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Abstract - The real coded genetic algorithms (RCGA) have 
proved to be more efficient than traditional bit-string genetic 
algorithm in parameter optimization, but the RCGA focuses 
on crossover operators and less on the mutation operator for 
local search . Evolution strategies (ESs) and evolutionary 
programming (EP) only concern the Gaussian mutation 
operators. This paper proposes a technique, called combined 
evolutionary algorithm (CEA), by incorporating the ideas of 
EP and GAS into ES. Simultaneously, we add the local 
competition into the CEA in order to reduce the complexity 
and maintain the diversity. Over 20 benchmark function 
optimization problems are taken as benchmark problems. 
The results indicate that the CEA approach is a very 
powerful optimization technique. 

I. Introduction 

The function optimization problems have widespread 
application domain, including those of optimizing models, 
solving systems of nonlinear equations and control problem. 
Recently, the technique has been applied to train the weight 
of neural networks[ 11. 

The Function optimization problems can be generalized in 
the following standard form[ 11: 

Minimize f ( x i 7  XZ,. .. , x,,) 

or 
Maximize f ( X I ,  x 2 . .  . . , x , ~ )  

where xi is a real parameter subject to CL 4 x, I b, 
a, nnd b, are some constant constraint 

Evolutionary computations, based on natural selection in 
Darwin's theory, are studied and applied in three standard 
formats: genetic algorithms, evolution strategies, and 
evolutionary programming [3][4]. 

These methodologies have great robustness and problem 
independence; therefore, they are powerful optimization 
techniques in many applied domains, such as combinatorial 
optimization[6], function optimization [ 1][2][9][8], control, 
and machine learning[3,4]. Genetics algonthms[4][ 1 11, the 
most known and discussed in USA, stress chromosomal 
operator, such as crossover operator. Evolution 
strategies[9][ 151 and evolutionary programming [2][3] 
emphasize mutation operation for the behavioral link 
between parents and offspring, rather than the genetic link 
which is stressed in genetic algorithms. 

Traditional GAS use bit-string to represent problem 
domains, but this representation is not suitable and not 
natural in some application domains, such as real-coded. In 
recent years, some authors[ 1,121 suggested the real-coded 
GA to represent the problem and proved this approach could 
gain better performance, but they focused on some modified 
crossover operators called blend crossover only . Basically, 
the operator may be viewed as a simple heuristic crossover in 
real-coded parameters. The imain power and operators of 
GAS are crossover operators. Some studies[2.3,16,17] argued 
over the power of crossover operators. They explained and 
indicated that these operator are inappropriate i n  some 
applications. So far, the CiAs lack fine local tuning 
capabilities . 

Schwefel[9] extended the ( 1 +p)-ES towards a (p+k)-ES 
and (p,?L)-ES for numerical optimization and proposed an 
algorithm for the capability of self-adapting step size. Both 
methods were all the same except the selection philosophy. 
The Ip.+h)-ES selected the top p population. based on fitness 
value, form p (parents) and h (children). but the (p.L)-ES 
selected the top p population form the h (children) only. 
That is, the lifetime for each individual is only one 
generation in the (p,h)-ES. The selection of the ESs is 
strictly deterministic and elicited policy. with the possibility 
of causing the premature convergence. 

* All coirespondence should be sent to the second author. 
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The Gaussian mutation operator[9], [ 151, could be viewed 
as heuristic mutation operator, the main power of ESs. The 
main strategies parameter in  ESs is the mutation size and the 
step size control. Many studies discussed the operator and 
parameters control. 

Fogel[3] wrote "there are two essential differences 
between ESs and EP, I .  ESs rely on strict deterministic 
selection. EP typically emphasizes the probability nature of 
selection by conducting a stochastic tournament for survival 
at each generation ,... 2. .__,  ESs may use recombination 
operators to generate new trials, but EP does not, as there is 
no sexual communication between species." 

Generally, the typical ESs use a parentsioffspring ratio of 
1/6 (Cl/h=1/6) as opposed to the 1 ratio used in the EP. So, 
the EP can be viewed as (p+p)-ES when excluding the 
tournament selection operator. 

11. The Combined Evolutionary Algorithm 

The CEA technique combines the philosophy of ESs,GAs 
and EP. The detai!ed algorithm is shown in Fig. 1 .  The basic 
idea of CEA is similar to the evolution strategies. However, 
there are three essential differences between CEA and ESs. 

1) CEA incorporates the EP stochastic tournament 
selection[3] to replace the ES deterministic and elicited 
selection. 

2) CEA views the blend crossover[ 121 as big-step-size 
mutation, and the crossover rate must decease dynamically. 
This operator is responsible for global search in the 
beginning phase. At the initial phase. we hope this operator 
can guide the search direction approximately in order to 
reduce the unnecessary search and concentrate on the 
interesting area as possibly as. The combination operator of 
ESs focuses on the step size only[lS]. 

3) CEA Incorporates the local competition as GESA[6] i n  
order to avoid the il l  effect of greediness. The children, 
generated from the same parent by the Gaussian mutation 
operator, compete with each other, and only the best child 
survives and participates in the selection operators . That is, 
only (p+,u) individuals have the probability to become 
population of the next generation. Respectively, Both (p+h)- 
ES and (p,h)-ES select from all children. 

Initially, the CEA generates 2*P feasible solutions by 
uniform distribution in the feasible search space. Using the 
EP tournament selection (each member competes against k 
(general k=10) others, chosen at random based on the 
corresponding fitness value. Then, each member is assigned 
a score w(O<=w<=k) based on the number of the competition 
wins. Select P members with the most wins to be the parents 
for the next generation) to select P members. These selected 
members become the parents of blend crossover (BLX-0.5). 
The BLX-0.5 randomly selects a point from the line 

connecting two parents extension of half the distance of the 
parents ate each end. In the BLX-0.5, we use the GA 
tournament selection(size=2) to select two parents and to 
generate one child by the BLX-0.5. In the process, the BLX- 
0.5 generates P candidates. These candidates become the 
parents of the Gaussian mutation operators. Each parent 
generates n children, based on Gaussian mutation 
operator(i.e x'=x+G*N(O, 1). The children generated by the 
same candidate are viewed as a family. In each family only 
one best child, based on evaluated value, can survive. 
Therefore, exactly, two members (the parent and the best 
child) are put into the population pool in  each family. Thus, 
the population size is invariant(2"P individuals). 

The original real-code GAS use blend crossover and 
random mutation, so they lack fine local tuning capabilities. 
The Gaussian mutation operator is good local search 
method[7]. We suggest the combination of the blend 
crossover and Gaussian mutation operator. Initially, the 
crossover operator finds the approximated solution and the 
mutation operator adjusts the bias. The crossover may reduce 
the performance when near the optimal and the mutation 
become the main power, respectively. Therefore, we increase 
the length of Gaussian mutation and decrease the crossover 
rate dynamically. This strategy will improve the quality 
greatly. 

The local competition of Gaussian mutation search can 
avoid early superstar domination the whole of population. 
Exactly one child in the same family can survive in CEA but 
at most h children can survive in ES. respectively. The EP 
selection tournament strategy plus the local competition can 
maintain the diversity. To reduce the complexity of EP 
tournaments selection is another benefit of local competition. 
The complexity of EP-selection is TS * P + P log P where P 
is the population size and the TS is the tournament size 
(times of the competition ). The size in CEA is 2p and 8p in 
general (p+h)-ES, respectively. Therefore, the local 
completion can reduce the complexity. 

The CEA technique has three phases i n  the evolutionary 
search. 

I) initial phase: The primary purpose in the phase is to 
find the approximate solution and to reduce the search space. 
The crossover operator is the main operator for global search 
and mutation operator for adjusting the bias. The phase 
takes about 10% of the computing time. 

2) middle phase: Both mutation and crossover are equal 
important. This phase takes about 20% of computing time. 

3) last phase: The main purpose in  the phase is to tune the 
solution i n  order to find the best solution . The Gaussian 
mutation is primary operator and very little disturbance is 
made by crossover operator. The phase spends about 70% 
computing time. 
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1. Set the strategy parameters: Local-Search-Length 
Cross-O\,er-Rate and CaussianMutationSize( s) 
2. Randomly generates 2 *P candidates by uniform 
distribution form feasible solution 
3. Compute the fitness of each candidates. ( E(Xi) ,i=lv...v2P) 
4. Select X i ( i = l  ,...,Pi parents by EP tournament selection 
from X [ ( i = l  ,..., 2P) 
5 For each X i ( i = l  ,..., P )  execute blend crossover(BLX-0.5) 
generate a child C 

if E ( C I  < E ( X i j  then replace X i  else keep Xi ( when 
minimize the fitness function) 
6. Generate Xi(i=P+l ,..., 2P)  for  each Xi(i=l ,..., P){ 

generate Local-Search-Length "offspring" through 
Gaussian mutation operator (xt=x+6*N(0, I ) )  from the 
same parent 
select the best offspring based on fitness as the child 
(X,( i = P i- 1,. 1. 2 P)  . 

I 
7 Change the parameters for  next generation when satisjj 
some constraints { 

Cross-Ove r-Rate= Cross-Ove r-Rate - 0. OS; 
Local-Search-Length=Local-Search-Length i- I ;  
6= 0.95 * 6 

} 
8. r f  discovery sufficient solution or exhaust the available 
time then terminate else goto step 3 

parameters setting: (for all benchmark problems) 
Local-Search-Length: initial = 3, MaxLen = IO ,  

increase by 1 for each 10 generations 
CrossOverRate: initital = 0.5, MinRate = 0.05, 

decrease by 0.05 for 10 generations 

decrease rate = 0.95. 
6 : '  initial=0.2*abs(Max-Constraint-MinConstraint), ' .  

Poplation-size = 50 

Fig 1. The Combined Evolutionary Algorithm. 

111. The CEA Approach to Function 
Optimization: Empirical Results, findings and 
discussions 

We have implemented the CEA algorithm on function 
optimization. The strategy parameters (Local-Search-Length, 
Gaussian-Mutation-Size, and CrossOverRate) were given 
the value as in the fig 1 for all testing function. At first, we 
compared the CEA technique with other evolutionary 
algorithms for over 20 benchmark problems. The CEA 
always gained better results. The CEA is also robust in  
various problems. We discuss the effect and influence of 
strategy parameters, and try to explain the reasons. 

CEA's performance has been compared with traditional 
GA. real-code GA and EP. We select over 20 benchmark 

functions and these test functions are given in the table I .  
The FI to F7 and t9 have been studied by De Jong[ll], 
Schaffer[lO] and Wright[ 11. These problems are benchmark 
functions in GAS. Yip[6] studied the F8 and compared with 
simulated evolution. F11 to FI 9 were collected and studied 
for EP by Koon[8]. These functions are the benchmark 
function in the SIAM journal on Scientific Computing. The 
F21 to F23 are studied in McDonnell [13]. The three 
functions have 30 dimensions and studied in ES. Above all, 
F23 is very complex function and high dimensions(30). Fig 2 
shows one-dimensional slice of F23. All these functions 
search for the global minimum.. 

F18 I I 10 1.6.0 1-5.534 IF8ofG.H. Koon 

O L  ' ' Y , , , ,  
-30 -20 -10 10 20 30 

K 

Fig 2. One-dimensional slice of F23[13] 
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First. i n  order to compare with EP, the functions from 
F11 to Fli) were executed with over 50 runs by CEA. We 
started the parameters as i n  the fig 1 and terminated the 
process after 1000 generations(ab0ut 480,000 function 
evaluations). The CEA found all function global minimums 
at 200 generations (about 86,000 function evaluation) in each 
run.  We used F15 as an example to shows the convergence 
curve and given i n  Fig 3. The summary of these experiment 
are given i n  Table 2. The EP, after executing 2000 
generations (about 100,000 function evaluations), cannot 
find the giobal minimum for complexity functions 
(F12,F13.F14 and F15). As shown in Table 2, the CEA 
outperforms the EP on these benchmark problems.. 

Function 
# 

Table 2. Comparison with EP[G.H.Koon][B] on F11 to 
F19(benchmark problem in the Journal on Scientific 
Computing. For each function the CEA runs 50 times 
(terminated 1000 generations(ab0ut 480000) and finds the 
global minimum about 200 generations(about 86,000 

Real-code GA Traditional GA CEA(mean) Optimal 
function evaluations). 

F1 000004 
FZ 00207 
F3 05730 
F4 - 1  0906 

. .  

F13 1-156 119* 1-156 665 1-156.665 
F14 (0.00Ib 10 10 I 

I ! 

0 0062 0 0 
10192 0 0 
I1710 0 0 
97311 0 0 

*: EP cannot find the global rmnimum of the function. and CEA can find the 
global minimum all functions 

F l j .  P i f " C \ S  I- l u n c t l s n  E I I l U I L i " "  

I 3  1 7  2 1  2 5  2 V  3 3  3 7  4 1  I <  I V  5 3  5 7  d l  6 5  
r u  cII I t i  ,, 

Fig 3: The convergent curve of F15 

Table 3 compares the performance of CEA with that of the 
traditional GA and real-coded GA[l] for F1 to F7 and F9. 
This result indicates that CEA outperforms the traditional 
GA and real-coded GA. The CEA can find the global 
minimum for all except function F7 (mean different value 
about equal 1E-6). CEA needed about 50 generations(ab0ut 
13.000 function evaluations) for F5 and F9, while other 
functions needed about 200 generations (about 86,000 
function evaluations). The convergent curve of the more 
complex function F5 was given in  fig 4. In these 
experiments we found the real-coded GA to converge optimal 
faster than CEA. But the real-code GA could not find the 
global optimum when it trapped into the local optimal. This 
result implies that the blend crossover has poor ability for 
local search. Fig 6 indicates and also explains that the blend 
crossover is not suitable for local search in the real-coded GA. 

the CEA cannot find the global mnimum 

The GESA[6] approach incorporates the local competition 
i n  the same family and the authors use the F8 as a 
benchmark problem to compare with simulated evolution. 
The GESA needed about 500,000 function evaluations to 
find the global optimum in each runs. In the same search 
space, the CEA executes 50 runs and table 4 shows the result. 
Fig 5 shows the convergence curve. Each experiment of the 
CEA finds the global minimum and needs 330,000 function 
evaluation on average. The main reason may be the local 
competition length. Each parent in  GESA generates 20 
children to compete on average, but the CEA only generates 
3 to 10 children. Maybe the crossover and EP-selection cause 
the result 

I '  

Fig 5: The convergent of F8 
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In order to explain the effect of blend crossover in real 
coded representation, we set the crossover rate to 1 and fixed 
the rate. Table 4 indicates the high and fixed crossover rate 
policy will reduce the performance when the function is 
complex. The result may be caused by two main factors. 

I )  The crossover operator is a larger step search than 
Gaussian mutation and is not suitable for the fine tuning 
when the solution is near the optimal. Therefore. in the last 
phase, the crossover must be inhibited or reduced to very low 
probability. 

2) The Gaussian mutation is main role in the last phase 
and has excellent ability for fine tuning. 

Function # Table 4. A comparison of blend crossover rate strategy: high 
and fixed rate policy vs. lower and dynamic rate policy 
(mean value of 50 runs) 

search CEA: dynamic search Optimal 
length =1 length from 3 to 10 

Function # 

F1 
F2 _ -  

F6 ]0.0003 10 10 
F8 \1.001329 I I  11 

static: CEA: dynamic: crossover rate Optimal 
crossover (from 0.5 to 0.05 decease by 
rate =1 0.05) 
0 0 0 
0 0 0 

F22 1228.4286 10 10 
F23 I 11,72984 I1.82E-07 10 

+ iu Loca I 
search=l I 

crossover 
r a t e d  and 
fixed 

The step size of Gaussian mutation is the most important 
parameter for ESs and EP. Therefore, many studies have 
discussed the control of the step size. In this paper, we use 
very a simple rule, fixed decreasing rate, to control the steps 
size. Table 5 indicates the influence of the Gaussian 
mutation size in CEA. Primarily, This experiment showed 
that this simple rule is enough good when the initial step size 
is not small enough. Because small mutation size makes the 
CEA too greedy, it  causes the premature convergence. 

Function initial-size 
=0.05'(Max-Const I # iraint - 

In order to explain and prove the power of local 
competition, we used only the mutation operator and local 
competition. For each function, randomly execute 50 runs. 
We discovered that the results were almost as well as the 
original CEA almost except the F8 and F23. This result 
might be caused by the complexity of function and lack of 
BLX-0.5 crossover operator. 

initial-size 

raint 

Table 5 .  The effect and influence of Gaussian mutation 
size(mean value of 50 runs) 

F5 
F6 

Min-Constraint) Min-Constraint) 
2.09841 0.998 0 998 
0 0 0 

F8 11 
F9 2 19549 

F22 12.78935 
F23 . 9  52435 

I I 
0 998 0 998 
0 0 
1 S E 0 7  0 

Using Gaussian mutation as a search operator, the typical 
search length for EP and ESs is 1 and 7, respectively. CEA 
views the search length as competition numbers. Table 5 
indicates the influence of the Gaussian local search length. 
With more variables (e.g. F22 and F23) and complex 
functions the search length must be longer. The local search 
spent most computing time in CEA. Search length over 10 is 
not worthwhile considering the the tradeoff between search 
time and quality. The effect of CEA's parameters, based on 
the complex and high dimensions F23, is showed in fig. 6. 

- 156.664663 
-2429.4 14761 

F7.3 :The influence of various parameters for CEX 

20 

2 15 

'1: I O  

5 

I1 

2 

1 11 31 31 4 1  51  61 

function evaluations 

351100 evaluationsiunit frm 51 to 61 
45(1-1015 evaluatiansiunit from 1 to 50 

I '  > ,  

Fig 6. The convergent curve for various parameters based on 
F23 

IV. Coriclusion 

Incorporating the ideas of EP and GAS into evolution 
strategies, CEA was found to 'oe a very powerful optimization 
technique. As demonstrated with the use of the 20 
benchmark function problems, the CEA outperformed other 
simulated evolutionary algorithms, including the EP,ESs, 
traditional GA and real-coded. GA. The CEA uses the same 
parameters with small population size and simple control 
rule to solve all functions and converge to the optimum or 
point very near the optimal(mean different value lower than 
1E-6). 
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The eialutionary search process of CEA can be viewed i n  
three phases. In the first phase, use crossover (BLX-0.5) as a 
global j z x c h  operator i n  order to find approximate solutions. 
The Gaussian mutation can be viewed as a local search 
operator to adjust the bias. In the second phase, both the 
crossover operator and mutation operator are equally 
important. in order to explore and exploit the search 
information. In the last phase, the crossover becomes less 
important and mutation becomes the main operator. 
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