
DELPHI Collaboration Say. DELPHI 92-98 DAS 127

a 8 July, 1992

THE DELPHI EXPERIMENT CONTROL SYSTEM

T. Adye?), L. Beneteau), T. Camporesi!), Ph. Charpentier),

M. Dénszelmann)), B. Franek2), C. Gaspar), Ph. Gavillet!),

F. J. Harris), B. Jones), M. Jonker), J. G. Loken?),

P. Moreau), E. Murzeau!), R. Sekulin2), G.R. Smith2),

P. Vande Vyvre!), A. Vascotto)

Abstract

The DELPHI detector, which is in operation since the start of LEP in
August 1989, consists of 16 different sub-detectors. To provide a high
degree of independence to the individual sub-systems, the data
acquisition and control system has been split into autonomous
partitions. The software organization of these partitions has been
standardized up to a high degree. So called equipment computers (EC)
provide a fully independent environment to these sub-systems when
they are running in stand-alone mode, allowing the detectors to
calibrate and test their equipment without interference with other
partitions. To cope with the complexity of the experiment control we
have developed a new concept for the coding of the control logic.

Paper presented at the 2" International Workshop on
“Software Engineering, Artificial Intelligence and Expert Systems in High Energy and Nuclear

Physics” which took place from 13-18 January 1992 at France Telecom’s Agelonde site,
at La Londe des Maures, Provence - France

ICERN, Geneva, Switzerland

2 R. A. L., Chilton, UK
3 Nucl. Phys. Lab., Univ. of Oxford, UK

THE DELPHI EXPERIMENT CONTROL SYSTEM.

T.Adye?), L.Beneteau!), T.Camporesi”), P.Charpentier”),
M.Dénszelmann”, B.Franek?), C.Gaspar), P.Gavillet),

F.J.Harris®), B.Jones, M.Jonker”), J.G.Loken?),
P.Moreau’), E.Murzeau), R.Sekulin?), G.R.Smith?),

P.Vande Vyvre!), A.Vascotto?).

CERN, Geneva, Switzerland.

2R. A. L., Chilton, UK.
3)Nucl. Phys. Lab., Univ. of Oxford, UK.

Abstract

The DELPHI detector, which is in operation since the start of LEP in August 1989,
consists of 16 different sub-detectors. To provide a high degree of independence to
the individual sub-systems, the data acquisition and control system has been split
into autonomous partitions. The software organization of these partitions has been
standardized up to a high degree. So called equipment computers (EC) provide a fully
independent environment to these sub-systems when they are running in stand-alone
mode, allowing the detectors to calibrate and test their equipment without interference
with other partitions. To cope with the complexity of the experiment control we have
developed a new concept for the coding of the control logic.

1, INTRODUCTION
The DELPHI detector [1], a general purpose detector with special emphasis on

particle identification, is constituted out of 16 different sub-detectors, which were built
by different teams of laboratories of the DELPHI collaboration.

To provide a high degree of independence to the individual sub-detectors, the data
acquisition and control of the experiment is split into a set of autonomous partitions.
Although each detector has its own specific characteristics and function in the particle
identification process, the organization of these partitions has been standardized up to
a high level. This standardization is extended towards the central readout and trigger.
The architecture of these partitions closely resembles an individual detector partition.

The control of all devices associated with each partition, is organized into so called
control domains. There are separate control domains to handle the the two aspects of
each sub-detector:
— Data-aquisition: i.e. the fastbus embedded readout system [2], and the data flow

handling in the equipment computers [3],

— Slow-control: i.e. the monitor and control system for technical aspects of the sub-
detectors [1] such as gas, volts, pressure, temperature,

The DELPHI control systems consists of 18 domains for data acquisition, 12
domains for slow control and a few central control domains. The control domains and
their associated driver processes are distributed over 20 different nodes in the DELPHI
online VAX cluster.

2. THE STATE MANAGER CONCEPT
Historically, high energy physics experiments were almost never complex enough

to devise dedicated tools to implement the experiment control logic. From the ancient
‘all in one task’ approach, and the following foreground / background approach, the
distributed data acquisition emerged. Run control logic, taking care of synchronization,
resource management, authorization, and command sequencing was spread out over the
distributed processes, sometimes assisted by embedded logic in a interactive control
process. The logic, often grown ad hoc, was coded in FORTRAN and used unsafe
mechanisms to cope with mutually exclusive conditions.

The DELPHI experiment control system is characterized by a highly decentral-
ized organization: each embedded processor, the equipment computers, and all the tasks
running in these computers have a large extent of autonomy. This organization makes
the individual components very flexible and maintainable due to their independence.
On the other hand it however puts additional strains on the control system.

To cope with the complexity of the control we developed a new concept for the
coding of the control logic [4]. This concept was developed with the following design
requirements in mind:

~ The control system should be able to deal with the distributed nature of the "driver
processes’ (i.e. the processes controlling the external devices), running in the ex-
periment.

~ The control system should be easy to modify without major effort (such as the
relinking or restarting of unrelated driver processes).

— The control system should operate independently from the driver processes and
from any interactive run control process. More specifically, there should be no con-
trol logic built into any of these processes. The driver processes should have no
knowledge about other driver processes. Likewise, the run control user interface
program should have no built in knowledge about the interaction between the dif.
ferent devices.

~ The control system should be able to take automatic actions upon changing condi-
tions in the experiment, independent of any operator and/or interactive run control
interface process.

— The control system should provide concurrent external access to a control domain.
This is to allow central control domains and a local user interface to access con-
currently a local control domain. Of course, it is up to the encoded control logic to
arbitrate between possible conflicting requests.

The approach we adopted is based on the State Manager concept. In this concept,
the experiment is described in terms of objects, i.e. logical subsystems, for each of which
a number of states are defined. An object may correspond directly to a concrete entity
in the experiment (a computer controlled device) or any abstraction used in describing
the experiment provided it can be identified by a ’noun’ (e.g. ’run’, ’trigger’,’central
detector’, etc.).

!-- Example of SML code

object: LOCAL_CONTROL

State: READY

action: BEGIN

do MOUNT TAPE

if TAPE not in_state REAY then

do REPORT_MOUNT_ERROR ERROR_OBJECT

terminate_action /state=READY
endif

do LES BEGIN

if LES in-state PAUSED and

RUN_MODE in_state AUTO_START then

do LES CONTINUE

terminate_action /state=RUNNING

State: RUNNING

when LOG_MODE in_state ACTIVE and DATA_LOGGER in_state FILE FULL do PAUSE_RUN
when LOG_MODE in_state ACTIVE and DATA_LOGGER not in_state FILE_OPEN do ABORT_RUN
when LES in state ERROR do ABORT_RUN

action: ABORT_RUN

object: LES /associated

State: READY

action: BEGIN

action: INITIALIZE

State: RUNNING

action: PAUSE

Example 1: Example of SML code

The control system, which is given by the interaction between the various objects,
is specified using a formal language, the State Manager Language (SML). The main
characteristic of this language are:
— Finite state logic. Objects behave as finite state machines. The only ’variables’ in

this language are the states of the objects (e.g. RUNNING, PAUSED, ...). An
action (method) applied on an object can bring about a change in its state.

— Instruction sequencing. Actions on an abstract ob ject may specify a sequence of
instructions, mainly consisting of actions and logical tests on other objects. Actions
on concrete objects, are send off as messages to an associated driver process which
controls the external device.

— Asynchronous execution. Several actions may proceed in parallel: an action applied
by object-A on object-B, does not suspend the instruction sequence of object-A.
Only a test by object-A on the state of ob ject-B suspends the instruction sequence
of object-A, if object-B is still in transition.

— Al like rules. Each object can specify logical conditions based on the state of other
objects, which, when satisfied, will trigger an action of the local object. This pro-

SM- | Central control
= a interface State Manager

| Ce

—S— e\\

= > & Kcticce_) oti

Local ACQ Object: LES)
State Manager fo ’ .

7” State: Paused
7 action: Continue

action: End
Elem. or) action: Abort

object oes
(eee State: Running

CFL_ RO_ Etc. Y / SERVER SUPERVISOR

Computer environment ,

’

(is) Outside world

Fastbus

Figure 1: (DELPHI local data acquisition control.

vides the mechanism for an object to respond to unsolicited state changes of its
environment.

An example of SML code is given in example 1.
The logic, specified in the State Manager language is translated by a special

compiler to create the State manager. The State Manager runs as an independent
process and communicates with is environment using DECNET.

An interactive control program can be used to control the state manager. This
program has access to the specification and states of the objects and may uses this
information to dynamically configure its interface.

3. DELPHI EXPERIMENT CONTROL DOMAINS
To organize the control system of the DELPHI experiment, objects belonging

to a specific aspect of the experiment are grouped into an independent State Man-
ager domain (SM-domain). All objects in one SM-domain are managed by their State
Manager Process. To coordinate the activities of these individual SM-domains, certain
‘abstract’ objects of these domains have been made visible as ‘concrete’ objects in the
central domains. The following sub sections describe the different type of SM-domains
participating in the DELPHI experiment control.

3.1 Local data acquisition domains
Each data acquisition partition is controlled by one State Manager (see figure 1).

Because of the high degree of standardization, it was possible to write a single package
of SML code for all the 18 partitions. It consist of 12 ob jects having 2 - 6 states with 3
- 4 actions / state. The total number of SML instructions is 1770. There are two main
objects in these domains to orchestrate the running of the partition. The OPERATOR
object accepts the top level commands (e.g. start_run) from the local operator user
interface. The LC object accepts the commands from the central control when the
partition operates as part of the whole DELPHI detector.

The processes which are controlled by the local data acquisition domains are the
Fastbus Supervisor, the Readout supervisor, the Data logger and an optional Calibra-
tion controller.

3.2 Local slow-control domains
The slow-control domain handles the monitoring and control of technical aspects

of a sub-detector such as gas and volts. The most important aspect of the slow-control
domain, is the control of the High Voltage of the gaseous particle detectors. The rais-
ing and lowering of these volts have to be coordinated with the status of the LEP
accelerator.

Unlike the local data acquisition domains, there is no full standardization in the
local slow-control domains. This is mainly due to the differences in the technical as-
pects of the individual sub-detectors, such as the requirements on High Voltage control.
However, seen from the central control, the individual slow control domains are identi-
cal, i.e. they all have a set of identical ‘top’ objects with the same states and actions.
Internally these domains are tailored to the environment required by the operation of
the specific sub-detector.

3.3 Central domains
The central control logic brings the individual partitions domains together in

a coherent system. By controlling the partition SM-domains, (i.e. the data acquisi-
tion and slow control domains), it prepares and supervises the DELPHI detector for
global running (see figure 2). There are at present two domains which coordinates the
experiment as a whole.

The central data acquisition domain controls all the detector data acquisition do-
mains participating in the central run, as well as the central readout control supervisor
and the central data logger process.

The central slow control domain integrates the partition slow control domains
and in particular will provide in the future the interlock between the High Voltage of
the detectors with the status of the LEP machine mode.

An important aspect we will introduce in the central control during the coming
run, is the status of the LEP machine. This will allow the central control to take auto-
matic actions triggered by the change of state in LEP machine, such as the automatic

CO) EE

Central ACQ control

BS | oS

7

a Central Slow control cD | =
object

object

AA
>

object
object

Z LEP domain
q

object ject
object

jec: Te EP - Scaler- obj
= comm. readout = C (cvject |

Local ACQ control Local Slow control

Ca) &
18 readout partitions 12 Slow control domains

Figure 2: (DELPHI central experiment control.

end of run and ramp down of detector high voltages before LEP prepares a new fill,
or the ramp up of detector high voltage and start of run when LEP has finished the
preparation of a new fill and the beam conditions are stable.

4. DISCUSSION OF THE STATE MANAGER CONCEPT
The first version of the DELPHI experiment control, based on the State Manager

concept, was put into operation in spring 1990. Its inherent modularity made it possible
to commission it on a few partitions first. Since then it gradualy matured to the complex
system described here. The system has greatly simplified the operator’s task of running
the experiment and significantly reduced errors. Since the experiment control logic can
be changed independently of the driver processes, it has become possible to stage the
introduction of new operation procedures.

In the following subsections we try to give an ob jective assessment of the State
Manager concept and its implementation, and we discuss several aspects in which it
might be improved.

4.1 Language extentions
The SML language has a restricted set of language elements to manipulate in-

dividual objects. This limitation was most apparent, in the central control domains
of the experiment, where large groups of almost identical objects are manipulated. A

trivial condition such as: "When any of the detector partitions which are participating
in the central readout, is in the state error do ...’ is not simple to code.

To avoid writing many lines of almost identical code for testing or acting on large
sets of objects, we have added an SML preprocessor. The macro expansion of the above
example generates roughly 100 lines of SML code to control the 18 partitions of Delphi.
In the following items we suggest how the existing language could be extended in order
to handle such problems more naturally.
— Dynamic object sets Objects of the same type (class) could be member of a so

called dynamic object sets. Special statements should allow to add or remove
dynamically objects from these object sets. Actions and tests performed on an
object set are performed on all current members of the object set. In the case
of tests, one has to further specify how the results on the individual members
should be combined: e.g. when any(global_detector) in-state error do a
or if all(global_detector) in-state ready then

~ Dynamic object creation In certain cases the system contains a number of object
which is a priory unknown, and which could change during the running of the
system, depending on configuration parameters. (e.g. the number of secondary data
loggers). To handle these situations would require the dynamic creation of new
objects of a given class. The control logic would further control these dynamicly
created objects through object sets.

— Object properties Beside the state of the ob jects, the SML language does not han-
dle any other kind of variables. This could be improved by extending an existing
feature of the language that has not been mentioned so far: 1.e. object properties.
Object properties are predefined properties that can be attributed to objects, e.g.
the property ’operator_display’ could be assigned to all objects which should be dis-
played by the user interface. Moreover, object properties can have values assigned
and hence are typed: either fixed-keyword, integer, or string. At present the values
of object properties are static, they are defined at compilation time and cannot be
changed subsequently.
By making the property values dynamic and allowing some simple operations on
properties (e.g. tests, using their values as command parameters, ...) a very pow-
erful concept can be added to the language.

— Command arguments The present State Manager implementation has the possi-
bility to add parameters to the commands which are send to the driver processes.
These parameter values can be either ’hard coded? in the language, or they can be
determined at run time by a logical name translation. Although, this later option
largely extends the flexibility of the State Manager concept, at present there is no
foreseen way to define the logical name at run time.
On the other hand, the mechanism to pass command parameters by logical name,
could lead to the introduction of new objects (i.e. logical names) in a control domain
with hidden states (the logical name values). One can eliminate this risks by allowing
the parameter value to be taken from the state of an internal abstract object.

4.2 Networking
The performance of the system is largely dependent on the communication ef-

ficiency between the various components of the control system, i.e. the exchange of
information on states and actions between the State Manager processes and the asso-
ciated driver processes.

In the present implementation there is one central transaction dispatcher for all
processes on the whole cluster involved in experiment control. This transaction dis-
patcher is even used when information has to be exchanged between two processes on
the same CPU, hence adding an unnecessary load to the network system. Since this
central transaction dispatcher, has to handle many logical links, (in the Delphi exper-
iment, the number of links is approaching the number 200) the dispatching can even
form a severe bottleneck at ‘peak demand’ times. These peak demand times typically
happen when the whole detector is being prepared for global running conditions, a
situation where fast response time would be most appreciated.

Moreover, due to the usage of the central network transaction dispatcher, we also
found that it was inefficient to encode ’device internal logic’ in SML. This logic, which
deals with the internal states of a controlled device, and which does not interact with
the overall control logic, is now mostly hard coded in the driver processes rather than
in SML.

A solution we are presently studying [5] is to integrate the transaction dispatching
function into each individual process which participates in the state manager domains.
In this case, there is still a central name server required to register the network coor-
dinates of the ’information access points’.

os. CONCLUSIONS
The DELPHI experiment control, running since 1989, is based on the State Man-

ager concept. This concept uses a dedicated ob ject oriented language, with some very
interesting built in features such as asynchronous execution and simple AI like rules.

With this tool we have transformed the initialization and setup of the data ac-
quisition system from a sequence of complex operations into a simple operator action
which completes in short time. The State Manager based experiment control has now
been in use since 2 years for the data acquisition domains and since one year for the
slow control domains. In the near future we will enhance the experiment control even
further and include facilities for automatic error recovery, and automatic run control
based on the status of the LEP machine. |

Although the experiment control system handles quite well the run control oper-
ation, it is not suited to handle run configuration setup or detailed run status informa-
tion. For this purpose we are presently adding new interactive tools based on MOTIF
[5]. We will also improve some of the other shortcomings we have experienced in the
concept and in its implementation.

REFERENCES

[1] DELPHI collaboration, P.Aarnio et al., The DELPHI Detector at LEP, Nucl. Instr.
Meth. A303 (1991) 233-276.

[2] DELPHI DAS group, W.Adams et al., The DELPHI Fastbus Readout System
Presented at the CHEP-91 conference, Tsukuba, March 1991,

[3] DELPHI DAS group, T.Adye et al., Architecture and Performance of the DEL-
PHI Data Acquisition and Control System, Presented at the CHEP-91 conference,
Tsukuba, March 1991,

[4] J.Barlow et al., Run Control in MODEL: The State Manager, IEEE trans. nucl.
sci. 36 (1989) 1549-1553

[5] DELPHI DAS group, C.Gaspar et al., DELPHI Experiment Control Integration,
These proceedings.

?

