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Abstract—Existing Web services recommendation approaches 
are based on usage statistics or QoS properties, leaving aside 
the evolution of the services’ ecosystem. These approaches do 
not always capture new or more recent users’ preferences 
resulting in recommendations with possibly obsolete or less 
relevant services. In this paper, we describe a novel Web 
services recommendation approach where the services’ 
ecosystem is represented as a heterogeneous multi-graph, and 
edges may have different semantics. The recommendation 
process relies on data mining techniques to suggest services “of 
interest” to a user. 

Keywords:  Service Recommendation; Web service; multi-
Graph; Association rules; track relationship 

I.  INTRODUCTION  

Recommendation Systems (RS for short) have proved 
useful to exploit Web consumer behavior in order to 
recommend an item of interest to a client e.g., a product, a 
document or a book to cite a few. During the last decade, 
several Web service recommenders have been proposed in 
the literature [6] [10-11]. Most of those systems are based 
on both similarities between previously used services, and 
the assessments of the Quality-of-Service (QoS) combined 
with collaborative filtering (CF) [15]. These approaches rely 
on static data and hence cannot deal with a continuously 
evolving Web services ecosystem, which is composed of 
services, service providers, Mashups and (users) developers.  
In such eco-system, services can be updated, deleted making 
the whole ecosystem prone to obsolescence. In addition, 
most of those services do not provide QoS metadata. 

Other approaches consider the exploitation of trusted 
relationships between services and users or between users 
themselves [1-3]. Trust relationships are established on the 
basis of similar service invocations or by similar evaluations 
of Web services by different users. However, in other 
settings, e.g. a social network, a user might be interested by a 
service recommended by a friend rather than by other users, 
even if these users have provided same rankings for a 
service, or did invoke the same service. In addition, users’ 
information feedback is often missing and user interests may 
change over time. Random evaluations provided by spam 

users may be another limitation for these recommendation 
systems. 

Now that the big picture is drawn, why would it be 
worthy to extend/improve/develop recommendation 
approaches in the Web services ecosystem?  

In this paper, we describe WSR-Track, a novel service 
recommendation system where (1) the service ecosystem is 
represented as a heterogeneous multi-graph, (2) nodes 
represent users (resp. services), and edges represent either 
trust relationships between users, or usage relationships 
between a user and a service, and (3) nodes and edges 
properties are integrated in the service discovery process. 
Trust relationships are expressed by means of 
ProgrammableWeb1 tracks. Usage relationships represent a 
service invocation. The recommendation process takes into 
account relationships, user records and preferences, 
invocations, watchlists and mashups.  

The rest of the paper is organized as follows; related 
work is presented in Section 2 and Section 3 describes the 
WSR-Track recommendation system. Section 4 discusses 
experimental results and Section 5 concludes the paper. 

II. RELATED WORK 

Most of Web services RS proposed in the literature are 
based on Collaborative Filtering or CF [15][16]. A CF 
system proceeds as follows: (1) a user expresses his 
preferences by rating items. These ratings are considered as 
user preferences ;  (2) the system matches some user ratings 
against other users’ ratings and detects users with the most 
“similar” preferences; (3) the system recommends the 
highly-rated items for a user that are not forcibly rated by 
him. These systems are based on the idea that users with 
similar rates may have similar interests.  

Other approaches were devoted to the use of QoS, 
ratings and relationships among Web services end-users [4].  

Both approaches are reviewed below.  
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A. QoS Aware approaches 

QoS properties are often expressed by means of 
performance indicators such as price, response time, 
availability, accuracy, etc. Many researches on Web service 
selection, recommendation and composition use QoS in 
order to improve the performance of their systems [9]. 
Generally, RS combine QoS evaluations with CF to 
recommend services [4][10] and users [11]. 

In [4], the recommendation approach makes use of the 
QoS ratings given by a user to predict QoS evaluations of 
other services that she never used. 

In [3], authors consider when the user is interested in the 
QoS evaluations of other users, they will be considered as 
trustful ones. Similarity between users is expressed as an 
(Euclidean) distance. First, authors choose a set of services 
to recommend, and then calculate the degree of user 
confidence in these services by taking into consideration his 
preferences in term of services’ categories. 

In [6], a recommendation system with semantic matching 
is described. The approach is based on CF and users' 
feedbacks, and helps a user to select a Web service from a 
list of similar ones. When a user invokes a service, he is 
asked to evaluate it. But in most cases, users do not provide 
explicit ratings [18]. 

Xi et al. [19] studied the impact of user's location in the 
prediction of QoS. They proposed a novel approach where 
users are hierarchically grouped according to their location 
and their QoS evaluations. Consequently, users from the 
same region are considered as similar. Given a user, the 
system searches similar users in the same location (region) 
instead of exploring the set of all users. However, belonging 
to the same region does not necessary mean having the same 
preferences.  

Authors in [20] consider the impact of personalization of 
Web service items when computing the degree of similarity 
between users. That is, more popular services or services 
with more stable QoS should contribute less to user 
similarity measurement. Zhang et al. [21] propose to 
combine users QoS experiences, environment and user input 
(query) to predict Web services QoS values. But the 
environment and the user-input can hardly represent user’s 
opinions/tastes. 

B. Trust based approaches  

The number of available services and users is increasing 
and so, some fake feedbacks of malicious users may be 
introduced as inputs to the RS: as a result, this may affect 
the quality of recommended services. This issue has been 
addressed in [2] [4-5] [7] [12-14] [22-23], where authors 
proposed trust-enhanced recommendation methods. Based 
on trust relations, trust-based approaches refer only to 
ratings given by trusted users.   

SoCo [7] is a Web service recommendation framework 
based on social networks analysis. SoCo enables the 

discovery and the composition process by transforming the 
interactions between users and services into a social 
network interactions among users represented as a graph. 
This graph links users according to their common interests; 
it describes their profiles including their preferences and 
their previous system usages. Services preferred by trusted 
workers are recommended.  

The work of Deng.et al. [2] is based on the analysis of 
social networks’ contents and users’ relationships. Authors 
propose a Web service recommendation system based on 
trust relationships that are established either i) explicitly 
when a user specifies his/her list of trustful connections, 
from the beginning, or ii) implicitly when the same QoS 
evaluation is given by two different users. TSR [2] the 
service recommendation algorithm proposed is based on 
trusts and calculates the similarity between users via their 
assessments of public services. TSR also calculates the 
confidence of the user in a service. This confidence depends 
on the assessments of similar users. The most confident 
Web services are recommended. 

In [5], authors exploit the implicit users’ ratings to build 
a CF-based RS that takes advantages of the user WatchList 
and preferences in terms of tags. The idea is to transform 
implicit evaluations into explicit ones to improve the 
recommendation accuracy. Empirical experiments based on 
ProgrammableWeb show that compared to CF, the 
recommendation system (with time preference and tags) 
provides results that are more accurate and more precise. 

As mentioned above, most of RS inputs are users’ 
relationships and similarities among users. In our work, the 
similarity between users is based on the following 
assumptions: 1) user A tracks user B, this means that A have 
similar interests as B in terms of Web services; 2) users 
tracking a user in common may have similar interests.  

Moreover, unlike existing approaches which consider 
explicit user evaluations of services and QoS rating, we 
propose to exploit explicit users’ relations, established via 
the track function to detect their services preferences. This 
information is obtained from their previous tracks. We 
assume the existence of track relations in 
ProgrammableWeb that play the role of explicit trust 
relationships.  We can identify the most trusted users and 
then exploit their (track) records to recommend Web 
services. This simplifies the work needed to detect trust 
relations based on similar invocations or evaluations and 
minimizes the risk of using inconsistent information from 
spam users. 

III.  WSR-TRACK RECOMMENDATION SYSTEM 

WSR-Track, the system we propose, consists of two main 
components: 

- Graph generation process: Builds a heterogeneous 
multi-graph where the nodes represent users (resp. 



services) and the edges illustrate track relationships 
among these users and between users and services.   

- Web services recommendation process: Provides the 
most adequate Web services for a target user based 
on his/her history and his/her tracked relations.  

 
In the following we will detail both processes. 

A. Graph generation process 

The process builds a heterogeneous users/services multi-
graph by means of ProgrammableWeb track functions. A 
user can track (follow) either:  Web services, mashups, 
searches or others users (see Figure 1). Hence, in following 
a user on ProgrammableWeb, one may infer Web services 
and mashups of interest. Based on these tracking functions, 
we can connect users and services with track relationships. 
Users (resp. services) represent the nodes while the track 
relations are the edges. We refer to this graph as the 
(users/services’) track graph (TG) (cf. Definition 1). 

 

 

Figure 1. Users/services’ track graph 

 
Definition 1.  Track Graph . TG=<V,E> is an oriented 

heterogeneous multi-graph where V = {v1, v2, …, vm}  is a set 
of m registered users and services, and E={( vi,vj)| user vi 

tracks user vj  and/or user vi tracks service vj  } is the set of 
oriented relations.  

Since a user may track Web services and mashups, or 
create mashups, her/his history is defined by means of 
her/his followees or  the mashups she/he created.  

B. Web services recommendation process 

The output of this process is the recommendation of a set of 
relevant Web services to a target user based on his/her 
history and his/her tracked relations. This process is divided 
in two steps: i) The first step retrieves data from the track 
graph by exploiting the users’ relationships; ii ) The second 
step merges this data with other information such as the 
user’s history and the quality of services (popularity, usage, 
etc.)  to select the most relevant services. 

The first step, considered as a mining  step,  involves two 
actions:  

• Neighborhoods detection, which consists of 
detecting user’s neighbors in the track users graph 
to extract theirs recent histories, i.e. previous Web 
services usages.  

• Association rules generation, based on Apriori [8] 
to mine “valid” association rules. These rules 
express correlation amongst used services. 

The second step, called recommendation step, consists of 
exploiting these association rules to select relevant Web 
services and to rank them according to their 
usage/popularity. 
 
 
Figure 2 illustrates the main steps of WSR-Track 
recommendation system. 
 

 
 

Figure 2. WSR-Track Recommendation Processes 
 
In the following, more details will be given for the above 
mentioned steps.  

1) Knowledge mining  
This step includes mainly two actions: neighborhood 
detection and association rules generation. 

a) Neighborhood Detection 

The recommendation system takes into account relations 
between users in order to recommend services. If a user ui 
follows a user uj, it means that ui is interested in 
services/mashups of uj. Therefore, we recommend services 
to a user ui, based on the history of his/her neighbors in the 
track graph (TG).  

Once the list of neighbors is obtained from the TG, it is 
filtered in order to acquire the k most similar users. The 
similarity between users is measured according to the 
number of common services in their previous usages. Users 
deploying several common services may have similar 



interests and could be considered as similar.  The similarity 
between two users ui and uj is measured using the following 
function (1).  

 

Sim (ui,uj)=
|���⋂|���|

|���|
         (1) 

 
Where Hui and Huj are the recent histories of users ui and uj 
respectively. 
 

b) Association rules generation 

Association rules (AR) (cf. definition 2) are useful for 
analyzing and predicting users’ behaviors. They play an 
important role in data analysis, product clustering, product 
recommendation, etc.   

In order to determine the most used and the closest Web 
services to a user ui, we will integrate the association rules 
mining method [8] into our approach. This method aims at 
discovering the relations of interest between two or more 
stored items. The idea is to find frequent items, associations, 
correlations, or causal structures from a data collection. 

For sake of readability, we recall the definition of the 
main concepts used in the paper. 

 
Definition 2. Association rules [8]. Given: (1) a list of 

items I, and (2) a set of transactions T where each 
transaction T is composed of a set of items (T ⊆ I), the goal 
is to find all association rules that express correlation 
between the presence of an item with the presence of a set 
of items.  

 
For each association rule Ri: X, Y � Z, we apply two 

metrics which are the support(Ri) and the confidence(Ri). 
The support is used to measure the quantity of population 
concerned by this rule while the confidence is used to 
evaluate its statistical significance. 

Since our recommendation process should only rely on 
significant and “valid” associations rules, two thresholds, 
minsupport and minconfidence, will be used respectively for 
the support and the confidence of each rule. Hence, each 
association rule Ri with support(Ri) ≥ minsupport and 
confidence(Ri) ≥ minconfidence is extracted, while other 
associations will be ignored.  

These two thresholds are given by the user according to 
the nature,  type of the underlying data, and the objective of 
the analysis. 

The association rules generation consists of two steps: i) 
frequent itemsets deduction, and ii ) AR mining using 
Apriori [8]. As a first step, we define a frequent itemset with 
a minimum support ≥minsupport.  All the items of an 
association rule should be included in the generated itemset 
i.e., if {AB} a frequent itemset then {A} and {B} are both 
frequent itemsets.  

In a second step, we will apply Apriori on the obtained 
frequent itemsets. This algorithm uses breadth-first search 
and a tree data structure to extract candidate itemsets 
efficiently. It generates candidate itemsets of length k from 
the itemsets of length k − 1. Then it prunes the candidates 
that have an infrequent subpattern. It determines all frequent 
itemsets among the candidates set of k-length itemsets and 
generates the association rules. Most confident rules will be 
applied to recommend services for users.  
 
The confidence of each rule Ri: S1�S2 is measured as 
follows: 

Confidence (Ri) = 
�	

������,����	

�	

��������	
    (2) 

 
Where S1 and S2 are two Web services, and {S1,S2} a 
frequent itemset that contains S1 and S2, while {S1} is the 
frequent itemset containing only S1. 

 

 
Figure 3. Example of association rules generation 

 
Figure 3  describes the main steps for generating an 
association rule. Given four users’ previous transactions, 
with a minsupport set to 50% and a minconfidence set to 
100%, Apriori generated a valid association rule  
R1: Twitter�facebook. 
 

2) Recommendation 
The recommendation process (cf. Algorithm 1.) is based 

on the previously generated association rules. These rules 
are built up on frequent itemsets of services used by the 
target user and by his/her neighbors. To recommend a Web 
service, we need first to process these rules and then to rank 
them. 

a) Association rules Processing  
Starting from the list of valid rules being generated, a set of 
candidate Web services to recommend will be selected. This 



set contains services involved in the consequences of each 
rule satisfying a friendship condition. A rule is considered to 
be friendship if and only if it encloses in its antecedents at 
least one service already used by the target user.  
 

b) Ranking  
The final step in the recommendation process consists on 
ranking the resulted services based on their popularity 
scores (cf. definition 3). 
 

Definition 3. Popularity. The popularity of a service 
(Pops) denotes the number of previously recorded usages 
this service has been involved in. A popular service will 
have a high popularity. 

 

Algorithm1. WSR-Track recommendation 

Input:  TG: Track graph 
            ut: the target user 
           Hu: the set of services histories  
           S: set of services that can be recommended  
Output : recommended services for ut 

 
Begin 
 Neigh(ut)� Neighborhood_detection(TG,ut) 
 Hu�⋃Hui    where i In[1..|Neigh(ut)|] 
 AR�Apriori (Hu) 
 For each association rule Ri (a�b) in AR 
   If b is not in Hu then  
       S=S + b  
   End if 
 End for each 
 For each service s in S 
     Pops=popularity (s, Neigh(ut)) 
 End for each  
 Sort services in S according to Pops values 
 Return services in S 
End 

IV.  EVALUATIONS  

The main goal of our experimentations is to evaluate the 
user’s satisfaction with recommended services. These 
recommendations are made based on the tracks relationships 
between users (resp. services). 

Our experiments have been conducted on a real-world 
dataset. We used Tanagra platform2 for the generation of 
Association rules, java with SQL Server 2005. We used a 
dual Core cpu@2.20G PC with 4G RAM, under Windows 7. 

A. Dataset  

Firstly we give a description of our dataset. The experimental 
dataset comes from the public Web service registry where 
Web services, mashups, member profiles can be searched 

                                                           
2
http://eric.univ-lyon2.fr/~ricco/tanagra/ 

through its own services. All the data are stored in a 
database of SQL Server 2005 and released as public dataset 
file on the Internet3.  
From the all open data, we selected 1000 users who have 
more than 1 service in their histories of tracks, and 3138 
services (include APIs and mashups) are involved by these 
users. 
Our dataset is divided into two parts: a testing set covers 
20% of most recent published services in the history of each 
user, and the remaining 80% is a training set. 

B. Evaluation metrics 

To evaluate the performance and the effectiveness of our 
recommendation approach, several statistic metrics 
measures have been applied. Let’s note that PR is the set of 
pertinent recommended services, R the set of recommended 
services and P the set of pertinent services. 

1) Precision  
Recommendation precision refers to a ratio of correctly 

predicted (satisfying user) services to the number of all 
recommended services. 

Precision=
|��|
|�|          (3) 

2) Recall  
Recall refers to the ratio of correctly predicted services to 

the number of all the services satisfying the user in the 
testing set.   

                     Recall=
|��|
|�|                                        (4) 

The recall and precision are standard metrics to discuss 
the relevance of the recommended services according to the 
user’s satisfaction.  

3) RMSE 
The Root Mean Squared Error (RMSE) is used in evaluating 

accuracy of predicted rating (rs). Let     rs= �1 if s ∊ P 
0 else .  

RMSE=$∑ (�&�'�,' )
(  

Where N is the number of recommended services. 
4) Hit-rank 

The hit-rank [17] metric is considered to take into account 
the ranks of returned services.  

ℎ*+ − -./0 = �
2∗|4| ∑ ∑ �


5
657�	∈9                     (5) 

Where h is the number of relevant services occurring at the 
positions p1,p2, …,ph within the recommendation list;  m is 
the total number of the users and L is the length of the 
recommendation list (|L| = 10). 

Hence, services that occur earlier in the top-10 list are 
weighted higher than the services that occur later in the list. 
In order to ensure that our results are not sensitive to the 
particular training test partitioning of each dataset, we 
performed 10 different runs for each of the experiments, 
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each time using a different random partitioning into training 
and test sets. 

C. Experimental Setup 

Our proposed system is mainly based on the Apriori where 
the number of generated rules depends on the values of both 
support and confidence parameters. In order to find the 
“best” parameters values for WSR-Track performance 
evaluation, we set the support and confidence configurations 
as follow: 
 

 
Figure 4. Variation of the number of generated rules according to the 

confidence (support=0.5) 
 
• Support: The number of generated association rules is 

inversely proportional to the support values, e.g. 
support=0.5 means that for a service to be considered as 
common, it must be used by 50% of the neighbors of the 
user. The higher is the support value, the more relevant 
rules will be generated. According to our experiments, 
all the support values beyond 0.6 can generate no more 
than one or two rules. For example, Apriori generates 
200 association rules with a minimum support of 0.3. 
For the below experiments, we set the support value at 
0.5. 

• Confidence : The number of generated rules is inversely 
proportional to the confidence values (Figure 4). 

For our experiments we set the value of the support at 0.5 
and the confidence value at 0.9. We used a sample of 30 
randomly selected users among 1000 initially selected ones, 
having 1-30 services in their histories. Each test is repeated 
5 times to ensure that results do not depend on the used 
dataset. 

D. Experimental results 

Four groups of experiments were conducted to evaluate the 
performance of WSR-Track system. The first one intends to 
find out the impact of the neighborhood sizes on both 
precision and recall. The second one assesses the impact of 
the number of tracked services in users’ histories. The third 
group evaluates the effect of service popularity and the last 

one compares our system to other recommendation 
approaches.  
 

1) Neighborhood size effect  
To assess the impact of the target user's neighborhood size 
on the performance of our system and the precision of the 
generated recommendations, we randomly selected 30 users 
that tracked between 1 and 30 services. We repeated our 
tests using different neighborhood size ∈  [1,200] by an 
interval of 10. As illustrated in Figure 5 and  
Figure 6, the number of neighbors affects the 
recommendations accuracy in terms of precision, RMSE 
and recall. When the neighborhood cardinality size 
increases, the recommendations provided by our system are 
more precise and the error rate decreases.  

 
Figure 5. Impact of neighborhood’ size 

 

 
 

Figure 6. Variation of RMSE and precision 

 
For example, more than 60% of recommended services are 
relevant for a user with 20 neighbors, while this number 
exceeds 80% of recommended services per 30 neighbors. It 
was observed that when the number of neighbors is less than 
20, the precision value decreases. This result can be 
vindicated by the fact that with a high number of neighbors, 
Apriori mines several association rules leading to the 
improvement of the performance of the recommendation 
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process. Thus, neighborhoods’ size may have a positive 
influence on the recommended services precision. We can 
conclude that users need to follow at least 20 users in order 
to get relevant recommended services. 
Figure 7 shows that the neighborhood size brings a 
significant positive impact on the hit-rank metric values. 
From this, we concluded that we obtain more accurate Web 
services between the top-10 returned services of 
recommendation lists when the neighborhoods’ sizes 
increase. 

 
 

Figure 7. Impact of neighborhood size (hit-rank) 

 
2) Histories size effect  

We evaluated the effect of the users’ histories size on the 
performance of our system. Figure 8 illustrates the precision 
and the recall values while varying the size of users’ 
histories. It can be noticed that the variation of precision 
values is less important from 20 neighbors; therefore we can 
conclude that, users have to follow at least 20 users to get 
better recommended services. 

 
Figure 8. History' size impact 

 
3) Service popularity effect 

We evaluated the impact of service's popularity on our 
recommendation system performance. Service’s popularity 
is measured by its number of occurrences in the neighbors’ 
histories. 
For each user u, we identified the 5 most popular services in 
his/her neighborhood. We evaluated his satisfaction when 
he/she receives these services as recommendations. Figure 9 

shows that a user’s satisfaction increases when the 
recommended service is a popular one for his neighborhood. 
We conclude that the popularity of the service may have a 
great effect on the quality of recommendations. 

 
 

Figure 9. Service popularity effects on Precision and Recall 
 

4) Comparaison with others recommendations 
approaches  

We compared the proposed approach WSR-Track with 
known recommendation approaches in the literature using 
the librec framework4 namely, i)TrustSVD[23] which is a 
trust-based matrix factorization technique recommendation 
system that analyzes the social trust data from real-world 
data sets. This approach considers both explicit and implicit 
ratings to recommend; ii)  Association Rules [8](AR) which 
only applies association rules in order to recommend 
services and (iii)  Recommendation of popular services 
which is the  applied strategy by ProgrammableWeb. It 
recommends the most popular services on the basis of use in 
mashups. The most popular service is the most used in 
mashups.  

 
Figure 10. Comparaison with other recommendations approaches 

 
We fixed the neighborhood size to 20 neighbors and the 
users’ histories size to 30.  As illustrated in Figure 10, our 
recommendation algorithm, which is based on Track 
relationships, provides the best accuracy values compared to 
others approaches. TrustSVD that is the closest to our 
system gives good precision values due to the inclusion of 
trust relations between users and services. But as all rating 
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based approaches, it is not able to recommend services in 
the lack of rating values or invocation histories.  Unlike 
TrustSVD, our approach provides good results even when 
users do not have services in their histories. Furthermore, 
one may notice that Popular, which is the 
ProgrammableWeb approach, returns the lowest results 
compared to TrustSVD and WSR-Track. This is due to the 
fact that Popular does not take into account users’ interests 
and recommends the same services to all users. The results 
are not personalized. 
 
To summarize, in our recommender system, the relations 
between users are established offline (track users graph) and 
updated periodically. Compared to existing CF methods for 
service recommendation, ours performs better in most cases. 
The neighborhood size and the histories size affect 
positively the accuracy of our approach.  

V. CONCLUSION  

 Web service recommendation is still a challenging 
research issue due to the proliferation of available Web 
services in a dynamic environment and a variety of user 
needs. In this paper, we propose a graph-based 
recommendation method, which takes into account both 
users’ history of service invocation as well as relationships 
among users (resp. services) based on track relations 
extracted from a subset of ProgrammableWeb services. We 
define a heterogeneous multi-graph of users and services 
that is exploited as follows: detection of neighbors, 
association rules generation and finally service 
recommendation. Experimental results show that our 
approach recommends more new Web services to the users.  

Although using graphs to model the Web services 
ecosystem is not a new idea, from our perspective, this work 
is a first step towards building a real graph database, along 
the line of the Linked Data initiative. In future work, we 
plan to weight edges in using similarity values between 
users based on their profiles in order to detect the most 
similar tracked users.  We will improve our approach in 
taking into account users that have no tracking relationships 
and we will address the cold start problem as well. 
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