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Abstract— Genetic programming has been successfully ap-
plied to evolve computer programs for solving a variety of
interesting problems. In the previous work we introduced
the breeder genetic programming (BGP) method that has
Occam’s razor in its fitness measure to evolve minimal size
multilayer perceptrons. In this paper we apply the method
to synthesis of sigma-pi neural networks. Unlike percep-
tron architectures, sigma-pi networks use product units as
well as summation units to build higher-order terms. The
effectiveness of the method is demonstrated on benchmark
problems. Simulation results on noisy data suggest that
BGP not only improves the generalization performance, it
can also accelerate the convergence speed.

I. INTRODUCTION

Genetic programming has been successfully used to evolve
computer programs for solving many interesting problems
in artificial intelligence and artificial life [4, 16, 18, 19]. Sim-
ilar to usual genetic algorithms (GAs), genetic program-
ming (GP) starts with a population of randomly generated
individuals. Each individual is a program that, when exe-
cuted, is the candidate solution to the problem. These pro-
grams are expressed as parse trees, or LISP S-expressions.
Fitness proportionate selection and crossover are used to
produce increasingly fitter populations of computer pro-
grams.

While most GAs use binary strings of fixed size [9], GPs
use structured representations of variable length. This is
important because it is particularly suited to problems in
which the optimal underlying structure must be discov-
ered. One problem with the variable length is that the
program size may grow without bound. For example, Kin-
near [16] reports that all but a very few of evolved solutions
to his sorting problems were so large as to defy any human
understanding of them. Tackett [29], in his application of
genetic programming to image processing tasks, oberserves
that the size and complexity of trees grows without perfor-
mance improvement.

In the previous work [35, 36] we introduced the breeder
genetic programming (BGP) that employs Occam’s razor
in its fitness measure to evolve optimal or minimal size
multilayer perceptrons. We apply here the BGP method
to synthesize sigma-pi neural networks. Unlike multilayer
perceptrons, sigma-pi networks use product units as well
as summation units to build higher-order terms. In section
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IT we illustrate the usefulness of higher-order terms and
show how the sigma-pi networks can be used to represent
higher-order networks. The representation scheme and the
algorithm are described in section III. Simulation results
are reported in section 1V, followed by concluding remarks
in section V.

II. SiGMA-P1 NEURAL NETWORKS

To motivate the approach, we start with a brief descrip-
tion of multilayer neural networks. Multilayer perceptrons
are feedforward networks with one or more layers of nodes
between the input and output units. These additional lay-
ers contain hidden units that are not directly connected
to both the input and output units. The input-output re-
lation of the units is given in these networks by weighted

sum of inputs
ui= Y wiwj (1)
JER()
where w;; is the connection weight from unit j to unit
i and R(7) denotes the receptive field of unit ¢. The total

input 1s then transferred to upper layer units by a nonlinear
activation function f, e.g. a threshold function:

yi:f(ui):{ i—i

where 6; 1s a threshold.

A commonly adopted architecture consists of one hid-
den layer with full connectivity between neighboring layers.
This structure has been very successful for many applica-
tions. However, they have some weaknesses:

if w; > 0;
otherwise

(2)

1. The full connectivity between layers and often only be-
tween neighboring layers try to find a prediction over
the full input space. This is not necessarily a good
strategy. A particular task might not contain a good
predictor for the full input space, but might contain
functions capable of good prediction on specified re-
gions of input space.

2. They are especially appropriate to approximating ad-
ditive functions, since they employ linear combinations
of inputs. However, the multilayer perceptrons cannot
approximate efficiently if there are high order interac-
tions between the inputs. Adding additional hidden
layers may help to extend the representational capac-
ity of the network.



Figure 1: An order 4 neuron

The higher-order terms can be again used as building
blocks which are able to capture a high-order correlational
structure of the data. In particular, by building a sigma
unit which has as input various higher-order terms, we can
construct a higher-order network of sigma-pi units:

yi = filw) = fi (ZwkT(k)) (8)

The problem in using higher-order networks is that the
number of terms explodes with the problem size; the num-
ber of parameters necessary for specifying an order & neu-
ron 1is

k
Ty = Z nCia (9)
i=0

(m)

i1 i have ,C,,, components. Here n is the total
number of inputs and ,,C};, are the binomial coefficients. As
an example, an order 4 neuron has 2* = 16 parameters as
shown in Figure 1.

To avoid the combinatorial explosion, a method is needed
to discover and combine useful terms and to eliminate non-
essential terms. The following section describes a genetic
programming method designed for these purposes.

because w

I1I. EvoLviNG SigMa-P1 NETS

In order to evolve problem-specific sigma-p1 networks we
use the breeder genetic programming (BGP) [36]. Similar
to GPs, BGP uses tree representation for individuals. BGP
uses, however, ranking-based truncation selection as in the
breeder genetic algorithm (BGA) [26] instead of fitness-
proportionate selection or tournament selection [2]. An-
other feature of BGP is its fitness function which uses the
Occam’s razor principle. The truncation selection com-
bined with Occam’s razor has been proved useful to balance
the accuracy and parsimony of multilayer perceptrons.
The sigma-pi networks are represented as a set of m
trees, where m is the number of output units. Each tree
has an arbitrary number of subtrees. The grammar for de-
scribing the genotype is given in Figure 2. Figure 3 shows



Figure 4: Phenotype of a sigma-pi network. This archi-
tecture allows higher-order terms with local receptive fields.
Direct connections between non-neighboring layers are also
allowed.

into the mating pool B(g), where 7 € (0, 1] is the trun-
cation threshold. FEach network in B(g) undergoes a local
hillclimbing to be described later. This results in revised
mating pool B(g). The (g+1)st generation of size M is pro-
duced by applying crossover operators to randomly chosen
parent networks in the mating pool B(g). We use the elitist
strategy by replacing the worst fit network Ay ors:(9+1) in
A(g+1) by the best Ap.5:(g) of A(g). A new population is
generated repeatedly until an acceptable solution is found
or the variance of the fitness V(g) falls below a specified
limit value Vi;p:
1 & o
Vg)= 57 2 (Fi9) = F(9)) < Vinin  (12)

=1

where F(g) is the average fitness of the individuals in A(g).
The algorithm also stops if it reaches the maximum number
of generations, gmaz-

The weights of a network are trained by a local hillclimb-
ing method to each selected parent. Many hillclimbing
methods are possible. We use a simple next-ascent hill-
climbing procedure: given an individual B;, a better indi-
vidual B}“* is sought by repeatedly applying the mutation



procedure BGP(M, 7, Vinin, 9maz)
population size: int M
truncation rate: real 7
variance: real Vi, V(9)

generation: int ¢maz, 9

fitness values: real £3

population: array A = (Ay, Aa, ..., Aum)
mating pool: array B = (B, Ba, ..., Br.ayr)

g0

A(0) «— Initialize(M)

while (V(g) > Vinin) do
Fi(g) — Evaluate(A;(g)) Vie{l, .., M}
if (solution found or ¢ > gmay) stop
B(g) — Select(A(g), F(g),
B;(g) — Hillclimb(B;(g))
A(g + 1) — Mate(B(g), M)
-Aworst(g + 1) Abest(g)
g—9+1

endwhile

endprocedure

7)
Vie{l,..,TM}

Figure 5: The top-level structure of the BGP algorithm

operator to the weights until there is no weight configura-
tion found having better fitness in each sweep through the
individual.
depth-first search order.

The mutation operation is performed by replacing the
value of a node, ¢;, of the tree by another, i.e. by finding the
class C of ¢; and replacing ¢; by another member ¢;, j # ¢
in the set . Here the class Cy must first be found because
not every value (node) can be mutated to arbitrary values.
For example, a weight value must be drawn from the set
{+1,—1}. The thresholds are mutated the same way as the
weights. The index for the input units can be mutated by
another input index. We also allow a nonterminal symbol
S to be mutated by a P and vise versa, i.e. changing the
type of neural units. This flexibility ensures that multilayer

The sequence of mutation is defined as the

perceptrons can also be evolved from sigma-pi networks.
The crossover operator adapts the size, depth and recep-
tive field shape of the network architecture. The crossover
operation starts with choosing randomly two parents, B;
and Bj, from the mating pool B(g). The nodes in the
tree are numbered according to the depth-first search or-
der and crossover sites ¢; and ¢; are chosen at random
with the following conditions: 1 < ¢; < Size(B;) and
1 < ¢; < Size(Bj). The length Size(By) of an individ-
ual By is defined as the total number of units and weights.
The subtrees of two parent individuals, B; and B;, are ex-
changed at the given crossover points to form two offspring
Bj and Bj. The label of the nodes, ¢; and ¢;, must belong
to the same class, i.e. either both U-type or both W-type
nodes. The number of arguments of each operator plays
no role because the syntactically correct subtree under the
node is completely replaced by another syntactically cor-

rect subtree.

We use the following equation as the fitness measure

E(D|W,4)  C(W|A)

F(DIW,A) = == Voo

(13)

A theoretical background behind this fitness function is
discussed in [36]. The first term expresses the accuracy
penalty caused by the error for the training set:

ZZ (yij —

i=1 j=1

E(D|W, A) = oj(xzi; W, A2, (14)

Here y;; denotes the jth component of the ¢th desired out-
put vector y;, and o;(x;; W, A) denotes the jth actual out-
put of the network with the architecture A and the set of
weights W for the ¢th training input vector z;.

The second term in the fitness function expresses the
complexity penalty of the network, often called Occam’s
razor. The complexity is defined as

C(W|A)=W(A)+10-L(A)+ U(4), (15)
where W(A) = Zle w? is the number of weights in the
network for binary weights. L(A) and U(A) denote the
number of layers and units, respectively. The L(A) term
penalizes a deep architecture which requires a large execu-
tion time after training. The U(A) term penalizes a large
number of units whose realization is more expensive than
weights. Notice that the L(A) term is multiplied by 10 to
penalize it more strongly than others. Depending on ap-
plications, one may weight three terms differently. C\qs 18
a normalization factor used for the complexity term to be
between 0 and 1. In all experiments we set Cl,qe = 1000,
assuming the problems can be solved by C(W|A) < 1000.

Notice in equation (13) that the complexity term C'(W]A)
is divided by N, the number of training examples, to have
the complexity term play a minor role in determining the
total fitness value of the network. This ensures a small
network be preferred to a large network only if both of
them achieve a comparable performance. Otherwise, the
evolution may not lead to a solution by preferring smaller
networks which lack the capacity to learn the training set.

IV. SiMmuLAaTION RESULTS

The method was tested on the parity problem. We per-
formed two kinds of experiments separately. In the first,
we are interested to know whether the use of product units
is effective and, if yes, to what extent. In these experi-
ments, noise-free examples are used. For the second series
of experiments, we use noisy data. The generalization per-
formance and the learning speed of different strategies are
compared to study the effect of Occam’s razor for the con-
struction of sigma-pi networks.

A. Clean Data

The accuracy and convergence speed of sigma-pi net-
works are studied. We also measured the network complex-
ity in terms of the number of layers, units and connections.



The results are summarized in Table 1. For these experi-
ments we used noise-free data consisting of 2" examples for
problem size n. We performed 10 runs for each problem
size. The population was initialized for every indidual to
contain sigma and pi units with 50% probability each. The
depth of initialized network was limited to 3. The trunca-
tion rate was 40%. For each problem size n, we used the
population size M = 100n/2 and the maximum generation
Gmae = 10n. For example, M = 400 and g,,,. = 80 for
n = 8.

| n arch | layr  unit conn  accr  gen |
2 S 2.2 40 129 950 125
S/P | 20 22 6.5 100.0 2.9
4 S 49 179 55.0 819 40.0
S/P | 24 36 14.8 100.0 85
6 S 4.4 30.2 1614 895 46.2
S/P | 29 89 402 984 358
8 S 5.9 656 414.1 864 634
S/P | 36 21.0 106.8 98.1 56.2

Table 1: Results for parity problems

To test the effectiveness of pi units we also run 10 exper-
iments using only sigma units. The experiments were the
same as before except that all units are initialized as sigma
units. As the results show, the additional use of pi units
consistently improved the performance in accuracy as well
as in complexity reduction.

B. Noisy Data

In the second set of experiments we used the parity prob-
lem of input size 8. A total of 128 correct examples were
generated randomly to get a training set and then noise
was 1nserted to this data by randomly changing the ouput
value with 5% probablity. This means, on average, 6 or
7 examples out of 128 have false outputs. The generaliza-
tion performance of the best solution in each generation
was tested by the complete data set of 2% = 256 noise-free
examples.

Figure 6 shows a typical evolution of the training and
generalization error of the best fit sigma-pi networks. In
spite of the noise, a good correspondence is observed be-
tween learning and generalization performance. Figure 7
shows the corresponding evolution of the complexity of the
best fit network in each generation. Notice that the change
of network performance is closely related with the change
of 1ts complexity.

The performance of the BGP with the fitness function
(13) was compared with a method that uses just the error
term as the fitness measure, i.e.

F(D|W, A) = %. (16)

Both methods used the same noisy data of the 8-parity
problem. For each method, 10 runs were executed until the
80th generation to observe the training and generalization
performance of the solutions.
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Figure 6: The evolution of the network performance for
noisy data of the S-input parity function. Also shown is
the generalization performance on the complete test set of
noise-free examples.
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Figure 7: The evolution of the network size for noisy data
of the 8-input parity function.

Table 2 shows the average network size found at the 80th
generation. The corresponding performance and learning
time are shown in the table. The learning time is measured
in millions of evaluations of arithmetic operations associ-
ated with calculating activation values of neural units. The
results show that applying Occam’s razor achieves signifi-
cantly better performance for this problem. Without Oc-
cam’s razor the network size increased to an arbitrarily
large size, which makes it difficult to find a useful building
block to combine. Another advantage of using Occam’s ra-

F=E F=E+C
number of layers 7.8+ 0.1 3.5+£0.2
number of units 65.4 £ 1.8 19.0 £ 2.7
number of weights 391.8 + 23.1 103.8 £ 19.2
learning accuracy 751+ 25 89.3 £ 1.8
generalization 61.2 £ 0.8 89.9 £+ 3.8
num. evaluations 26304 £ 136.1 | 1432.0 &+ 112.2

Table 2: Performance with and without Occam’s razor



zor 1s the accelerated convergence. In these experiments,
the proposed fitness function decreased the network size
by approximately four times and the speed-up factor of
learning was two.

V. CONCLUDING REMARKS

Necessity and usefulness of higher-order neural networks
have been well-known. However the explosively increasing
number of terms has hampered the design and training of
higher-order networks. The present work shows the po-
tential effectiveness of genetic programming to handle this
problem. In particular, we show how the sigma-pi neu-
ral networks can represent the higher-order terms and how
BGP can be extended to synthesize problem-specific sigma-
pi networks. We also confirm the usefulness of Occam’s
razor in genetic programming for the improvement of gen-
eralization and convergence speed. Experimental results
show that sigma-pi networks solve parity-like problems sig-
nificantly better than perceptron networks. In another set
of experiments, we found that the method can also evolve
usual multilayer perceptrons with slightly more costs when
the product units are unnecessary for solving the problem.
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