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Abstract 

The DELPHI detector, which is in operation since the start of LEP in August 1989, 
consists of 16 different sub-detectors. To provide a high degree of independence to 
the individual sub-systems, the data acquisition and control system has been split 
into autonomous partitions. The software organization of these partitions has been 
standardized up to a high degree. So called equipment computers (EC) provide a fully 
independent environment to these sub-systems when they are running in stand-alone 
mode, allowing the detectors to calibrate and test their equipment without interference 
with other partitions. To cope with the complexity of the experiment control we have 
developed a new concept for the coding of the control logic. 

1, INTRODUCTION 
The DELPHI detector [1], a general purpose detector with special emphasis on 

particle identification, is constituted out of 16 different sub-detectors, which were built 
by different teams of laboratories of the DELPHI collaboration. 

To provide a high degree of independence to the individual sub-detectors, the data 
acquisition and control of the experiment is split into a set of autonomous partitions. 
Although each detector has its own specific characteristics and function in the particle 
identification process, the organization of these partitions has been standardized up to 
a high level. This standardization is extended towards the central readout and trigger. 
The architecture of these partitions closely resembles an individual detector partition. 

The control of all devices associated with each partition, is organized into so called 
control domains. There are separate control domains to handle the the two aspects of 
each sub-detector: 
— Data-aquisition: i.e. the fastbus embedded readout system [2], and the data flow 

handling in the equipment computers [3],



— Slow-control: i.e. the monitor and control system for technical aspects of the sub- 
detectors [1] such as gas, volts, pressure, temperature, .... 

The DELPHI control systems consists of 18 domains for data acquisition, 12 
domains for slow control and a few central control domains. The control domains and 
their associated driver processes are distributed over 20 different nodes in the DELPHI 
online VAX cluster. 

2. THE STATE MANAGER CONCEPT 
Historically, high energy physics experiments were almost never complex enough 

to devise dedicated tools to implement the experiment control logic. From the ancient 
‘all in one task’ approach, and the following foreground / background approach, the 
distributed data acquisition emerged. Run control logic, taking care of synchronization, 
resource management, authorization, and command sequencing was spread out over the 
distributed processes, sometimes assisted by embedded logic in a interactive control 
process. The logic, often grown ad hoc, was coded in FORTRAN and used unsafe 
mechanisms to cope with mutually exclusive conditions. 

The DELPHI experiment control system is characterized by a highly decentral- 
ized organization: each embedded processor, the equipment computers, and all the tasks 
running in these computers have a large extent of autonomy. This organization makes 
the individual components very flexible and maintainable due to their independence. 
On the other hand it however puts additional strains on the control system. 

To cope with the complexity of the control we developed a new concept for the 
coding of the control logic [4]. This concept was developed with the following design 
requirements in mind: 

~ The control system should be able to deal with the distributed nature of the "driver 
processes’ (i.e. the processes controlling the external devices), running in the ex- 
periment. 

~ The control system should be easy to modify without major effort (such as the 
relinking or restarting of unrelated driver processes). 

— The control system should operate independently from the driver processes and 
from any interactive run control process. More specifically, there should be no con- 
trol logic built into any of these processes. The driver processes should have no 
knowledge about other driver processes. Likewise, the run control user interface 
program should have no built in knowledge about the interaction between the dif. 
ferent devices. 

~ The control system should be able to take automatic actions upon changing condi- 
tions in the experiment, independent of any operator and/or interactive run control 
interface process. 

— The control system should provide concurrent external access to a control domain. 
This is to allow central control domains and a local user interface to access con- 
currently a local control domain. Of course, it is up to the encoded control logic to 
arbitrate between possible conflicting requests.



The approach we adopted is based on the State Manager concept. In this concept, 
the experiment is described in terms of objects, i.e. logical subsystems, for each of which 
a number of states are defined. An object may correspond directly to a concrete entity 
in the experiment (a computer controlled device) or any abstraction used in describing 
the experiment provided it can be identified by a ’noun’ (e.g. ’run’, ’trigger’,’central 
detector’, etc.). 

!-- Example of SML code 

object: LOCAL_CONTROL 

State: READY 

action: BEGIN 

do MOUNT TAPE 

if TAPE not in_state REAY then 

do REPORT_MOUNT_ERROR ERROR_OBJECT 

terminate_action /state=READY 
endif 

do LES BEGIN 

if LES in-state PAUSED and 

RUN_MODE in_state AUTO_START then 

do LES CONTINUE 

terminate_action /state=RUNNING 

State: RUNNING 

when LOG_MODE in_state ACTIVE and DATA_LOGGER in_state FILE FULL do PAUSE_RUN 
when LOG_MODE in_state ACTIVE and DATA_LOGGER not in_state FILE_OPEN do ABORT_RUN 
when LES in state ERROR do ABORT_RUN 

action: ABORT_RUN 

object: LES /associated 

State: READY 

action: BEGIN 

action: INITIALIZE 

State: RUNNING 

action: PAUSE 

Example 1: Example of SML code 

The control system, which is given by the interaction between the various objects, 
is specified using a formal language, the State Manager Language (SML). The main 
characteristic of this language are: 
— Finite state logic. Objects behave as finite state machines. The only ’variables’ in 

this language are the states of the objects (e.g. RUNNING, PAUSED, ...). An 
action (method) applied on an object can bring about a change in its state. 

— Instruction sequencing. Actions on an abstract ob ject may specify a sequence of 
instructions, mainly consisting of actions and logical tests on other objects. Actions 
on concrete objects, are send off as messages to an associated driver process which 
controls the external device. 

— Asynchronous execution. Several actions may proceed in parallel: an action applied 
by object-A on object-B, does not suspend the instruction sequence of object-A. 
Only a test by object-A on the state of ob ject-B suspends the instruction sequence 
of object-A, if object-B is still in transition. 

— Al like rules. Each object can specify logical conditions based on the state of other 
objects, which, when satisfied, will trigger an action of the local object. This pro-
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Figure 1: (DELPHI local data acquisition control. 

vides the mechanism for an object to respond to unsolicited state changes of its 
environment. 

An example of SML code is given in example 1. 
The logic, specified in the State Manager language is translated by a special 

compiler to create the State manager. The State Manager runs as an independent 
process and communicates with is environment using DECNET. 

An interactive control program can be used to control the state manager. This 
program has access to the specification and states of the objects and may uses this 
information to dynamically configure its interface. 

3. DELPHI EXPERIMENT CONTROL DOMAINS 
To organize the control system of the DELPHI experiment, objects belonging 

to a specific aspect of the experiment are grouped into an independent State Man- 
ager domain (SM-domain). All objects in one SM-domain are managed by their State 
Manager Process. To coordinate the activities of these individual SM-domains, certain 
‘abstract’ objects of these domains have been made visible as ‘concrete’ objects in the 
central domains. The following sub sections describe the different type of SM-domains 
participating in the DELPHI experiment control.



3.1 Local data acquisition domains 
Each data acquisition partition is controlled by one State Manager (see figure 1). 

Because of the high degree of standardization, it was possible to write a single package 
of SML code for all the 18 partitions. It consist of 12 ob jects having 2 - 6 states with 3 
- 4 actions / state. The total number of SML instructions is 1770. There are two main 
objects in these domains to orchestrate the running of the partition. The OPERATOR 
object accepts the top level commands (e.g. start_run) from the local operator user 
interface. The LC object accepts the commands from the central control when the 
partition operates as part of the whole DELPHI detector. 

The processes which are controlled by the local data acquisition domains are the 
Fastbus Supervisor, the Readout supervisor, the Data logger and an optional Calibra- 
tion controller. 

3.2 Local slow-control domains 
The slow-control domain handles the monitoring and control of technical aspects 

of a sub-detector such as gas and volts. The most important aspect of the slow-control 
domain, is the control of the High Voltage of the gaseous particle detectors. The rais- 
ing and lowering of these volts have to be coordinated with the status of the LEP 
accelerator. 

Unlike the local data acquisition domains, there is no full standardization in the 
local slow-control domains. This is mainly due to the differences in the technical as- 
pects of the individual sub-detectors, such as the requirements on High Voltage control. 
However, seen from the central control, the individual slow control domains are identi- 
cal, i.e. they all have a set of identical ‘top’ objects with the same states and actions. 
Internally these domains are tailored to the environment required by the operation of 
the specific sub-detector. 

3.3 Central domains 
The central control logic brings the individual partitions domains together in 

a coherent system. By controlling the partition SM-domains, (i.e. the data acquisi- 
tion and slow control domains), it prepares and supervises the DELPHI detector for 
global running (see figure 2). There are at present two domains which coordinates the 
experiment as a whole. 

The central data acquisition domain controls all the detector data acquisition do- 
mains participating in the central run, as well as the central readout control supervisor 
and the central data logger process. 

The central slow control domain integrates the partition slow control domains 
and in particular will provide in the future the interlock between the High Voltage of 
the detectors with the status of the LEP machine mode. 

An important aspect we will introduce in the central control during the coming 
run, is the status of the LEP machine. This will allow the central control to take auto- 
matic actions triggered by the change of state in LEP machine, such as the automatic
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Figure 2: (DELPHI central experiment control. 

end of run and ramp down of detector high voltages before LEP prepares a new fill, 
or the ramp up of detector high voltage and start of run when LEP has finished the 
preparation of a new fill and the beam conditions are stable. 

4. DISCUSSION OF THE STATE MANAGER CONCEPT 
The first version of the DELPHI experiment control, based on the State Manager 

concept, was put into operation in spring 1990. Its inherent modularity made it possible 
to commission it on a few partitions first. Since then it gradualy matured to the complex 
system described here. The system has greatly simplified the operator’s task of running 
the experiment and significantly reduced errors. Since the experiment control logic can 
be changed independently of the driver processes, it has become possible to stage the 
introduction of new operation procedures. 

In the following subsections we try to give an ob jective assessment of the State 
Manager concept and its implementation, and we discuss several aspects in which it 
might be improved. 

4.1 Language extentions 
The SML language has a restricted set of language elements to manipulate in- 

dividual objects. This limitation was most apparent, in the central control domains 
of the experiment, where large groups of almost identical objects are manipulated. A



trivial condition such as: "When any of the detector partitions which are participating 
in the central readout, is in the state error do ...’ is not simple to code. 

To avoid writing many lines of almost identical code for testing or acting on large 
sets of objects, we have added an SML preprocessor. The macro expansion of the above 
example generates roughly 100 lines of SML code to control the 18 partitions of Delphi. 
In the following items we suggest how the existing language could be extended in order 
to handle such problems more naturally. 
— Dynamic object sets Objects of the same type (class) could be member of a so 

called dynamic object sets. Special statements should allow to add or remove 
dynamically objects from these object sets. Actions and tests performed on an 
object set are performed on all current members of the object set. In the case 
of tests, one has to further specify how the results on the individual members 
should be combined: e.g. when any(global_detector) in-state error do a 
or if all(global_detector) in-state ready then .... 

~ Dynamic object creation In certain cases the system contains a number of object 
which is a priory unknown, and which could change during the running of the 
system, depending on configuration parameters. (e.g. the number of secondary data 
loggers). To handle these situations would require the dynamic creation of new 
objects of a given class. The control logic would further control these dynamicly 
created objects through object sets. 

— Object properties Beside the state of the ob jects, the SML language does not han- 
dle any other kind of variables. This could be improved by extending an existing 
feature of the language that has not been mentioned so far: 1.e. object properties. 
Object properties are predefined properties that can be attributed to objects, e.g. 
the property ’operator_display’ could be assigned to all objects which should be dis- 
played by the user interface. Moreover, object properties can have values assigned 
and hence are typed: either fixed-keyword, integer, or string. At present the values 
of object properties are static, they are defined at compilation time and cannot be 
changed subsequently. 
By making the property values dynamic and allowing some simple operations on 
properties (e.g. tests, using their values as command parameters, ...) a very pow- 
erful concept can be added to the language. 

— Command arguments The present State Manager implementation has the possi- 
bility to add parameters to the commands which are send to the driver processes. 
These parameter values can be either ’hard coded? in the language, or they can be 
determined at run time by a logical name translation. Although, this later option 
largely extends the flexibility of the State Manager concept, at present there is no 
foreseen way to define the logical name at run time. 
On the other hand, the mechanism to pass command parameters by logical name, 
could lead to the introduction of new objects (i.e. logical names) in a control domain 
with hidden states (the logical name values). One can eliminate this risks by allowing 
the parameter value to be taken from the state of an internal abstract object.



4.2 Networking 
The performance of the system is largely dependent on the communication ef- 

ficiency between the various components of the control system, i.e. the exchange of 
information on states and actions between the State Manager processes and the asso- 
ciated driver processes. 

In the present implementation there is one central transaction dispatcher for all 
processes on the whole cluster involved in experiment control. This transaction dis- 
patcher is even used when information has to be exchanged between two processes on 
the same CPU, hence adding an unnecessary load to the network system. Since this 
central transaction dispatcher, has to handle many logical links, (in the Delphi exper- 
iment, the number of links is approaching the number 200) the dispatching can even 
form a severe bottleneck at ‘peak demand’ times. These peak demand times typically 
happen when the whole detector is being prepared for global running conditions, a 
situation where fast response time would be most appreciated. 

Moreover, due to the usage of the central network transaction dispatcher, we also 
found that it was inefficient to encode ’device internal logic’ in SML. This logic, which 
deals with the internal states of a controlled device, and which does not interact with 
the overall control logic, is now mostly hard coded in the driver processes rather than 
in SML. 

A solution we are presently studying [5] is to integrate the transaction dispatching 
function into each individual process which participates in the state manager domains. 
In this case, there is still a central name server required to register the network coor- 
dinates of the ’information access points’. 

os. CONCLUSIONS 
The DELPHI experiment control, running since 1989, is based on the State Man- 

ager concept. This concept uses a dedicated ob ject oriented language, with some very 
interesting built in features such as asynchronous execution and simple AI like rules. 

With this tool we have transformed the initialization and setup of the data ac- 
quisition system from a sequence of complex operations into a simple operator action 
which completes in short time. The State Manager based experiment control has now 
been in use since 2 years for the data acquisition domains and since one year for the 
slow control domains. In the near future we will enhance the experiment control even 
further and include facilities for automatic error recovery, and automatic run control 
based on the status of the LEP machine. | 

Although the experiment control system handles quite well the run control oper- 
ation, it is not suited to handle run configuration setup or detailed run status informa- 
tion. For this purpose we are presently adding new interactive tools based on MOTIF 
[5]. We will also improve some of the other shortcomings we have experienced in the 
concept and in its implementation.
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