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Abstract

A problem frequently faced by complex distributed
applications is to control the interaction of their
communication and computational activities such
that they jointly adhere to desired performance
and timing requirements. This research presents
the COMM®"" communication infrastructure
that can cope with dynamic variations in user
programs’ processing and QoS! requirements, by
permitting the on-line adaptation of a protocol’s
resource usage to currently available resources
and application requirements. A key feature of
COMM®??? ig its dynamic (auto-)configurability,
which is its support of on-line configuration trans-
parent to application programs. Such configura-
tion is performed by a heuristic that accommo-
dates changes in a connection’s resource require-
ments by reallocating resources based on its knowl-
edge of actual resource usage of the active connec-
tions in the system. The heuristic’s design and
implementation are based on extensive investiga-
tions of the manner in which the assignment of
protocol tasks to underlying processing resources
can influence communication latency and through-
put.

1 Motivation

For parallel or real-time applications, parameters
of communication performance like end-to-end la-
tency, delay jitter or loss probability, are as impor-
tant as total communication throughput. For in-
stance, the performance of scientific parallel codes
has been shown to improve when computations
and their associated communications are sched-
uled jointly, using compiler information[6] or us-
ing runtime knowledge of communication delays

*Funded in part by DARPA through the Honeywell

Technology Center under Contract No. B09332478
LQuality of Service

[25]. Similarly, both the performance and the pre-
dictability of real-time applications are improved if
bounds on communication delays can guaranteed
[23, 1].

This paper focusses on one element of end-to-
end communication delays: the overheads of com-
munication processing. Specifically, we posit that
the reduction of such overheads requires the dy-
namic control of the resources used in communi-
cation processing. Dynamic control has become
necessary due to the complexity and runtime vari-
ability of modern network platforms and of the in-
creasingly complex multi-threaded and distributed
applications using these platforms. In these con-
texts, it is too difficult to estimate runtime com-
munication requirements and model network re-
source availability prior to program execution. In
addition, overly pessimistic assumptions will have
to be made if programs must specify connection
needs at the time of connection establishment.
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Figure 1: COMM®%" interfaces the applica-
tion(APP) and the network interface (NT)

This paper’s solution to the problems presented
above is twofold: (1) we attempt to allocate re-
sources to satisfy stated communication require-
ments, but (2) such allocations are reviewed and
revised while connections are active, thereby deal-
ing with runtime variations in actual vs. esti-
mated requirements and in required vs. avail-
able resources. Accordingly, the COMM®@P! soft-
ware library presented and evaluated in this paper
implements a communication infrastructure (CI)



(see Figure 1) that contains the mechanisms nec-
essary for the dynamic allocation of resources to
communication processing tasks. These mecha-
nisms allow the application, the CI, or both to
make runtime decisions in order to accommodate
observed changes in communication requirements
or resource availability. The goal of such de-
cisions is to guarantee certain levels of service,
improve the utilization of host and network re-
sources, or prevent service disruption due to un-
expected events. In addition, protocols imple-
mented with COMM®%*?* may be tailored to sat-
isfy application-specific communication needs by
their flexible composition from sets of protocol
modules[10].

By permitting the CI itself to make runtime re-
source allocation decisions, (1) the reactivity of
COMM®4*P* protocols is improved, (2) application
programs need not track changes in their own com-
munication behaviors, and (3) programs also need
not have knowledge of current resource availability
and of the behavior of other applications using the
same resource pool. In contrast, the CI may make
allocation decisions based on current communica-
tion behavior and on actual levels of resource uti-
lization and availability. This auto-configuration
attribute of the CI distinguishes our research from
other current and past work on configurable com-
munication systems [10, 17, 22, 26, 27, 34, 16].
However, note that auto-configuration is also used
in recent work that deals with dynamic changes
in video traffic mapped to the QoS guarantees of-
fered by ATM networks[30], and that it has proven
useful in past research on guaranteeing the pre-
dictable behavior of real-time applications[3, 8].

The policies and algorithms making au-
tonomous runtime resource allocation decisions for
communication protocols comprise COMM 4%t ’g
auto-configuration mechanism. In the prototype
presented in this paper, auto-configuration con-
trols CPU resources. Namely, CPU resources
are allocated at runtime with a load assignment
heuristic that maps communication requirements
to alternative configurations of protocol modules.
Such decisions are triggered by stated or observed
changes in program behavior (e.g., unforeseen rate
increases or connection establishments) or by mod-
ifications in resource availability (e.g., due to vary-
ing network loads). Accordingly, we define the
term CI configuration to represent currently avail-
able resources and their mapping to current con-

nections supported by the protocol stack. Sim-
ilarly, the term configuration decision denotes a
resource allocation decision.

The benefits from using COMM®?*P* are ap-
parent in multiprocessor environments, where it
is easy to guarantee dynamically negotiated CPU
reservations. Systems permitting such reserva-
tions include commercial multiprocessors like SUN
Solaris SMPs and supercomputers like the Con-
vex machines, and they include systems offer-
ing real-time capabilities like the Rialto Operat-
ing System[14], the YARTOS kernel[11, 12], and
RT-Mach with the processor capacity reservation-
based scheduling described in [18]. This paper’s
measurements are performed on a commercial par-
allel machine, a KSR-2 supercomputer running
multiple communicating processes each using the
COMM®%? prototype, with the KSR’s intercon-
nection network emulating the underlying network
typically employed for inter-process communica-
tions. Since COMM®?®"" is implemented with a
portable user-level threads library[20], it can also
be run on other parallel machines, including SUN
Solaris and SGI multiprocessors.

The development of COMM®?“*has been driven
by our experiences with both high performance
and real-time applications [15, 19]. However,
we expect to derive benefits from COMM®4%P? g
use for a wide variety of applications, including:
(1) CSCW? applications in which multiple com-
munication streams exhibit dynamic traffic and
QoS characteristics and possibly, permit trade-
offs among these streams’ acceptable QoS levels;
(2) video or data servers, where the aim is to
maximize the number of connections with high
throughput and predictable jitter; and (3) dis-
tributed real-time applications, where multiple
streams of data are collected and processed subject
to specific and possibly dynamic rates and timing
requirements.

The remainder of this paper first outlines the
COMM®“%P!software architecture and its proto-
type (see Section 2). Next, insights on the design
of the load assignment heuristics used for auto-
configuration are derived from studies of the influ-
ence of alternative protocol configurations on com-
munication processing latencies and throughput
(see Section 3). COMM“4*"*’s configuration mech-
anisms, an analytic model capturing suitable per-
formance characteristics of COMM®4%P* _built pro-
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tocols, and an auto-configuration heuristic based
on this model are presented in detail in Section 4.
A synthetic program derived from the aforemen-
tioned video server example is used to illustrate
the functionality of the auto-configuration mech-
anism. COMM®P"’s contributions are reviewed
in comparison with related research in Section 5.
Remarks on our future work conclude the paper

(see Section 5).

Namely, the dynamic configuration mechanisms of
COMM®®Ptwish to address situations in which
the actual connection requirements exceed those
initially stated, but may be satisfied by use of
spare resources recovered from other connections.
This should result in improved resource utilization
as it saves end users from using overly conservative
estimates of their communication needs.

The COMM®**"* architecture consists of the fol-
lowing components:

e Auto-configuration mechanisms, which enable

2 The COMM®%“*" Commu-
nication Infrastructure

2.1 The Software Architecture
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Figure 2: COMM@4*P* architecture

The flexibility of a CI strongly influences the set of
requirements it can accommodate. Consequently,
a key issue in COMM®%%P%’s design is to support
flexibility in composing and configuring protocol
stacks, and in managing resources and guarantees.
COMM®%!provides mechanisms for such config-
uration at the time of connection establishment,
for user-driven reconfiguration at any time during
the life of a connection, for specification of connec-
tion requirements, and for resource management
(see Figure 2). The need for such mechanisms has
already been established by previous work in con-
figurable communication systems [10, 22, 27, 34].
Due to our interest in auto-configuration, the spe-
cific research issue addressed by COMM®®* is
the difficulty of accurately estimating and then re-
sponding to the runtime behavior of complex ap-
plications with numerous communication streams.

Cl-level decisions about resource allocations
to individual connections, based on protocol-
and resource-specific algorithms/heuristics
and transparent to applications. The goal of
such configuration decisions is to satisfy each
connection’s performance needs. The runtime
overheads of decision-making are kept within
acceptable limits by trading off optimality for
decision speed. In the future, we may also
consider heuristics that learn from previous
decisions and application behaviors.

Runtime usage evaluation mechanisms, which
provide information on the actual level of
service observed by each individual connec-
tion.  This information is used for auto-
configuration, and it may be obtained from:
(1) monitoring Cl-internal activities like the
time spent in given modules, the total mes-
sage latency being experienced, etc., (2) net-
work feedback, and (3) mechanisms specific to
certain communication protocols in the con-
figuration.

Configuration enactment mechanisms, which
instantiate configuration changes. The effi-
ciency of such enactment strongly depends on
the flexibility of the CI architecture and of its
interface to the underlying resources.

Meta-level configurabil-
ity control mechanisms, which serve to adapt
the decision mechanism (e.g., algorithms for
resource management, decision-making poli-
cies) to specific applications or sets of require-
ments [3]. For example; an application may
prefer that for specific connections, the deci-
sion algorithm focus on delay rather than on
bandwidth optimization, or the CI itself may
vary the quality and promptness of its deci-
sion making, by adjusting the amounts of in-
formation being monitored or the periodicity



of status checking.

The main components of the COMM?9%P" soft-
ware architecture together with its interfaces to
the network and to application programs are de-
picted in Figure 2. Its current prototype providing
auto-configurability and using the mechanisms de-
scribed above is presented next.

2.2 Prototype Implementation
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Figure 3: COMM%4%P! prototype

The COMM®4%?? prototype (see Figure 3) is imple-
mented as a user-level library on Unix machines,
and it is evaluated on a KSR-2 parallel supercom-
puter (a CC-COMA shared-memory multiproces-
sor, with a sequentially consistent shared address
space and a 1GBytes/sec interconnect) over an
emulated network. This environment is appropri-
ate for studying the effects of CI configuration on
communication performance for several reasons,
including (1) the application programs perform-
ing send/receive operations may be isolated from
other activities in the system, from the communi-
cation infrastructure and from the emulated net-
work since the KSR-2 machine permits proces-
sor reservation, and (2) the emulated network it-
self offers behaviors observable in actual networks,
such as asynchrony, actual communication laten-
cies, etc.

The network environment, also called in the fol-
lowing “the network interface” (NI), consist of the
network adapter emulated in software on an in-
dependent processor and the network fiber em-
ulated by the KSR’s memory and interconnect.
The adapter offers a direct interface to the user
space as done by most adapters with embedded
processing resources [4, 5]. The interface avail-
able at the application level follows the model
of the high performance ATM interface described

n [24]: zero copy, gather/scatter facilities, early
demultiplexing, per connection send and receive
request queues, request driven receive (incoming
messages are dropped if no posted receive). The
network fiber is emulated by a set of shared mem-
ory buffers mapped into the sending and receiving
address spaces. A point-to-point transmission is
emulated by a set of remote memory operations
that generate actual communications across the
interconnect. For such a transmission, we use a
“physical frame” with a fixed header specifying the
destination socket and the payload length. For a
send/receive operation, the network adapter has
to “acquire” (lock) the channel, write/read the
frame, and, finally, “release” (unlock) the channel.
Checking the channel for an incoming message is
a lock free operation. In this implementation of
the emulated network offers an effective peak rate
of about 68 MBits/sec.

The main components of the COMM®???* proto-
type are: (1) the protocol library, which provides
the building blocks (i.e., protocol modules) for con-
structing protocol stacks; (2) the “user interface”,
which controls the interaction with the application
layer; (3) the communication task management,
which includes mechanisms for inter-module com-
munication (pipes) and for concurrent execution of
protocol modules (PE® Controllers); and (4) the
configuration mechanisms, which support applica-
tion and COMM®%?? driven resource allocation
decisions.

The protocol library includes the protocols
required by the applications using COMM®4%P* | In
the current prototype, this library includes proto-
cols for reliable transport (RTP), unreliable trans-
port (UTP), fragmentation (NP), and encryption
(EP) (in both serial and parallel implementations).

A COMM?4*P* protocol is defined by a set of
modules, each offering a specific service. The
granularity of decomposition is implementation-
specific. For instance, the UTP has only two mod-
ules, one for receives and the other sends, while the
RTP has an additional module for handling ACKs.
All modules in the library should have the same
input interface (i.e., message connection, protocol
state and CI state descriptors). To enable the eval-
uation of its per connection CPU requirements,
each protocol module is described by the following
overheads: null message processing, locally and re-
motely buffered 1KByte-message processing, and
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critical section processing.

The COMM®4%P! prototype uses the layered
protocol model. Protocol stacks are composed at
the time of connection establishment, based on
each connection’s specification. The composition
process consist of linking together the appropriate
protocol modules in the order in which they should
process a message. COMM®%“?* ’s protocol stacks
are non-multiplexing. This preserves the connec-
tion identity at all levels of protocol processing,
thereby enabling better support for connection-
specific QoS [33] and for flexible composition of
application-specific protocols.

The implementation of the transport proto-
cols in the COMM®4®* library is similar to the
TCP/IP suite with several exceptions: (1) the un-
reliable transport (UTP) is connection oriented;
(2) the reliable transport (RTP) is message ori-
ented, with selective retransmission and without
adaptable window in the flow control mechanism.
These differences are required by QoS manage-
ment or were considered to be more appropriate
for the emulated network environment in which
the COMM®9%P? prototype is exercised.

The Encryption Protocol (EP) has an original
implementation: the actual message processing
may be serial or data-parallel according to the
message length and the number of assigned Slave
modules. The parallel processing doesn’t incur
any additional message copy and complies with
the pipeline paradigm: The Master module speci-
fies the message chunks to be process by the Slave
modules and the last Slave to touch a message
forwards it to the next module on the connection
pipeline.

The modules in the prototype library are pro-
filed in terms of their execution times in Ta-
ble 1. The results presented in this table validate
that the implementation of our protocols is rea-
sonable with respect to their CPU requirements.
Namely, processing overheads are relatively small
for low-level protocol tasks like ‘unreliable trans-
port’, overheads are dominated by user and net-
work interfaces and message copying (see column
‘extra cost per 1KByte’), and presentation level
processing costs far exceed lower-level costs (e.g.,
see the ‘encryption’ costs). Such characteristics
show that the COMM®?*!prototype is a suitable
instrument for studying the effects of CI configu-
ration on communication performance.

The user interface (UI) implementation is de-

0 byte extra
Module/operation message | 1KBytes

(psec) | (usec)
NP In 62 0
NP Out 45 0
UTP In/Out 7 120
RTP In 62 120
RTP Out 27 120
RTP 70 0
Proxy UI, In 125 7
Proxy UI, Out 92 7
Remote Ul, Out 14 0
Remote U, In 21 0
EP Slave 1800 10000
Pipe Get No Locking 20 -
Pipe Get Locking 38 -
Send to different PE 21 -
Send on the same PE 4 -

Table 1: Processing overheads in COMM®4%P¢

signed for a multi-processor environment. Since
it is likely that application- and communication-
related processing are assigned to different proces-
sors, the Ul is divided into a proxy and a remote
component, which may execute on the same or on
different processors. The proxy Ul copies data be-
tween application and CI buffers, and always exe-
cutes on the same processor as the user thread that
issued the I/O request. The remote Ul implements
the remaining user interface functionality, such as
monitoring and usage control, and it may execute
on any available processor.

The interface offered to the user level is simi-
lar to the BSD socket interface. The main differ-
ence is related to connection establishment, where
COMM®%?? allows to specify the traffic and QoS
parameters.

Communication task management. The
PE Controllers are mapped one-to-one to the pro-
cessors to which COMM@9%P! is assigned. They
control the execution of the protocol modules as-
sociated with each active connection. The pipes,
the inter-module communication links, are repos-
itories for service requests with locking strategies
that are dynamically adjusted to the current num-
ber of writers and readers. Namely, no locking
is needed on write/read if there is only a single
writer /reader.



A module receives its inputs from a pipe. The
association between a protocol module and its in-
put pipe defines a module instance. A module in-
stance is shared by multiple connections. However,
multiple instances of the same protocol module
may exist in the system. In addition, one mod-
ule instance may be assigned to several controllers
at the same time, thereby enabling concurrent pro-
tocol execution. The flexibility in mapping mod-
ule instances to controllers is exploited heavily by
COMM®%P* ¢ dynamic configuration mechanism.

A PE Controller executes a protocol module
only when inputs are available on its correspond-
ing pipe. In the current implementation, PE con-
trollers follow a round-robin policy in checking
pipes for available inputs, except when a request is
shepherded. Namely, if the source and the destina-
tion modules are assigned to the same processor,
then the destination module is executed as soon
as the source has finished processing. By ignoring
message priorities and deadlines, this implemen-
tation of PE controllers offers low and predictable
overheads of message scheduling and pipe opera-
tions. More importantly, shepherding enables a
configuration decision maker to control through-
put and message latency, by controlling the gran-
ularity of protocol stack decomposition across the
available processors. The pipe and scheduling
overheads presented in Table 1 demonstrate the
benefits of adaptive locking (much costly pipe op-
eration if locking) and the low costs of protocol
modularization when combined with shepherding.

Config.1p

Config.2p
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Figure 4: Examples of protocol stack assignments
for a reliable connection (UI, RTP, NP)

Figure 4 illustrates two examples of how a proto-

col stack for unreliable communications (UI, UTP,
NP) may be assigned to PE Controllers. These
two assignments have different performance po-
tentials, despite their identical processing require-
ments: Config.1p is characterized by a smaller la-
tency because communication requests flow imme-
diately across shepherding links instead of wait-
ing in pipes for round-robin service. In contrast,
config.2p, has a larger latency but offers a higher
throughput, due to its improved per-stream load
balance (see Section 3).

The configuration mechanisms imple-
mented in the CI Manager (CIM) include the dy-
namic establishment of application-specific pro-
tocol stacks, management of processing capac-
ity, performance control, feedback to the user,
and support for both application-driven and auto-
configuration. The main activities of the CIM are:

e connection establishment and user-level mod-

ification of connection specifications, includ-
ing (1) the negotiation of QoS guarantees
with the peer CIM and the underlying net-
work, and (2) the decision of the configura-
tion changes necessary to accommodate the
new requirements; and

e on-line auto-configuration, including: (1) the
periodic checking of the information collected
at various points in the CI, and from network
feedback, (2) the comparison of actual per-
formance with the QoS and traffic require-
ments, and (3) decisions about the configu-
ration changes that are necessary to accom-
modate any detected divergence.

Configuration decisions are enacted by inform-
ing PE Controllers of changes in their sets of ser-
viced pipes. The actual changes are done inde-
pendently by each PE Controller affected by the
decision, without disturbing the processing of the
messages currently in the system.

Important parameters of the CIM’s activity are
the frequencies of sampling and checking actual
service levels, and the promptness with which
the CIM activates the decision procedure when
poor performance is detected. These parame-
ters have major effects on the system’s reactiv-
ity to unexpected events and on its overall perfor-
mance. More specifically, the activation delay is
the amount of time for which poor performance
should be noticed in order to have the CIM trig-
ger the decision procedure. The parameters con-
trolling this delay are set by the meta-level control



procedure in COMM®4%P* | Their settings should
result in low reaction times while avoiding reac-
tions to meaningless short time variations, and re-
taining high performance in communication pro-
cessing.

To summarize, the COMM?®4%P" prototype en-
ables the construction of flexible protocol stacks,
the on-line evaluation and monitoring of resource
requirements and service qualities, and the ac-
commodation of unexpected changes in connec-
tion requirements. In addition, the implementa-
tion choices made with respect to pipe manage-
ment and scheduling (i.e., adaptive pipe locking
and shepherding) improve the performance and
predictability of communication processing.

3 Configurations and Com-
munication Performance

The experimental results presented in this section
provide insights into the ability of certain configu-
rations (i.e., protocol modules assignments to pro-
cessors) to influence performance metrics like max-
imum message rate, latency, predictability, and
the efficiency of connections. More specifically,
we are interested in how to achieve high through-
put and resource utilization while keeping wait-
ing times within predictable limits. The configu-
rations considered in this study are (see Figure 5):
e connectional parallel connections (config.c),
where a processor is handling only the mes-
sages of its assigned connections [29];

e message parallel
connections (config.m), where any processor
may process (completely) any message (from
any connection) [29]; and

o quasi-pipelined connections (config.1p, con-
fig.2p, config.4p), where a processor is as-
signed one or more protocol modules and their
processing is based on shepherding. In the
classical pipeline [29], each protocol module
is assigned its own processor. This makes the
achievable peformance (i.e., throughput, la-
tency) fixed with the implementation specific
protocol decomposition. In contrast, with
a quasi-pipelined approach, the implementa-
tion specific decomposition and the achievable
performance are decoupled: with the same
implementation, better performance may be

achieved by appropriately reducing the ac-
tual granularity of decomposition by grouping
modules.

These configurations are chosen to cover a range
of different expected throughput and latencies.
Differences are primarily due to changes in the
distribution of processing loads across processors.
For instance (1) the larger the difference between
the maximum and minimum processor loads, the
larger the waiting time in the CIM and (2) the
better balanced the load, the better the through-
put.

All of the experiments described in this section
use multiple identical, concurrent connections be-
tween two “hosts”, which are represented by syn-
thetic applications running on sets of processors on
different rings of the KSR2 machine. The applica-
tion and the CI are assigned to disjoint processor
sets, and the connections are independent of each
other (i.e., each application thread involved in is
assigned its own processor). Connection behavior
and requirements do not vary during an experi-
ment.

The metrics of interest are: connection through-
put, message latency (i.e., for the outgoing path,
this is measured from the time the message is
copied into the CI buffers until it is sent to the
CI), and efficiency (overall throughput with the
number of processors). Each experiment runs un-
til the metrics of interest reach the 95% confi-
dence interval. Consistent with other studies re-
ported in the literature[28, 21], the following fac-
tors are varied across experiments, : (1) protocol
task assignments (see Figure 5), (2) number of con-
current connections; (3) message size, (4) proto-
col processing requirements (reliability, checksum,
encryption), and (5) transmission rate (bounded
10Mbits/sec £+ 0.05% or unbounded). Fized pa-
rameters are: the size of processor pool for mes-
sage parallel configurations, and the buffer pool
and window size.

Experimental results are consistent with pre-
viously reported work, including the results in
[28, 21]. For instance, at high communication
rates, a message parallel configuration results in
higher overall performance than a connectional
parallel one (see Figure 7). More importantly, our
experiments offer a number of basic insights di-
rectly related to our interest in dynamic QoS con-
trol. These insights are described next.
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Figure 6: Effects of load distribution (unbounded rate, unreliable, checksum, no encryption)

¢ Well balanced, quasi-pipelined configu- of config.1p by more than 100usec.
rations control message latencies when the

numbers of connections and transmissions in- % Utilization vs. # conn. -- Msg.size 2048
crease. This is because a quasi-pipelined configu- config.c —
ration can divide message processing (i.e., group o5 7 configp
the protocol modules) into appropriately sized - ;82;:8587
chunks and then assign them to the available 20
processors, thereby resulting in decreased wait-
ing time and higher throughput for messages at 15 -
high loads. For instance, in Figure 6, config.2p is yd P —
better balanced than config.4p and config.1p, and 10 - —
consequently config.2p exhibits superior through- s
put and latency when more than 5 connections are )
active. However, for low processing requirements 0 ‘
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or low loads and when the processing chunks are
small, the better balanged' configuration exhll?ltsFigure 7. Configuration effects on efficiency (un-
worse latency and no significant throughput im- . :

. “bounded rate, unreliable, checksum, no encryption)
provement compared to the other configurations,
primarily due to its pipe management operations
and the lack of processing locality. For example, in
Figure 6, for fewer than 5 connections, throughput
is comparable for all three configurations, while
the latency shown by config.2p exceeds the latency

¢ For reasonable processing requirements,
quasi-pipelined configurations yield better
overall throughput per number of proces-
sors than other types of configurations (see
Figure 7). Comparing configurations with the



same number of processors for protocol stacks
that do not require encryption (a very CPU in-
tensive protocol), a quasi-pipelined configuration
(e.g., config.2p) can support more concurrent con-
nections than a connectional parallel configuration
(config.c). In addition, the quasi-pipelined config-
uration enables lower waiting times (and better
throughput) than a message parallel configuration
(config.m). This feature is very important when
only a small number of processors may be assigned

to the CI.
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Figure 8: Parallelization effects on computation-
ally intensive protocols (unbounded rate, unreli-
able, no checksum, encryption)

e Computationally intensive protocols
(e.g., encryption) are better serviced with
message parallel configurations. Figure 8 il-
lustrates the advantages of config.m vs. config.c
(serial encryption) and vs. config.1p, (parallel en-
cryption, with 3 encryption slaves, out of the same
overall number of processors as config.m). Mes-
sage parallelism benefits from all processors’ in-
volvement in computationally intensive tasks, and
from good locality in message processing.

e Connectional parallel configurations of-
fer the best predictability (see Figure 6, con-
fig.c, up 5 connections when the NI overload oc-
curs). The reasons are multiple: (1) reduced
synchronization overhead at the user interface,
(2) locality of message processing, (3) no inter-
connection influences, and (4) a natural message
ordering. However, the drawback of connectional
parallelism is the poor CPU utilization.

e The performance of the network inter-
face is influenced by the number of pro-
cessors directly accessing it. Consider the

measurements presented in Figure 9: at high
loads (number of processors), connectional (con-
fig.c) and message (config.m) parallel configura-
tions experience significant performance degrada-
tion. This is due to the large number of proces-
sors directly accessing the NI and generating high
contention for NI services and for the intercon-
nect. Specifically, at high contention levels, the
NI’s overheads of connection request queue man-
agement and the waiting time for a request com-
pletion will increase significantly. With pipelined
configurations, such contention may be avoided by
assigning only one or two processors to directly ac-
cess the NI (e.g., config.2p, config.1p).

The main idea conveyed by the experimental re-
sults presented in this section is that no single con-
figuration can provide for ‘best’ performance (in
terms of throughput, latency, predictability) under
a large variety of application requirements. This
suggests that a high performance CI should sup-
port runtime (auto-)configuration. More specifi-
cally, these results provide the following insights
that may be used to develop effective heuristics
for auto-configuration:

e Quasi-pipelined configurations easily
structured to match given throughput and la-
tency requirements. In addition, perturbation
effects may be kept under control by isolating
incoming from outgoing streams, by grouping
connections with similar QoS requirements.
or by balancing loads.

are

e Message parallel configurations are useful for
execution of computationally intensive tasks.

e Connectional parallel configurations result in
low message latency and high levels of pre-
dictability.

4 Auto-Configuration

Auto-configuration is the fashion in which
COMM“4%P* achieves its main goal, which is to
accommodate dynamic changes in communication
requirements while complying with stated QoS re-
quirements. Configuration decisions are made at
the time of connection establishment and dynam-
ically, when changes in traffic are detected. The
goal of such decisions is to guarantee the required
QoS and traffic characteristics based on the appro-
priate assignment of processing capacity to exist-
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Figure 9: Effects of NI bottleneck (10Mbits/sec, unreliable, no checksum, no encryption)

ing connections (i.e., mapping of module instances
to the available processors). The most impor-
tant parameters of the decision model embedded
in COMM?49Pt are:
e connection requirements, which are described
by the set of modules on the protocol stack,
and by the traffic and QoS requirements;

connection guarantees, which are described by
the traffic characteristics and the QoS cur-
rently guaranteed for each connection;

connection configuration, which is defined by
its current resource assignment?*; and

available processing capacity, which describes
the processing capacity available for commu-
nication tasks on each processor in the CI con-
figuration. We assume that some system-level
scheduler guarantees this capacity.

A configuration is considered acceptable if for
all of its active connections, the estimated perfor-
mance satisfies the actual traffic and QoS require-
ments. As the goal in COMM?4*P* is to accommo-
date unexpected requirements with its available
resources, configuration decisions are based on the
assumption that the near past is a better model
for the future than specifications stated when a
connection is established. Therefore, we will use
reserved but unused resources resulting from over-
estimated connection-time specifications or from
runtime traffic fluctuations to satisfy new require-
ments.

The load assignment heuristic presented in this
section generates acceptable CI configurations.
Such configurations are not restricted to the few

4The current prototype considers only the assignment
of module instances to processors.

10

evaluated in Section 3: each connection may have
its specific assignment of modules to processors.
The following text first presents some details
about the conditions required for an acceptable
configuration, then describes the heuristic and the
online configuration procedures. A simple exper-
iment illustrates the operation of COMM®***** s
auto-configuration mechanism.

4.1 Configuration Model

In COMM®4%P? 4 connection is defined by its in-
put and the output streams, each with its own traf-
fic and QoS requirements. Similar to [1], for each
stream the traffic requirements are described by
average inter-arrival time (Xgy¢), minimum inter-
arrival time (X,n.,), averaging interval (I), and
maximum message size (Spmaz). QoS requirements
are described by an upper bound on the end-to-end
delay (Dmqz ) and maximum loss burst (Bynaz). To
estimate actual traffic characteristics, the metrics
monitored on a per connection basis are message
inter-arrival time, message size, and message la-
tency (within CI's confines).

At the time of connection establishment, based
on connection-specific requirements, COMM*???¢
defines the structure of the protocol stack, eval-
uates the overhead of message processing at each
protocol module, and allocates appropriate buffer
space. During the connection’s lifetime, its per-
module overheads Xgye, Xmin, Smar may change
based on monitoring information.

In our model, the CI is seen as a network of
queues where the servers are the PE Controllers
and the queues are the (inter-module) pipes. Spe-



cific to our model is that (1) each queue is receiving
input from a single stream, and (2) a round-robin
policy is used by the server in servicing its queues.
This features enable a simpler, easy to evaluate at
run-time model for the message time in the system
than a the general network of queues model.

The result of a heuristic-based configuration de-
cision is a CI configuration where all active connec-
tions are guaranteed the required QoS and traffic
parameters. As stated earlier, this is called an
acceptable configuration. In order to define the
conditions that should be met by such a configu-
ration, the following notations and definitions are
introduced:

o P — the set of processors assigned to the CI

e 7 — the set of communication streams (2 per
connection)

o Xave(?), Xmin(?), I(2), Smaz(?) — the current
traffic descriptor for stream i

o Awail(p) — capacity percentage assigned to CI
processing on processor p.

o FEzec(C,p,i) — the overhead of processing a
message in stream i, on processor p, given
the assignment of module instances in con-
figuration C. This includes the overhead of
processing one or more modules; of synchro-
nization, of pipe management, and of shep-
herding. The actual processing overhead of
a module instance is divided by the number
of processors assigned to process it. This as-
sumption ignores the difference of load among
processors, but it results in any easily evalu-
ated approximation of actual overheads.

o Fxec*(C,p,i) — the actual time necessary to
execute Frec(C,p,t) given the assigned CPU
percentage:

. . Ezxece(C,p,1
Ezec*(C,p,i) = W(p))

e U — the utilization of processor p determined
by CI processing

B Exec(C,p, i)
S P oy
1€T

e Proc(C,i) — the set of processors assigned
module instances of stream ¢ (i.e., p € P(C,1)

iff Exec(C,p,i) #0).
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Conn(C,p) — the set of streams with mod-
ules assigned to p (i.e., i € Conn(C,p) iff
p € Proc(C, i)

Share(C, i) — the set of streams which share
processors with stream 1

U

pEProc(C,i)

Share(C,i) = Conn(C,p) \ {i}

PComm(C,1i,j) — the set of processors shared
by streams i and j:

PComm(C,1,j) = Proc(C,1) ﬂProc(C,j)

prob(i, j) — the probability that a message in
stream 7 must wait in the pipe for a message in
stream j to be serviced, at some processor in
CI. Given the round-robin service policy, we
can approximate prob by the inverse of the
number of j messages that fit into ¢’s inter-
arrival time:
prob(i, j) = { :

W ait ae (i, j) — the worst case waiting time
incurred on a message in stream ¢ by some
message of stream j:

Wait ez (i,7) = max Ezec*(C,p,i)

pEPComm(C,i,j)
Waitayg(i, j) — the average waiting time in-

curred on a message in stream ¢ by some mes-
sage of stream j:

Waitawg(i, j) max

pEPComm(C,i,j)
prob(i, j))

(Ezec* (C,p,1) -

Xmaz(?) — the maximum time between two
consecutive messages in the stream ¢ leave the

ClI is:
Xma:c (Z)

max  Fzec™(C,p, 1) +

pEProc(C,i)

Z W ait maz (i, §)

j€Share(C,i)

Xavg(i) — the average time between two con-
secutive messages in the stream :. It is
computed exactly as Apq4(é), except that
Wait,yg values are used. In a less conserva-
tive approach, the A;,4 may be used in place
of Xpaw-



® Aoz () — the maximum time necessary for
a message in stream ¢ to be completely pro-
cessed, given the stream ¢ is not bursty.

Z Exec*(C,p,i) +
p€Calc(C,i)

> Waitmae (i, 5)

j€Share(C,i)

Amaz (1)

Aqug(?) is defined analogous.

B(i) — the maximum burst of stream i:
90 = | |

ave(i)
u(z) =l max{0, z} — used to simplify formu-
las

e w(i, k) — the maximum waiting time of the
k-th message in a burst of stream ¢ is :

w(j k) = p(X(5) = Xmin(4)) - (k= 1)

Due to the round-robin scheduling of pipes by
PE Controllers and due to the use of multiple,
independent module instances, the worst-case
latency of a given stream is affected only by its
own burstiness, not by the behavior of other
streams.

L(i) — the maximum latency observed by
some message in stream i. Note that the
largest waiting time is observed by the last
message in a burst and that no more than
Bz (i) (maximum acceptable loss burst for
the stream i) can be dropped.

L(3) = A4) + (i, u(B()) — Bmas (1))

The primary requirements for an acceptable
configuration is to comply with the processor ca-
pacity assignment. The following should hold for
each processor p and for the NI:

U(p) < Avail(p) (1)

For a stream, ¢, to always meet its average rate
requirements, the following should hold:

maz (i) < Xavg(i) (2)

To guarantee the required QoS, given the B4
acceptable loss burst, the sum of latencies £ at
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the two hosts and the network overhead should be
smaller than D,,,.. To be fair, we consider that
each of the hosts and the network are “entitled”
to at most a third of the user-specified loss burst
(i.e., Bmagz /3 will be used the evaluation of £).

Note that the above model assumes that the sys-
tem level scheduler is guaranteeing the assigned
CPU percentage. Such schedulers have been pre-
sented in [18], [14] and [12].

Given this model, the goal of the auto-
configuration decision in COMM®*®?? is to comply
with the available resources (see 1), rate require-
ments (see 2), and to minimize message latency.
The module assignment heuristic presented next
attempts to achieve these goals.

4.2 Connection-Time Configuration
Heuristic

The goal of connection-time configuration is to al-
locate resources to a new connection such that it
will meet its traffic and QoS requirements and such
that all other connections continue to maintain
their current traffic and QoS guarantees. The con-
figuration decision is part of the connection estab-
lishment procedure, which is coordinated by the
CI Manager (CIM). The connection establishment
procedure consists of: (1) establishing the corre-
sponding set of protocol modules and estimating
their specific overheads, (2) evaluating the levels
of guarantee at source and destination hosts, and
considering what the underlying network can offer,
and (3) informing the user about achievable guar-
antees. A host approves the connection, provided
an acceptable configuration is found. Otherwise,
it rejects the connection request and returns feed-
back on the level of guarantees it can offer.
When evaluating the levels of guarantees a given
connection may be granted, the CIM first tries to
assign to this connection all necessary resources.
The goal is to meet the traffic and loss burst re-
quirements while minimizing the predicted worst
case latency. Towards this end, the incoming and
outgoing connection streams are assigned incre-
mentally by a three-phase algorithm, where a phase
is entered only if the previous phase failed to define
an acceptable configuration.
Phase 1. In the first phase, the goal is to meet
the required rate, while maintaining low latency.
Protocol modules are assigned one at a time, in
protocol stack order, so as to construct a quasi-



pipelined configuration. The intent is to attain
low latency by exploiting processing locality while
maintaining a global load balance. As a result,
the algorithm first attempts to assign a module
to the same processor as its predecessor. If this
does not yield an acceptable configuration, then
the module is assigned to the least loaded proces-
sor. With this heuristic, connections with small
processing requirements and tight latencies may
be completely assigned to a single processor, while
several such connections may share the same pro-
cessor provided their requirements are guaranteed.
Phase 2. 1In the second phase, the goal is to
achieve rate requirements beyond those achievable
in the first phase, while minimizing the effects on
other connections. This is attained by uniformly
spreading the load of the new connection over the
smallest possible number of processors as follows:
(1) the entire protocol stack is assigned to the two
least loaded processors, and then (2) processors
are added to the connection set until either an ac-
ceptable configuration is found or no more proces-
sors are available. We call this a partially message
parallel configuration, as it is similar to a message
parallel configuration but may span only part of
the available processor set. When extending such a
configuration (i.e., adding processors), the achiev-
able throughput improves. Interestingly, latency
degrades in comparison to a first phase assignment
only if total processing time is comparable to total
pipe locking overhead (see Figure 9, config.m) or
if the load on the corresponding processor set is
too high.

Phase 3. 1In the third phase, the goal is to in-
crease the resources available to the new connec-
tion by improving the load balance of the entire
processor set. With the new connection extended
over the entire processor set (as at the end of the
second phase), the configurations of other connec-
tions are modified by extending them to partial
message parallel configurations. Connections are
considered in increasing order of their ratios of
experienced vs. guaranteed latency. This action
will reduce the load on the most loaded processors
while preserving the guarantees of already active
connections.

To summarize, the connection assignment
heuristic provides a first fit with respect to the
available processing capacity (1) and the rate re-
quirements (2) while keeping the latency small by
either locality of processing or load balancing (i.e.,

small waiting time).

4.3 On-line Configuration Heuristic

On-line configuration is triggered by the QoS eval-
uation mechanism whenever some connection re-
ceives inappropriate service or is shut down. In
the context of our COMM®?* prototype, poor
service is caused by some connection increasing its
load (number of messages, message size) over its
guaranteed traffic level.

The goal is to accommodate a connection’s load
increase by taking advantage of currently unused
The misbehaving connection is sub-
jected to the same load assignment heuristic as
the one used for connection-time configuration
(see Section 4.2). If no acceptable configura-
tion is found, buffer management or policing are
used to restrict traffic to remain within appro-
priate bounds. Moreover, COMM®? informs
the application program about the traffic viola-
tion, enabling it to either adjust the traffic (by
application-level adaptation) or explicitly negoti-
ate new communication requirements.

Note that at each connection end-point, the
"host’ is allowed to react independently when in-
appropriate service is noticed, as it is very likely
that different configurations, loads or protocol pro-
cessing overheads exist at the communicating sites
Coordination among the hosts is needed only when
the user explicitly renegotiates traffic and QoS re-
quirements.

At connection shut down, the configuration
mechanism will immediately redistribute any re-
leased resources. The configuration procedure
(same as above) is invoked for those connections
that were guaranteed worse performance than re-
quired.

resources.

4.4 Experiments With On-line Con-
figuration

The experiments described in this section
demonstrate the operation of the dynamic auto-
configuration mechanism by using it with traf-
fic characteristics like those experienced by video
service applications. These characteristics are:
(1) execution in a multiprocessor environment
with two processors assigned exclusively to com-
munication processing, (2) high bandwidth, un-

reliable, checksummed connections originating at
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Message Rate Pkts/sec | Latency | Start | Active || sec.0 | sec.10 | sec.30 | sec.70
(KBytes) | (Mb/sec) psec Sec. Sec.
conn.( 4 10 320 700 0 80 PE2 | PE2 | PE.2 PE.1,2
conn.l1 1 11 1408 400 0 70 PE.1 | PE1 | PE12 | —
conn.2 1 9 1152 400 10 70 — PE2 | PE.1,2 | PE.1)2

Table 2: Initial connection requirements and
anism
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Figure 10: Latency and throughput, at sender site, with COMM®%aept auto-configuration.

the same source, (3) strict rate and latency re-
quirements depending on each receiver’s process-
ing and buffering capabilities, (4) a potential
for rate increases (as video stream characteristics
change) supported by message size variation.

The experiment consists of running three con-
nections with the connection-time requirements
described in Table 2. The table includes the evo-
lution of the connection configurations over time.
Figure 10 present the evolution of the rate and the
latency for the three connections.

Based on the heuristics described in Section 4.2,
the connection-time configuration decisions are:
(1) assign Conn.0 to a single processor (PE.0)
due to its very tight latency requirements (in fact,
Conn.0 requires a latency lower than the minimum
required for its message size and processing re-
quirements), (2) assign Conn.1 to PE.2, the least
loaded processor, and (3) assign Conn.2 to the
same processor as Conn.0 (PE.0) since the latter’s
low rate creates a lower load than for Conn.1’s
processor.

After 30 seconds, a perturbation occurs when
Conn.2 doubles its message size, thereby nega-
tively affecting the latencies of the other connec-
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tions. Figure 10 depicts the effects of this pertur-
bation (see ‘sec.30’) and of the auto-configuration
decision (see ‘sec.35’), which is to (1) transfer part
of the extra load of Conn.2 to processor PE.1,
(2) extend Conn.l across both processors to keep
its rate within required bounds, and (3) leave un-
changed the assignment of Conn.0 as its estimated
rate is at the guaranteed level. The parameters
controlling activation delay are set such that this
delay is fairly high (4 secs.), so that the effects in-
duced by the traffic perturbation are more easily
seen in Figure 10.

this experiment, the
line auto-configuration mechanism is triggered a

In on-
second time when Conn.1 is shut down. This re-
sults in reducing the expected latency for Conn.0
closer to the required level, by extending Conn.0
to a message parallel configuration.

This straightforward experiment demonstrates
that auto-
configuration as performed by COMM®®?? s load
assignment heuristic can help accommodate unex-
pected traffic changes while providing performance
close to required levels. Importantly, such perfor-
mance improvements do not require any changes




in the application program.

5 Contributions,
Related Research, and Fu-
ture Work

Contributions. The goal of our research is to
integrate the Communication Infrastructure (CI)
with the host system and the network in or-
der to improve service levels for high-performance
and real-time connections. Specifically, we wish
to eliminate the potential performance problems
caused by current systems that require a strict
match of specifications stated at the time of con-
nection establishment with actual connection be-
havior over time. The solution approach demon-
strated in this paper is based on auto-configuration
— Cl-level configuration decisions concerning the
assignment of available resources. Benefits de-
rived from runtime auto-configuration include:
(1) improved processing and network resource
utilization vs. user-specified configurations and
connection-time configurations, (2) improved re-
sponse time to unpredicted or unlikely require-
ments, and (3) compliance with specific applica-
tion needs by use of customized configuration algo-
rithms. The novel results presented in this paper
are:

e the design and implementation  of
COMM“4%P* goftware library for constructing
configurable protocols, supporting user- and
Cl-directed dynamic protocol configuration;

the model and heuristic for the allocation of
CPU resources to protocol processing tasks,
able to guarantee service levels to well-
behaved connections while simultaneously ac-
commodating runtime traffic variations else-
where;

interesting insights on the behavior of dif-
ferent CI configurations, including (1) that
pipelined CI configurations on a small num-
ber of processors may yield performance com-
parable to message and connectional paral-
lel configurations (in contrast to statements
made in [27]) and (2) that the NI bot-
tleneck may restrict the performance of the
highly parallel communication architectures
proposed in previous studies[28, 21].
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The philosophy behind our auto-configuration
approach may be summarized by the following
statement: a prompt Cl-level decision based on
the observed traffic characteristics may keep per-
formance within acceptable limits while accom-
modating an application program’s dynamic re-
source requirements. Such configuration decisions
are intended to prevent performance degradation
until the application decides how to handle the
observed traffic variation. These characteristics
make COMM®%®P! appropriate for servicing com-
plex systems with dynamic and/or hard to accu-
rately stated QoS requirements.

Related Work. The COMM®/P!prototype is
loosely based on the previous work of [17] who only
comment on the necessity of runtime adjustments
in the mapping of protocol modules to processors.

COMM®?? (iffers from previous work on con-
figurable protocols in its support for constructing
protocols that are auto-configurable at runtime
in their functionality and performance. For in-
stance, in the x-Kernel [10, 21], each connection is
bound to a specific resource assignment/protocol
stack at the time of connection establishment. Da-
CaPo [22] is an environment where the processes
that execute the protocol related computations
stacks can handle dynamic variations in the re-
source requirements, but no details are provided
on the corresponding mechanisms. The ADAP-
TIVE system[27] enables only application-level
adaptation decisions. The parallel STREAMS im-
plementation in [7] offers only user-directed stream
configuration, and the policy for runtime schedul-
ing of communication related tasks ignores QoS
requirements. The framework presented in [34]
supports QoS requirements in the context of func-
tionally decomposed protocol stacks by Cl-level
connection-time configuration decisions that min-
imize protocol functions and their processing re-
quirements.

Our study of the various CI configurations fo-
cusing on per connection performance (through-
put, latency and predictability) is different from
similar studies reported in the literature which fo-
cus only on aggregate throughput. [28] reports on
the influence of the synchronization and context-
switching overheads on connectional and message
parallel configurations; [21] analyzes the scalabil-
ity of a parallel x-kernel implementation for mes-
sage parallel configurations. Moreover, these stud-



ies ignore pipelined configurations, since those are
considered [27] to have prohibitive synchronization
and communication overheads. In contrast, we do
consider such configurations and take advantage
of their efficiency and flexibility, especially when
the CI is run only on a small number of processors
(e.g., 2-3).

The dynamic auto-configurability mechanism in
COMM®®?? is designed for the layered proto-
col model, but we posit that similar mechanisms
can provide benefits to protocol architectures like
HOPS [9], F-CSS [34], or to the micro-protocols
described in [2]. Toward this end, the minimal re-
quirements imposed by the CI model is to permit
the runtime estimation of resource requirements
and of the actual usage for each connection in the
system.

Future Work. Our future work will address
the QoS requirements of complex distributed real-
time applications by designing novel configuration
heuristics that integrate CPU, buffer and band-
width management. As part of this work, we
will integrate the COMM®*?* infrastructure into
CORBA-compliant, high performance, object-
based middleware now being constructed at Geor-
gia Tech, called COBS[31]. The intent of COBS
is to permit applications to configure object im-
plementations to their specific needs. Large-scale
applications with which this system is being evalu-
ated include groupware and collaborative applica-
tions transporting significant amounts of data and
performing substantial processing on such data
[32], traditional high performance codes like the
parallel global atmospheric model described in
[15], and embedded real-time applications, as de-
scribed in [13]. These applications are being con-
structed jointly with other faculty in the confines
of the ‘Distributed Laboratories’ project at Geor-
gia Tech. This project’s general goals are to enable
multiple scientists to jointly solve their problems
with computational instruments residing on het-
erogeneous, networked computing engines. Some
of these engines may require COMM®%?! g gup-
port for parallel protocol execution, due to their
high input and output rates when using their mul-
tiple processing elements, whereas others may re-
quire different configuration algorithms embedded
in COMM®“P*and suitable for single-CPU ma-
chines.

Also as part of the integration of COMM®®F?
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and COBS, we will develop support for the si-
multaneous use of multiple network devices and
resources by application programs. In addition,
we are considering using COMM®*?* for real-time
and high performance communications via an op-
timized ATM device interface described in[24].
Acknowledgments. We acknowledge Prof. Sud-
hakar Yalamanchili for helpful discussions on map-
ping algorithms.
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