
Synthesis of Sigma�Pi Neural Networks by the

Breeder Genetic Programming

Byoung�Tak Zhang and Heinz M�uhlenbein

Abstract� Genetic programming has been successfully ap�
plied to evolve computer programs for solving a variety of
interesting problems� In the previous work we introduced
the breeder genetic programming �BGP� method that has
Occam�s razor in its �tness measure to evolve minimal size
multilayer perceptrons� In this paper we apply the method
to synthesis of sigma�pi neural networks� Unlike percep�
tron architectures� sigma�pi networks use product units as
well as summation units to build higher�order terms� The
e	ectiveness of the method is demonstrated on benchmark
problems� Simulation results on noisy data suggest that
BGP not only improves the generalization performance� it
can also accelerate the convergence speed�

I� Introduction

Genetic programming has been successfully used to evolve
computer programs for solving many interesting problems
in arti�cial intelligence and arti�cial life ��� ��� ��� �	
� Sim�
ilar to usual genetic algorithms 
GAs�� genetic program�
ming 
GP� starts with a population of randomly generated
individuals� Each individual is a program that� when exe�
cuted� is the candidate solution to the problem� These pro�
grams are expressed as parse trees� or LISP S�expressions�
Fitness proportionate selection and crossover are used to
produce increasingly �tter populations of computer pro�
grams�
While most GAs use binary strings of �xed size �	
� GPs

use structured representations of variable length� This is
important because it is particularly suited to problems in
which the optimal underlying structure must be discov�
ered� One problem with the variable length is that the
program size may grow without bound� For example� Kin�
near ���
 reports that all but a very few of evolved solutions
to his sorting problems were so large as to defy any human
understanding of them� Tackett ��	
� in his application of
genetic programming to image processing tasks� oberserves
that the size and complexity of trees grows without perfor�
mance improvement�
In the previous work ���� ��
 we introduced the breeder

genetic programming 
BGP� that employs Occam�s razor
in its �tness measure to evolve optimal or minimal size
multilayer perceptrons� We apply here the BGP method
to synthesize sigma�pi neural networks� Unlike multilayer
perceptrons� sigma�pi networks use product units as well
as summation units to build higher�order terms� In section
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II we illustrate the usefulness of higher�order terms and
show how the sigma�pi networks can be used to represent
higher�order networks� The representation scheme and the
algorithm are described in section III� Simulation results
are reported in section IV� followed by concluding remarks
in section V�

II� Sigma�Pi Neural Networks

To motivate the approach� we start with a brief descrip�
tion of multilayer neural networks� Multilayer perceptrons
are feedforward networks with one or more layers of nodes
between the input and output units� These additional lay�
ers contain hidden units that are not directly connected
to both the input and output units� The input�output re�
lation of the units is given in these networks by weighted
sum of inputs

ui �
X

j�R�i�

wijxj 
��

where wij is the connection weight from unit j to unit
i and R
i� denotes the receptive �eld of unit i� The total
input is then transferred to upper layer units by a nonlinear
activation function f � e�g� a threshold function�

yi � f
ui� �

�
�� if ui � �i
�� otherwise


��

where �i is a threshold�
A commonly adopted architecture consists of one hid�

den layer with full connectivity between neighboring layers�
This structure has been very successful for many applica�
tions� However� they have some weaknesses�

�� The full connectivity between layers and often only be�
tween neighboring layers try to �nd a prediction over
the full input space� This is not necessarily a good
strategy� A particular task might not contain a good
predictor for the full input space� but might contain
functions capable of good prediction on speci�ed re�
gions of input space�

�� They are especially appropriate to approximating ad�
ditive functions� since they employ linear combinations
of inputs� However� the multilayer perceptrons cannot
approximate e�ciently if there are high order interac�
tions between the inputs� Adding additional hidden
layers may help to extend the representational capac�
ity of the network�



Figure �� An order � neuron

The higher�order terms can be again used as building
blocks which are able to capture a high�order correlational
structure of the data� In particular� by building a sigma
unit which has as input various higher�order terms� we can
construct a higher�order network of sigma�pi units�

yi � fi
ui� � fi

�X
k

wkT
�k�

�

��

The problem in using higher�order networks is that the
number of terms explodes with the problem size� the num�
ber of parameters necessary for specifying an order k neu�
ron is

rk �
kX
i��

nCi� 
	�

because w
�m�
i����im

have nCm components� Here n is the total
number of inputs and nCm are the binomial coe�cients� As
an example� an order � neuron has �� � �� parameters as
shown in Figure ��
To avoid the combinatorial explosion� a method is needed

to discover and combine useful terms and to eliminate non�
essential terms� The following section describes a genetic
programming method designed for these purposes�

III� Evolving Sigma�Pi Nets

In order to evolve problem�speci�c sigma�pi networks we
use the breeder genetic programming 
BGP� ���
� Similar
to GPs� BGP uses tree representation for individuals� BGP
uses� however� ranking�based truncation selection as in the
breeder genetic algorithm 
BGA� ���
 instead of �tness�
proportionate selection or tournament selection ��
� An�
other feature of BGP is its �tness function which uses the
Occam�s razor principle� The truncation selection com�
bined with Occam�s razor has been proved useful to balance
the accuracy and parsimony of multilayer perceptrons�
The sigma�pi networks are represented as a set of m

trees� where m is the number of output units� Each tree
has an arbitrary number of subtrees� The grammar for de�
scribing the genotype is given in Figure �� Figure � shows



Figure �� Phenotype of a sigma�pi network� This archi�

tecture allows higher�order terms with local receptive �elds�

Direct connections between non�neighboring layers are also

allowed�

into the mating pool B
g�� where � � 
�� �
 is the trun�
cation threshold� Each network in B
g� undergoes a local
hillclimbing to be described later� This results in revised
mating pool B
g�� The 
g���st generation of sizeM is pro�
duced by applying crossover operators to randomly chosen
parent networks in the mating pool B
g�� We use the elitist
strategy by replacing the worst �t network Aworst
g��� in
A
g��� by the best Abest
g� of A
g�� A new population is
generated repeatedly until an acceptable solution is found
or the variance of the �tness V 
g� falls below a speci�ed
limit value Vmin�

V 
g� �
�

M

MX
i�


�
Fi
g� �  F 
g�

��
� Vmin 
���

where  F 
g� is the average �tness of the individuals in A
g��
The algorithm also stops if it reaches the maximumnumber
of generations� gmax�
The weights of a network are trained by a local hillclimb�

ing method to each selected parent� Many hillclimbing
methods are possible� We use a simple next�ascent hill�
climbing procedure� given an individual Bi� a better indi�
vidual Bnew

i is sought by repeatedly applying the mutation



procedure BGP
M � � � Vmin� gmax�
population size� int M
truncation rate� real �
variance� real Vmin� V 
g�
generation� int gmax� g
�tness values� real Fi
population� array A � 
A
� A�� ���� AM �
mating pool� array B � 
B
� B�� ���� B��M �

g � �
A
�� � Initialize
M �
while 
V 
g� � Vmin� do

Fi
g� � Evaluate
Ai
g�� �i � f�� ����Mg
if 
solution found or g 	 gmax� stop

B
g� � Select
A
g�� F
g�� � �
Bi
g� � Hillclimb
Bi
g�� �i � f�� ���� �Mg
A
g � �� � Mate
B
g�� M �
Aworst
g � �� � Abest
g�
g � g � �

endwhile

endprocedure

Figure �� The top�level structure of the BGP algorithm

operator to the weights until there is no weight con�gura�
tion found having better �tness in each sweep through the
individual� The sequence of mutation is de�ned as the
depth��rst search order�
The mutation operation is performed by replacing the

value of a node� ci� of the tree by another� i�e� by �nding the
class Ck of ci and replacing ci by another member cj� j 
� i
in the set Ck� Here the class Ck must �rst be found because
not every value 
node� can be mutated to arbitrary values�
For example� a weight value must be drawn from the set
f�����g� The thresholds are mutated the same way as the
weights� The index for the input units can be mutated by
another input index� We also allow a nonterminal symbol
S to be mutated by a P and vise versa� i�e� changing the
type of neural units� This �exibility ensures that multilayer
perceptrons can also be evolved from sigma�pi networks�
The crossover operator adapts the size� depth and recep�

tive �eld shape of the network architecture� The crossover
operation starts with choosing randomly two parents� Bi

and Bj � from the mating pool B
g�� The nodes in the
tree are numbered according to the depth��rst search or�
der and crossover sites ci and cj are chosen at random
with the following conditions� � � ci � Size
Bi� and
� � cj � Size
Bj �� The length Size
Bk � of an individ�
ual Bk is de�ned as the total number of units and weights�
The subtrees of two parent individuals� Bi and Bj � are ex�
changed at the given crossover points to form two o�spring
B�
i and B�

j � The label of the nodes� ci and cj � must belong
to the same class� i�e� either both U �type or both W �type
nodes� The number of arguments of each operator plays
no role because the syntactically correct subtree under the
node is completely replaced by another syntactically cor�
rect subtree�

We use the following equation as the �tness measure

F 
DjW�A� �
E
DjW�A�

m �N
�

C
W jA�

N �Cmax

� 
���

A theoretical background behind this �tness function is
discussed in ���
� The �rst term expresses the accuracy
penalty caused by the error for the training set�

E
DjW�A� �
NX
i�


mX
j�



yij � oj
xi�W�A��� � 
���

Here yij denotes the jth component of the ith desired out�
put vector yi� and oj
xi�W�A� denotes the jth actual out�
put of the network with the architecture A and the set of
weights W for the ith training input vector xi�
The second term in the �tness function expresses the

complexity penalty of the network� often called Occam�s
razor� The complexity is de�ned as

C
W jA� � W 
A� � �� � L
A� � U 
A�� 
���

where W 
A� �
PK

k�
w
�
k is the number of weights in the

network for binary weights� L
A� and U 
A� denote the
number of layers and units� respectively� The L
A� term
penalizes a deep architecture which requires a large execu�
tion time after training� The U 
A� term penalizes a large
number of units whose realization is more expensive than
weights� Notice that the L
A� term is multiplied by �� to
penalize it more strongly than others� Depending on ap�
plications� one may weight three terms di�erently� Cmax is
a normalization factor used for the complexity term to be
between � and �� In all experiments we set Cmax � �����
assuming the problems can be solved by C
W jA� � �����
Notice in equation 
��� that the complexity term C
W jA�

is divided by N � the number of training examples� to have
the complexity term play a minor role in determining the
total �tness value of the network� This ensures a small
network be preferred to a large network only if both of
them achieve a comparable performance� Otherwise� the
evolution may not lead to a solution by preferring smaller
networks which lack the capacity to learn the training set�

IV� Simulation Results

The method was tested on the parity problem� We per�
formed two kinds of experiments separately� In the �rst�
we are interested to know whether the use of product units
is e�ective and� if yes� to what extent� In these experi�
ments� noise�free examples are used� For the second series
of experiments� we use noisy data� The generalization per�
formance and the learning speed of di�erent strategies are
compared to study the e�ect of Occam�s razor for the con�
struction of sigma�pi networks�

A� Clean Data

The accuracy and convergence speed of sigma�pi net�
works are studied� We also measured the network complex�
ity in terms of the number of layers� units and connections�



The results are summarized in Table �� For these experi�
ments we used noise�free data consisting of �n examples for
problem size n� We performed �� runs for each problem
size� The population was initialized for every indidual to
contain sigma and pi units with ��! probability each� The
depth of initialized network was limited to �� The trunca�
tion rate was ��!� For each problem size n� we used the
population size M � ���n�� and the maximum generation
gmax � ��n� For example� M � ��� and gmax � �� for
n � ��

n arch layr unit conn accr gen

� S ��� ��� ���	 	��� ����
S"P ��� ��� ��� ����� ��	

� S ��	 ���	 ���� ���	 ����
S"P ��� ��� ���� ����� ���

� S ��� ���� ����� �	�� ����
S"P ��	 ��	 ���� 	��� ����

� S ��	 ���� ����� ���� ����
S"P ��� ���� ����� 	��� ����

Table �� Results for parity problems

To test the e�ectiveness of pi units we also run �� exper�
iments using only sigma units� The experiments were the
same as before except that all units are initialized as sigma
units� As the results show� the additional use of pi units
consistently improved the performance in accuracy as well
as in complexity reduction�

B� Noisy Data

In the second set of experiments we used the parity prob�
lem of input size �� A total of ��� correct examples were
generated randomly to get a training set and then noise
was inserted to this data by randomly changing the ouput
value with �! probablity� This means� on average� � or
� examples out of ��� have false outputs� The generaliza�
tion performance of the best solution in each generation
was tested by the complete data set of �� � ��� noise�free
examples�
Figure � shows a typical evolution of the training and

generalization error of the best �t sigma�pi networks� In
spite of the noise� a good correspondence is observed be�
tween learning and generalization performance� Figure �
shows the corresponding evolution of the complexity of the
best �t network in each generation� Notice that the change
of network performance is closely related with the change
of its complexity�
The performance of the BGP with the �tness function


��� was compared with a method that uses just the error
term as the �tness measure� i�e�

F 
DjW�A� �
E
DjW�A�

m �N
� 
���

Both methods used the same noisy data of the ��parity
problem� For each method� �� runs were executed until the
��th generation to observe the training and generalization
performance of the solutions�
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Figure �� The evolution of the network performance for

noisy data of the ��input parity function� Also shown is
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Figure �� The evolution of the network size for noisy data

of the ��input parity function�

Table � shows the average network size found at the ��th
generation� The corresponding performance and learning
time are shown in the table� The learning time is measured
in millions of evaluations of arithmetic operations associ�
ated with calculating activation values of neural units� The
results show that applying Occam�s razor achieves signi��
cantly better performance for this problem� Without Oc�
cam�s razor the network size increased to an arbitrarily
large size� which makes it di�cult to �nd a useful building
block to combine� Another advantage of using Occam�s ra�

F � E F � E � C
number of layers ��� � ��� ��� � ���
number of units ���� � ��� �	�� � ���
number of weights �	��� � ���� ����� � �	��
learning accuracy ���� � ��� �	�� � ���
generalization ���� � ��� �	�	 � ���
num� evaluations ������ � ����� ������ � �����

Table �� Performance with and without Occam	s razor



zor is the accelerated convergence� In these experiments�
the proposed �tness function decreased the network size
by approximately four times and the speed�up factor of
learning was two�

V� Concluding Remarks

Necessity and usefulness of higher�order neural networks
have been well�known� However the explosively increasing
number of terms has hampered the design and training of
higher�order networks� The present work shows the po�
tential e�ectiveness of genetic programming to handle this
problem� In particular� we show how the sigma�pi neu�
ral networks can represent the higher�order terms and how
BGP can be extended to synthesize problem�speci�c sigma�
pi networks� We also con�rm the usefulness of Occam�s
razor in genetic programming for the improvement of gen�
eralization and convergence speed� Experimental results
show that sigma�pi networks solve parity�like problems sig�
ni�cantly better than perceptron networks� In another set
of experiments� we found that the method can also evolve
usual multilayer perceptrons with slightly more costs when
the product units are unnecessary for solving the problem�
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