
HAL Id: hal-03538503
https://hal.science/hal-03538503

Submitted on 21 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Leveraging Track Relationships for Web Service
Recommendation

Fatma Slaimi, Sana Sellami, Omar Boucelma, Ahlem Ben Hassine

To cite this version:
Fatma Slaimi, Sana Sellami, Omar Boucelma, Ahlem Ben Hassine. Leveraging Track Relationships
for Web Service Recommendation. 13th IEEE International Conference on e-Business Engineering
(ICEBE), Nov 2016, Macau, China. �hal-03538503�

https://hal.science/hal-03538503
https://hal.archives-ouvertes.fr

Leveraging Track Relationships for Web Service Recommendation

Fatma Slaimi, Sana Sellami, Omar Boucelma
Aix Marseille Université, CNRS, ENSAM, Université

de Toulon,
LSIS UMR 7296,13397, Marseille, France

{fatma.slaimi,sana.sellami,omar.boucelma}@univ-
amu.fr

Ahlem Ben Hassine
National School of Computer Science (ENSI),

University of Manouba, Tunisia
Ahlembh@gmail.com

Abstract—Existing Web services recommendation approaches
are based on usage statistics or QoS properties, leaving aside
the evolution of the services’ ecosystem. These approaches do
not always capture new or more recent users’ preferences
resulting in recommendations with possibly obsolete or less
relevant services. In this paper, we describe a novel Web
services recommendation approach where the services’
ecosystem is represented as a heterogeneous multi-graph, and
edges may have different semantics. The recommendation
process relies on data mining techniques to suggest services “of
interest” to a user.

Keywords: Service Recommendation; Web service; multi-
Graph; Association rules; track relationship

I. INTRODUCTION

Recommendation Systems (RS for short) have proved
useful to exploit Web consumer behavior in order to
recommend an item of interest to a client e.g., a product, a
document or a book to cite a few. During the last decade,
several Web service recommenders have been proposed in
the literature [6] [10-11]. Most of those systems are based
on both similarities between previously used services, and
the assessments of the Quality-of-Service (QoS) combined
with collaborative filtering (CF) [15]. These approaches rely
on static data and hence cannot deal with a continuously
evolving Web services ecosystem, which is composed of
services, service providers, Mashups and (users) developers.
In such eco-system, services can be updated, deleted making
the whole ecosystem prone to obsolescence. In addition,
most of those services do not provide QoS metadata.

Other approaches consider the exploitation of trusted
relationships between services and users or between users
themselves [1-3]. Trust relationships are established on the
basis of similar service invocations or by similar evaluations
of Web services by different users. However, in other
settings, e.g. a social network, a user might be interested by a
service recommended by a friend rather than by other users,
even if these users have provided same rankings for a
service, or did invoke the same service. In addition, users’
information feedback is often missing and user interests may
change over time. Random evaluations provided by spam

users may be another limitation for these recommendation
systems.

Now that the big picture is drawn, why would it be
worthy to extend/improve/develop recommendation
approaches in the Web services ecosystem?

In this paper, we describe WSR-Track, a novel service
recommendation system where (1) the service ecosystem is
represented as a heterogeneous multi-graph, (2) nodes
represent users (resp. services), and edges represent either
trust relationships between users, or usage relationships
between a user and a service, and (3) nodes and edges
properties are integrated in the service discovery process.
Trust relationships are expressed by means of
ProgrammableWeb1 tracks. Usage relationships represent a
service invocation. The recommendation process takes into
account relationships, user records and preferences,
invocations, watchlists and mashups.

The rest of the paper is organized as follows; related
work is presented in Section 2 and Section 3 describes the
WSR-Track recommendation system. Section 4 discusses
experimental results and Section 5 concludes the paper.

II. RELATED WORK

Most of Web services RS proposed in the literature are
based on Collaborative Filtering or CF [15][16]. A CF
system proceeds as follows: (1) a user expresses his
preferences by rating items. These ratings are considered as
user preferences ; (2) the system matches some user ratings
against other users’ ratings and detects users with the most
“similar” preferences; (3) the system recommends the
highly-rated items for a user that are not forcibly rated by
him. These systems are based on the idea that users with
similar rates may have similar interests.

Other approaches were devoted to the use of QoS,
ratings and relationships among Web services end-users [4].

Both approaches are reviewed below.

1
http://www.programmableweb.com/

A. QoS Aware approaches

QoS properties are often expressed by means of
performance indicators such as price, response time,
availability, accuracy, etc. Many researches on Web service
selection, recommendation and composition use QoS in
order to improve the performance of their systems [9].
Generally, RS combine QoS evaluations with CF to
recommend services [4][10] and users [11].

In [4], the recommendation approach makes use of the
QoS ratings given by a user to predict QoS evaluations of
other services that she never used.

In [3], authors consider when the user is interested in the
QoS evaluations of other users, they will be considered as
trustful ones. Similarity between users is expressed as an
(Euclidean) distance. First, authors choose a set of services
to recommend, and then calculate the degree of user
confidence in these services by taking into consideration his
preferences in term of services’ categories.

In [6], a recommendation system with semantic matching
is described. The approach is based on CF and users'
feedbacks, and helps a user to select a Web service from a
list of similar ones. When a user invokes a service, he is
asked to evaluate it. But in most cases, users do not provide
explicit ratings [18].

Xi et al. [19] studied the impact of user's location in the
prediction of QoS. They proposed a novel approach where
users are hierarchically grouped according to their location
and their QoS evaluations. Consequently, users from the
same region are considered as similar. Given a user, the
system searches similar users in the same location (region)
instead of exploring the set of all users. However, belonging
to the same region does not necessary mean having the same
preferences.

Authors in [20] consider the impact of personalization of
Web service items when computing the degree of similarity
between users. That is, more popular services or services
with more stable QoS should contribute less to user
similarity measurement. Zhang et al. [21] propose to
combine users QoS experiences, environment and user input
(query) to predict Web services QoS values. But the
environment and the user-input can hardly represent user’s
opinions/tastes.

B. Trust based approaches

The number of available services and users is increasing
and so, some fake feedbacks of malicious users may be
introduced as inputs to the RS: as a result, this may affect
the quality of recommended services. This issue has been
addressed in [2] [4-5] [7] [12-14] [22-23], where authors
proposed trust-enhanced recommendation methods. Based
on trust relations, trust-based approaches refer only to
ratings given by trusted users.

SoCo [7] is a Web service recommendation framework
based on social networks analysis. SoCo enables the

discovery and the composition process by transforming the
interactions between users and services into a social
network interactions among users represented as a graph.
This graph links users according to their common interests;
it describes their profiles including their preferences and
their previous system usages. Services preferred by trusted
workers are recommended.

The work of Deng.et al. [2] is based on the analysis of
social networks’ contents and users’ relationships. Authors
propose a Web service recommendation system based on
trust relationships that are established either i) explicitly
when a user specifies his/her list of trustful connections,
from the beginning, or ii) implicitly when the same QoS
evaluation is given by two different users. TSR [2] the
service recommendation algorithm proposed is based on
trusts and calculates the similarity between users via their
assessments of public services. TSR also calculates the
confidence of the user in a service. This confidence depends
on the assessments of similar users. The most confident
Web services are recommended.

In [5], authors exploit the implicit users’ ratings to build
a CF-based RS that takes advantages of the user WatchList
and preferences in terms of tags. The idea is to transform
implicit evaluations into explicit ones to improve the
recommendation accuracy. Empirical experiments based on
ProgrammableWeb show that compared to CF, the
recommendation system (with time preference and tags)
provides results that are more accurate and more precise.

As mentioned above, most of RS inputs are users’
relationships and similarities among users. In our work, the
similarity between users is based on the following
assumptions: 1) user A tracks user B, this means that A have
similar interests as B in terms of Web services; 2) users
tracking a user in common may have similar interests.

Moreover, unlike existing approaches which consider
explicit user evaluations of services and QoS rating, we
propose to exploit explicit users’ relations, established via
the track function to detect their services preferences. This
information is obtained from their previous tracks. We
assume the existence of track relations in
ProgrammableWeb that play the role of explicit trust
relationships. We can identify the most trusted users and
then exploit their (track) records to recommend Web
services. This simplifies the work needed to detect trust
relations based on similar invocations or evaluations and
minimizes the risk of using inconsistent information from
spam users.

III. WSR-TRACK RECOMMENDATION SYSTEM

WSR-Track, the system we propose, consists of two main
components:

- Graph generation process: Builds a heterogeneous
multi-graph where the nodes represent users (resp.

services) and the edges illustrate track relationships
among these users and between users and services.

- Web services recommendation process: Provides the
most adequate Web services for a target user based
on his/her history and his/her tracked relations.

In the following we will detail both processes.

A. Graph generation process

The process builds a heterogeneous users/services multi-
graph by means of ProgrammableWeb track functions. A
user can track (follow) either: Web services, mashups,
searches or others users (see Figure 1). Hence, in following
a user on ProgrammableWeb, one may infer Web services
and mashups of interest. Based on these tracking functions,
we can connect users and services with track relationships.
Users (resp. services) represent the nodes while the track
relations are the edges. We refer to this graph as the
(users/services’) track graph (TG) (cf. Definition 1).

Figure 1. Users/services’ track graph

Definition 1. Track Graph . TG=<V,E> is an oriented

heterogeneous multi-graph where V = {v1, v2, …, vm} is a set
of m registered users and services, and E={(vi,vj)| user vi

tracks user vj and/or user vi tracks service vj } is the set of
oriented relations.

Since a user may track Web services and mashups, or
create mashups, her/his history is defined by means of
her/his followees or the mashups she/he created.

B. Web services recommendation process

The output of this process is the recommendation of a set of
relevant Web services to a target user based on his/her
history and his/her tracked relations. This process is divided
in two steps: i) The first step retrieves data from the track
graph by exploiting the users’ relationships; ii) The second
step merges this data with other information such as the
user’s history and the quality of services (popularity, usage,
etc.) to select the most relevant services.

The first step, considered as a mining step, involves two
actions:

• Neighborhoods detection, which consists of
detecting user’s neighbors in the track users graph
to extract theirs recent histories, i.e. previous Web
services usages.

• Association rules generation, based on Apriori [8]
to mine “valid” association rules. These rules
express correlation amongst used services.

The second step, called recommendation step, consists of
exploiting these association rules to select relevant Web
services and to rank them according to their
usage/popularity.

Figure 2 illustrates the main steps of WSR-Track
recommendation system.

Figure 2. WSR-Track Recommendation Processes

In the following, more details will be given for the above
mentioned steps.

1) Knowledge mining
This step includes mainly two actions: neighborhood
detection and association rules generation.

a) Neighborhood Detection

The recommendation system takes into account relations
between users in order to recommend services. If a user ui
follows a user uj, it means that ui is interested in
services/mashups of uj. Therefore, we recommend services
to a user ui, based on the history of his/her neighbors in the
track graph (TG).

Once the list of neighbors is obtained from the TG, it is
filtered in order to acquire the k most similar users. The
similarity between users is measured according to the
number of common services in their previous usages. Users
deploying several common services may have similar

interests and could be considered as similar. The similarity
between two users ui and uj is measured using the following
function (1).

Sim (ui,uj)=
|���⋂|���|

|���|
 (1)

Where Hui and Huj are the recent histories of users ui and uj
respectively.

b) Association rules generation

Association rules (AR) (cf. definition 2) are useful for
analyzing and predicting users’ behaviors. They play an
important role in data analysis, product clustering, product
recommendation, etc.

In order to determine the most used and the closest Web
services to a user ui, we will integrate the association rules
mining method [8] into our approach. This method aims at
discovering the relations of interest between two or more
stored items. The idea is to find frequent items, associations,
correlations, or causal structures from a data collection.

For sake of readability, we recall the definition of the
main concepts used in the paper.

Definition 2. Association rules [8]. Given: (1) a list of

items I, and (2) a set of transactions T where each
transaction T is composed of a set of items (T ⊆ I), the goal
is to find all association rules that express correlation
between the presence of an item with the presence of a set
of items.

For each association rule Ri: X, Y � Z, we apply two

metrics which are the support(Ri) and the confidence(Ri).
The support is used to measure the quantity of population
concerned by this rule while the confidence is used to
evaluate its statistical significance.

Since our recommendation process should only rely on
significant and “valid” associations rules, two thresholds,
minsupport and minconfidence, will be used respectively for
the support and the confidence of each rule. Hence, each
association rule Ri with support(Ri) ≥ minsupport and
confidence(Ri) ≥ minconfidence is extracted, while other
associations will be ignored.

These two thresholds are given by the user according to
the nature, type of the underlying data, and the objective of
the analysis.

The association rules generation consists of two steps: i)
frequent itemsets deduction, and ii) AR mining using
Apriori [8]. As a first step, we define a frequent itemset with
a minimum support ≥minsupport. All the items of an
association rule should be included in the generated itemset
i.e., if {AB} a frequent itemset then {A} and {B} are both
frequent itemsets.

In a second step, we will apply Apriori on the obtained
frequent itemsets. This algorithm uses breadth-first search
and a tree data structure to extract candidate itemsets
efficiently. It generates candidate itemsets of length k from
the itemsets of length k − 1. Then it prunes the candidates
that have an infrequent subpattern. It determines all frequent
itemsets among the candidates set of k-length itemsets and
generates the association rules. Most confident rules will be
applied to recommend services for users.

The confidence of each rule Ri: S1�S2 is measured as
follows:

Confidence (Ri) =
�	

������,����	

�	

��������	
 (2)

Where S1 and S2 are two Web services, and {S1,S2} a
frequent itemset that contains S1 and S2, while {S1} is the
frequent itemset containing only S1.

Figure 3. Example of association rules generation

Figure 3 describes the main steps for generating an
association rule. Given four users’ previous transactions,
with a minsupport set to 50% and a minconfidence set to
100%, Apriori generated a valid association rule
R1: Twitter�facebook.

2) Recommendation
The recommendation process (cf. Algorithm 1.) is based

on the previously generated association rules. These rules
are built up on frequent itemsets of services used by the
target user and by his/her neighbors. To recommend a Web
service, we need first to process these rules and then to rank
them.

a) Association rules Processing
Starting from the list of valid rules being generated, a set of
candidate Web services to recommend will be selected. This

set contains services involved in the consequences of each
rule satisfying a friendship condition. A rule is considered to
be friendship if and only if it encloses in its antecedents at
least one service already used by the target user.

b) Ranking
The final step in the recommendation process consists on
ranking the resulted services based on their popularity
scores (cf. definition 3).

Definition 3. Popularity. The popularity of a service
(Pops) denotes the number of previously recorded usages
this service has been involved in. A popular service will
have a high popularity.

Algorithm1. WSR-Track recommendation

Input: TG: Track graph
 ut: the target user
 Hu: the set of services histories
 S: set of services that can be recommended
Output : recommended services for ut

Begin
 Neigh(ut)� Neighborhood_detection(TG,ut)
 Hu�⋃Hui where i In[1..|Neigh(ut)|]
 AR�Apriori (Hu)
 For each association rule Ri (a�b) in AR
 If b is not in Hu then
 S=S + b
 End if
 End for each
 For each service s in S
 Pops=popularity (s, Neigh(ut))
 End for each
 Sort services in S according to Pops values
 Return services in S
End

IV. EVALUATIONS

The main goal of our experimentations is to evaluate the
user’s satisfaction with recommended services. These
recommendations are made based on the tracks relationships
between users (resp. services).

Our experiments have been conducted on a real-world
dataset. We used Tanagra platform2 for the generation of
Association rules, java with SQL Server 2005. We used a
dual Core cpu@2.20G PC with 4G RAM, under Windows 7.

A. Dataset

Firstly we give a description of our dataset. The experimental
dataset comes from the public Web service registry where
Web services, mashups, member profiles can be searched

2
http://eric.univ-lyon2.fr/~ricco/tanagra/

through its own services. All the data are stored in a
database of SQL Server 2005 and released as public dataset
file on the Internet3.
From the all open data, we selected 1000 users who have
more than 1 service in their histories of tracks, and 3138
services (include APIs and mashups) are involved by these
users.
Our dataset is divided into two parts: a testing set covers
20% of most recent published services in the history of each
user, and the remaining 80% is a training set.

B. Evaluation metrics

To evaluate the performance and the effectiveness of our
recommendation approach, several statistic metrics
measures have been applied. Let’s note that PR is the set of
pertinent recommended services, R the set of recommended
services and P the set of pertinent services.

1) Precision
Recommendation precision refers to a ratio of correctly

predicted (satisfying user) services to the number of all
recommended services.

Precision=
|��|
|�| (3)

2) Recall
Recall refers to the ratio of correctly predicted services to

the number of all the services satisfying the user in the
testing set.

 Recall=
|��|
|�| (4)

The recall and precision are standard metrics to discuss
the relevance of the recommended services according to the
user’s satisfaction.

3) RMSE
The Root Mean Squared Error (RMSE) is used in evaluating

accuracy of predicted rating (rs). Let rs= �1 if s ∊ P
0 else .

RMSE=$∑ (�&�'�,')
(

Where N is the number of recommended services.
4) Hit-rank

The hit-rank [17] metric is considered to take into account
the ranks of returned services.

ℎ*+ − -./0 = �
2∗|4| ∑ ∑ �

5
657�	∈9 (5)

Where h is the number of relevant services occurring at the
positions p1,p2, …,ph within the recommendation list; m is
the total number of the users and L is the length of the
recommendation list (|L| = 10).

Hence, services that occur earlier in the top-10 list are
weighted higher than the services that occur later in the list.
In order to ensure that our results are not sensitive to the
particular training test partitioning of each dataset, we
performed 10 different runs for each of the experiments,

3http://www.lsis.org/sellamis/Projects.html#WeS-ReG

each time using a different random partitioning into training
and test sets.

C. Experimental Setup

Our proposed system is mainly based on the Apriori where
the number of generated rules depends on the values of both
support and confidence parameters. In order to find the
“best” parameters values for WSR-Track performance
evaluation, we set the support and confidence configurations
as follow:

Figure 4. Variation of the number of generated rules according to the

confidence (support=0.5)

• Support: The number of generated association rules is

inversely proportional to the support values, e.g.
support=0.5 means that for a service to be considered as
common, it must be used by 50% of the neighbors of the
user. The higher is the support value, the more relevant
rules will be generated. According to our experiments,
all the support values beyond 0.6 can generate no more
than one or two rules. For example, Apriori generates
200 association rules with a minimum support of 0.3.
For the below experiments, we set the support value at
0.5.

• Confidence : The number of generated rules is inversely
proportional to the confidence values (Figure 4).

For our experiments we set the value of the support at 0.5
and the confidence value at 0.9. We used a sample of 30
randomly selected users among 1000 initially selected ones,
having 1-30 services in their histories. Each test is repeated
5 times to ensure that results do not depend on the used
dataset.

D. Experimental results

Four groups of experiments were conducted to evaluate the
performance of WSR-Track system. The first one intends to
find out the impact of the neighborhood sizes on both
precision and recall. The second one assesses the impact of
the number of tracked services in users’ histories. The third
group evaluates the effect of service popularity and the last

one compares our system to other recommendation
approaches.

1) Neighborhood size effect
To assess the impact of the target user's neighborhood size
on the performance of our system and the precision of the
generated recommendations, we randomly selected 30 users
that tracked between 1 and 30 services. We repeated our
tests using different neighborhood size ∈ [1,200] by an
interval of 10. As illustrated in Figure 5 and
Figure 6, the number of neighbors affects the
recommendations accuracy in terms of precision, RMSE
and recall. When the neighborhood cardinality size
increases, the recommendations provided by our system are
more precise and the error rate decreases.

Figure 5. Impact of neighborhood’ size

Figure 6. Variation of RMSE and precision

For example, more than 60% of recommended services are
relevant for a user with 20 neighbors, while this number
exceeds 80% of recommended services per 30 neighbors. It
was observed that when the number of neighbors is less than
20, the precision value decreases. This result can be
vindicated by the fact that with a high number of neighbors,
Apriori mines several association rules leading to the
improvement of the performance of the recommendation

0

20

40

60

80

100

0,05 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Confidence

Number of generated rules

0

0,2

0,4

0,6

0,8

1

0 50 100 150 200

Neighborhood'size

Precision Recall

0

0,5

1

1,5

2

2,5

3

3,5

4

0 50 100 150 200

precision

RMSE

Neighborhood'size

process. Thus, neighborhoods’ size may have a positive
influence on the recommended services precision. We can
conclude that users need to follow at least 20 users in order
to get relevant recommended services.
Figure 7 shows that the neighborhood size brings a
significant positive impact on the hit-rank metric values.
From this, we concluded that we obtain more accurate Web
services between the top-10 returned services of
recommendation lists when the neighborhoods’ sizes
increase.

Figure 7. Impact of neighborhood size (hit-rank)

2) Histories size effect

We evaluated the effect of the users’ histories size on the
performance of our system. Figure 8 illustrates the precision
and the recall values while varying the size of users’
histories. It can be noticed that the variation of precision
values is less important from 20 neighbors; therefore we can
conclude that, users have to follow at least 20 users to get
better recommended services.

Figure 8. History' size impact

3) Service popularity effect

We evaluated the impact of service's popularity on our
recommendation system performance. Service’s popularity
is measured by its number of occurrences in the neighbors’
histories.
For each user u, we identified the 5 most popular services in
his/her neighborhood. We evaluated his satisfaction when
he/she receives these services as recommendations. Figure 9

shows that a user’s satisfaction increases when the
recommended service is a popular one for his neighborhood.
We conclude that the popularity of the service may have a
great effect on the quality of recommendations.

Figure 9. Service popularity effects on Precision and Recall

4) Comparaison with others recommendations
approaches

We compared the proposed approach WSR-Track with
known recommendation approaches in the literature using
the librec framework4 namely, i)TrustSVD[23] which is a
trust-based matrix factorization technique recommendation
system that analyzes the social trust data from real-world
data sets. This approach considers both explicit and implicit
ratings to recommend; ii) Association Rules [8](AR) which
only applies association rules in order to recommend
services and (iii) Recommendation of popular services
which is the applied strategy by ProgrammableWeb. It
recommends the most popular services on the basis of use in
mashups. The most popular service is the most used in
mashups.

Figure 10. Comparaison with other recommendations approaches

We fixed the neighborhood size to 20 neighbors and the
users’ histories size to 30. As illustrated in Figure 10, our
recommendation algorithm, which is based on Track
relationships, provides the best accuracy values compared to
others approaches. TrustSVD that is the closest to our
system gives good precision values due to the inclusion of
trust relations between users and services. But as all rating

4 http://www.librec.net/

0

0,02

0,04

0,06

0,08

0,1

0,12

0 50 100 150 200

Neighborhood' size

hit-rank

0

0,2

0,4

0,6

0,8

1

1 5 10 20 25

size of History

Precision Recall

0

0,2

0,4

0,6

0,8

1

0 50 100 150 200
Neighborhood' size

precision Precision of popular services

0

0,2

0,4

0,6

0,8

1

WSR-TRACK TrustSVD AR Poupular

Precision Recall

based approaches, it is not able to recommend services in
the lack of rating values or invocation histories. Unlike
TrustSVD, our approach provides good results even when
users do not have services in their histories. Furthermore,
one may notice that Popular, which is the
ProgrammableWeb approach, returns the lowest results
compared to TrustSVD and WSR-Track. This is due to the
fact that Popular does not take into account users’ interests
and recommends the same services to all users. The results
are not personalized.

To summarize, in our recommender system, the relations
between users are established offline (track users graph) and
updated periodically. Compared to existing CF methods for
service recommendation, ours performs better in most cases.
The neighborhood size and the histories size affect
positively the accuracy of our approach.

V. CONCLUSION

 Web service recommendation is still a challenging
research issue due to the proliferation of available Web
services in a dynamic environment and a variety of user
needs. In this paper, we propose a graph-based
recommendation method, which takes into account both
users’ history of service invocation as well as relationships
among users (resp. services) based on track relations
extracted from a subset of ProgrammableWeb services. We
define a heterogeneous multi-graph of users and services
that is exploited as follows: detection of neighbors,
association rules generation and finally service
recommendation. Experimental results show that our
approach recommends more new Web services to the users.

Although using graphs to model the Web services
ecosystem is not a new idea, from our perspective, this work
is a first step towards building a real graph database, along
the line of the Linked Data initiative. In future work, we
plan to weight edges in using similarity values between
users based on their profiles in order to detect the most
similar tracked users. We will improve our approach in
taking into account users that have no tracking relationships
and we will address the cold start problem as well.

REFERENCES
[1] M. Eirinaki, M. D. Louta and I. Varlamis, "A trust-aware system for

personalized user recommendations in social networks," IEEE Trans.
Syst., Man, Cybern., Syst., vol. 44, no. 4, pp. 409-421, 2014.

[2] S. Deng, L. Huang, and G. Xu, "Social network-based service
recommendation with trust enhancement,". Expert Systems with
Applications,41(18), pp.8075-8084, 2014.

[3] S Deng, L Huang, Y Yin, and W Tang, "Trust-based Service
Recommendation in Social Network,". Appl. Math, 9(3), pp.1567-
1574, 2015.

[4] J Zhu, P He, Z Zheng, and MR Lyu,"A Privacy-Preserving QoS
Prediction Framework for Web Service Recommendation,". In Web
services (ICWS), 2015 IEEE International Conference on pp. 241-
248, 2015.

[5] X Zhang, K He, J Wang, C Wang, G Tianand, and J.Liu, "Web
Service Recommendation Based on Watchlist via Temporal and Tag
Preference Fusion.In Web Services" In 2014 IEEE international
conference on Web services (ICWS), pp. 281-288. IEEE, 2014.

[6] U. S. Manikrao, and T.V. Prabhakar, "Dynamic Selection of Web
Services with Recommendation System," International Conference on
Next Generation Web Services Practices, August 2005, Seoul, Korea.

[7] A. Maaradji, H.Hacid, R. Skraba, A.Lateef, J.Daigremont, and
N.Crespi. "Social-Based Web Services Discovery and Composition
for Step-by-Step Mashup Completion," ICWS, pp. 700-701.IEEE
Computer Society, 2011.

[8] G. Piatetsky-Shapiro, "Discovery, analysis, and presentation of strong
rules", in G.Piatetsky-Shapiro & W. J. Frawley, eds, ‘Knowledge
Discovery in Databases’, AAAI/MIT Press, Cambridge, MA 1991.

[9] X. Wang, Z. Wang, and X. Xu, "An Improved Artificial Bee
ColonyApproach to QoS-Aware Service Selection," 2013 IEEE
20thInternational Conference on Web Services, pp. 395-402, 2013.

[10] Z. B. Zheng, H. Ma, M. R. Lyu, and I. King, "QoS-Aware Web
Service Recommendation by Collaborative Filtering," IEEE
Transactions on Services Computing, vol. 4, pp. 140-152, Apr-Jun
2011.

[11] J. Cao, Z. Wu, Y. Wang, and Y. Zhuang, "Hybrid Collaborative
Filtering algorithm for bidirectional Web service recommendation,"
Knowledge and Information Systems, pp. 1-21, 2012.

[12] R Andersen, C.Borgs, and J. Chayesl, "Trust-based recommendation
systems: an axiomatic approach,". In International conference on
world wide Web, pp. 199–208, 2008.

[13] J.O’Donovan, and B.Smyth, "Trust in recommender systems", In
International conference on intelligent user interfaces, pp. 167–174,
2005.

[14] F.E. Walter, S.Battiston, and F.Schweitzer."A model of a trust-based
recommendation system on a social network,". Autonomous Agents
and Multi-Agent Systems, 16(1), pp. 57–74, 2008.

[15] J. S. Breese, D.Heckerman, and Carl Kadie, "Empirical Analysis of
Predictive Algorithms for Collaborative Filtering”, In Proceedings of
the Fourteenth conference on Uncertainty in artificial intelligence, pp.
43-52,1998.

[16] X. Su, and T.M. Khoshgoftaar, "A survey of collaborative filtering
techniques", Advances in Artificial Intelligence archive, 2009.

[17] M. Deshpande and G. Karypis, "Item-based top-n recommendation
algorithms," ACM Transactions on Information Systems (TOIS), vol.
22, pp. 143-177, 2004.

[18] M. Claypool, M.P. Le, M.Wased, and D. Brown, "Implicit interest
indicators,". In: International Conference on Intelligent User
Interfaces, ACM Press pp. 33–40,2010.

[19] X. Chen, X. Liu, Z. Huang, and H. Sun, "RegionKNN: A Scalable
Hybrid Collaborative Filtering Algorithm for Personalized Web
Service Recommendation,” Web Services (ICWS), 2010 IEEE
International Conference on , vol., no., pp.9,16, 5-10 July 2010

[20] Y. Jiang; J. Liu, M.Tang; and X.Liu, "An Effective Web Service
Recommendation Method Based on Personalized Collaborative
Filtering, " Web Services (ICWS), 2011 IEEE International
Conference on , vol., no., pp.211,218, July 2011.

[21] Q. Zhang; C.Ding; and C.Chi, "Collaborative Filtering Based Service
Ranking Using Invocation Histories, " Web Services (ICWS), 2011
IEEE International Conference on , vol., no., pp.195,202, July 2011

[22] B.Yang, Y.Lei, D.Liu, and J.Liu, "Social collaborative filtering by
trust.,"In: Proceedings of the 23rd International Joint Conference on
Artificial Intelligence (IJCAI), pp. 2747–2753 ,2013.

[23] G. Guo, J.Zhang,, and N.Yorke-Smith, "Trustsvd: Collaborative
filtering with both the explicit and implicit influence of user trust and
of item ratings,". In: Proceedings of the 29th AAAI Conference on
Artificial Intelligence (AAAI), pp. 123-129, 2015

