14 10000 24 10000 34 10000 44 10000 54 2593 64 10000 74 443 84 10000 94 10000
5 10000 15 10000 25 10000 35 10000 45 10000 55 10000 65 10000 75 10000 85 10000 95 10000
6 10000 16 10000 26 10000 36 10000 46 3019 56 10000 66 4428 76 5043 86 10000 96 10000
7 10000 17 10000 27 10000 37 10000 47 10000 57 10000 67 10000 77 10000 87 10000 97 10000
8 10000 18 10000 28 10000 38 10000 48 10000 58 10000 68 10000 78 10000 88 10000 98 10000
9 10000 19 2327 29 10000 39 7190 49 10000 59 10000 69 10000 79 10000 89 10000 99 10000

Table A-3. Shortest cycles for original XOR algorithm for session keys from the 100 initial keys

0 36 10 55 20 4 30 18 40 12 50 4 60 5 70 267 80 36 90 2
1 18 11 6 21 14 31 48 41 33 51 4 61 65 71 6 81 6 91 35
2 54 12 155 22 6 32 10 42 30 52 7 62 3 72 6 82 42 92 8
3 127 13 4 23 10 33 2 43 4 53 2 63 4 73 10 83 10 93 16
4 8 14 414 24 2 34 2 44 6 54 74 64 25 74 130 84 15 94 2
5 80 15 6 25 3 35 34 45 4 55 24 65 12 75 18 85 2 95 24
6 6 16 10 26 102 36 18 46 184 56 94 66 20 76 2 86 295 96 6
7 18 17 10 27 26 37 5 47 9 57 6 67 16 77 6 87 5 97 6
8 3 18 3 28 6 38 11 48 10 58 8 68 10 78 4 88 48 98 4
9 28 19 38 29 2 39 6 49 20 59 10 69 6 79 6 89 44 99 32

 10

Let’s examine those initial keys that yield shorter cycles for XOR without bad shuffle.

Initial key: Cycle Cause of bias
key-12: 20 42 21 04 32 11 72 06 3216 five 2, three 1, three 0 (one 11)
key-19: 22 46 30 14 03 60 06 46 2327 four 0, four 6, three 4 (one 22)
key-39: 12 41 50 13 51 50 33 72 7190 four 1, three 5, three 3 (two 50, one 33)
key-46: 12 47 51 35 02 51 17 55 3019 five 5, four 1 (one 55)
key-54: 00 40 01 14 07 72 02 73 2593 six 0, three 7 (one 00)
key-66: 05 41 64 30 44 10 10 00 4428 six 0, four 4, three 1 (two 10, one 00, one 44)
key-73: 22 41 24 41 40 42 45 22 443 six 2, six 4 (two 22, two 41)
key-76: 25 45 51 32 54 33 53 25 5043 six 5, four 3, three 2 (two 25, one 33)

A balanced initial key should contain all 8 symbols twice. The symbol distribution of the above
initial keys are very biased, we can treat these initial keys as weakkeys. In extreme situation, like
the key-66, the actual unique symbols are 2, 4, 1, 0, 5, it makes the cycle so short.

We can have a filter to eliminate weakkeys. We did a simple experiment, changing one most
frequent symbol to another symbol that was not originally in the initial key, and then all cycles
will be maximal to 10000. The following red symbols are changed ones.

key-12: 20 45 21 04 32 11 72 06
key-19: 22 47 30 14 03 60 06 46
key-39: 12 46 50 13 51 50 33 72
key-46: 12 47 61 35 02 51 17 55
key-54: 00 45 01 14 07 72 02 73
key-66: 75 41 64 30 44 10 10 00
key-73: 22 41 74 41 40 42 45 22
key-76: 25 45 71 32 54 33 53 25

From these experiments, we can see that if symbol distribution in a initial key is not too biased,
then through the enhanced XOR algorithm we can generate enough number of session keys for
the subsequent authentication uses.

 11

	Enhancements to A Lightweight RFID Authentication Protocol
	Abstract
	1 INTRODUCTION
	2 ORIGINAL XOR PROTOCOL AND REPEATED KEYS ATTACK
	3 ENHANCEMENTS TO XOR PROTOCOL
	3.1 Enhancement I – Removing Bad Shuffles
	3.2 Enhancement II – Hopping the Runs
	3.3 Enhancement III – Authenticating Mutually

	4 CYCLE COMPARISON EXPERIMENT
	5 CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES
	 APPENDIX A. 48-BIT SESSION KEY

