Technical Report GIT-CC-02-28, May 2002

Interclass Testing of Object Oriented Software

Vincenzo Martena Alessandro Orso Mauro Pezze
Politecnico di Milano Georgia Institute of Technology  Universita degli Studi di Milano
Dip. di Elettronica e College of Computing Bicocca

Informazione 801 Atlantic Drive DISCo
P.zza L. da Vinci, 32 Atlanta, GA 30332 (USA) Via B. degli Arcimboldi, 8
1-20133 Milano (Italy) orso@cc.gatech.edu 1-20126 Milano (Italy)
martena@elet.polimi.it pezze@disco.unimib.it
Abstract

The characteristics of object-oriented software affect type and relevance of faults. In particular, the
state of the objects may cause faults that cannot be easily revealed with traditional testing techniques.
This paper proposes a new technique for interclass testing, that is, the problem of deriving test cases for
suitably exercising interactions among clusters of classes. The proposed technique uses data-flow analysis
for deriving a suitable set of test case specifications for interclass testing. The paper then shows how to
automatically generate feasible test cases that satisfy the derived specifications using symbolic execution
and automated deduction. Finally, the paper demonstrates the effectiveness of the proposed technique
by deriving test cases for a microscope controller developed for the European Space Laboratory of the
Columbus Orbital Facility.

1 Introduction

The object-oriented paradigm is successfully applied in many software projects, and the use of object-oriented
languages is increasingly widespread. Object-oriented technologies can reduce or eliminate some problems
typical of procedural software, but may introduce new problems that can result in classes of faults hardly
addressable with traditional testing techniques [2, 28]. In particular, state-dependent faults tend to occur
more frequently in object-oriented software than in procedural software; almost all objects have an associated
state, and the behavior of methods invoked on an object depends in general on the object’s state. Such faults
can be very difficult to reveal because they cause failures only when the objects are exercised in particular
states.

The problem of revealing state-dependent faults in object-oriented software is extremely relevant and
has been tackled in several papers. Most of the papers that address this problem propose functional testing
techniques to derive test cases. In particular, several techniques are based on the generation of test cases
from either formal specifications [9, 10, 34, 35], or from UML diagrams [1, 16, 23]. Although functional
testing is fundamental in the dynamic verification process, there is general agreement on the fact that it
must be complemented with structural techniques to achieve an adequate testing level [12].

Structural testing for object-oriented software has not been widely investigated yet. Some work investi-
gates mutation-based techniques [19]. Other research focuses on the combination of functional and structural
testing, but does not tackle the problem of generating structural-based test cases [6, 18]. Other work focuses
on algorithmic aspects of data-flow analysis, thus building the basis for test case generation [14, 32]. Only a
few studies address the problem of test case generation for revealing state-based faults, but they are limited
to intraclass testing [5, 21].

In this paper, we extend our previous results in the automatic generation of test cases for single classes [5]
to address the problem of interclass testing. In particular, we propose a technique to incrementally generate
test cases starting from simple classes (i.e., classes with scalar instance variables only) and then moving to
more complex classes (i.e., classes whose instance variables are objects or references to objects).



The technique lets us generate test cases for a cluster of classes and is composed of two main phases. In
the first phase, we generate test case specifications, given as pairs of methods. The first method of each pair
modifies the state of the object, whereas the second method accesses the modified state. During this phase,
we first order the classes in the cluster based on the relations of use and containment among them. We then
incrementally perform data-flow analysis on the classes according to the identified order. Definitions and
uses of instance variables in the classes with simple state are computed first. Such data-flow information is
then used to analyze classes with complex state, for which the simple notion of definitions and uses of scalar
variables is generalized into the notion of inspectors and modifiers’. This phase automatically applies to
object oriented code without specific limitations.

The second phase generates feasible test cases that satisfy the specifications produced in the first phase.
We first compute pre- and post-conditions of paths within single methods, using symbolic execution. We
then chain such conditions to build feasible sequences of method invocations that exercise inspect/modify
pairs along def-clear paths. This second phase can be applied automatically to object oriented programs
that satisfy some limitations discussed in Section 6. The set of programs that can be automatically analyzed
for generating test cases with our approach includes most software used for safety critical applications, such
as the example illustrated in Section 5. If such limitations are not satisfied, the user must supply the
information that cannot be automatically computed.

The paper presents the background work on intraclass testing in Section 2. In Section 3, we detail our
technique for interclass testing. Experimental evaluation of the technique is presented both in Section 4,
which describes the prototype used for the experiments, and in Section 5, which describes the successful
application of the technique to a microscope controller developed for the Columbus Orbital Facility. Limits
and applicability of the proposed technique are discussed in Section 6. Section 7 overviews related work.
Section 8 summarizes the results and indicates ongoing research.

2 Background

In previous work, we presented a technique for intraclass testing [5] that allows for generating test cases
for single classes. In this section, we present the essential information required to understand the technique
proposed in this paper for interclass testing. The technique is based on the idea that the execution of a method
is affected by the instance variables used by the method, and thus by the methods that determine the values
of such variables. Therefore, we identify pairs of methods that define and use the same instance variable
and then try to select a feasible sequence of method invocations that contains the identified definition and
use in the correct order. The identified sequences represent the test cases for the target class. The technique
consists of three main steps:

Data flow analysis. This phase computes def-use association, that is, ordered pairs of statements in which
the first statement defines and the second statement uses the same instance variable. The def-use association
are identified with data-flow analysis of the whole class, focusing on instance variables only.

Symbolic execution. This phase computes conditions related to path executions and variable definitions.
For every path within each method, we identify the conditions associated with the execution of that path,
the relationship between input and output values of the method with respect to that path, and the set of
variables defined along the path. This information is obtained by applying well-tried symbolic execution
techniques to the method’s code [8]. Cycles are treated by either fixing an upper bound to the number of
loop iterations or adding suitable invariants.

Automated deduction. This phase produces complete sequences of method invocations that exercise the
def-use association identified during the first phase. Such sequences are incrementally built by applying
automated deduction techniques to method preconditions and postconditions that are output by the second
phase.

This technique is useful for unit testing of relatively simple classes (i.e., classes whose member attributes
are scalar variables only). Although the analysis of simple classes is fundamental for generating test cases for
object-oriented software, it does not apply directly to complex classes, that is, classes that contain instances

L According to the traditional object-oriented terminology [24], a method is classified as a modifier if it changes the value of
one or more instance variables of the class it belongs to; and a method is classified as an inspector if it accesses the value of
one or more instance variables of the class it belongs to.



of or references to other classes. In the next section, we show how to extend this technique to interclass
testing.

3 Interclass Testing

Interclass testing is the testing of a set of classes composing a system or subsystem, usually performed
during integration. Typically, such classes are not stand-alone entities, but mutually cooperate in several
ways. These relationships among classes are a fundamental characteristic of object-oriented systems and
define the nature of the interactions among objects at runtime. Different classifications exist of interclass
relationships [3, 24]. In this paper, we are interested in relations of aggregation and use. An aggregation
relation holds between two classes A and B when an object of type A can include one or more objects of
type B.2 In such a case, the state of an object of type A depends on the state of the object(s) of type B it
contains. A wuse relation holds between two classes A and B when one or more methods of A have at least
a local variable or a parameter of type B.

The technique presented in this paper generates sequences of calls for a set of objects composing a
subsystem. The generated sequences cover pairs of methods that modify and use the state of the same
object. By doing so, the sequences exercise the objects in the subsystem in different states, and can reveal
errors that occur only when an object of a class is in particular states.

To be able to extend our intraclass test-generation technique to the interclass case, we must account for
the two relationships between objects mentioned above: aggregation and use. In particular, we must (1)
extend the concept of def-use association to the case of variables that are not scalar entities, but objects, and
(2) extend the intraclass data-flow analysis to be able to incrementally analyze a set of classes by reusing
summarized information for each class. The technique first automatically produces test case specifications
and then generates feasible test cases for the produced specifications.

3.1 Generating Test Case Specifications

The test case specifications for interclass testing produced with our technique are described as pairs of
methods. The first method modifies the state of the object, whereas the second method accesses the modified
state. Pairs of methods are generated by (1) identifying an order of classes that allows for incremental data
flow analysis, and (2) performing incremental data-flow analysis that allows for dealing with classes whose
state consists of instances of other classes.

Class Ordering. To perform incremental data-flow analysis at the interclass level, we must be able to
analyze a class at a time and summarize the analysis results for each class. To this end, we must analyze
classes that are used by or contained in other classes before the using or containing classes. Therefore, the
first step that we perform in our interclass analysis is the identification of an analysis order based on the
aggregation and use relationships among classes.

The two binary relationships over the set of classes C' define a directed graph whose nodes are the classes
in the set, and whose edges represent use and/or aggregation relations. In the following, we safely assume
the graph to be connected. A non-connected graph would imply the presence of independent subsystems,
which could be analyzed separately.

In well-designed object-oriented software, the structure and the dependencies should result in a DAG [4].
This is confirmed by the cases that we analyzed so far. If the graph is a DAG, there exists a partial order
on the elements of the graph, and it is possible to define a topological total order over such elements. The
analysis of classes according to this total order lets us analyze a used class before the classes that use it and
a contained class before the classes that contain it. If the graph contains cycles, they can be eliminated by
deleting one or more edges and manually providing the information that is normally computed automatically
from the edges, as described in the next subsections.

Because of the nature of the use and aggregation relation, the first classes in the total ordering, which
correspond to leaves in the graph, are classes whose state does not depend on other classes (i.e., classes
whose member variables are all scalar attributes). Therefore, we can apply our intraclass technique to such

2This relation is also known as has-a or part-of relation.



classes. After analyzing this first set of classes, we summarize the analysis results and use them to continue
the analysis on the following classes.

Interclass Data-Flow Analysis. A def-use association is a triple (d,u,v) where d and u are statements
and v is a variable, d defines v, u uses v, and there exists a path from d to u along which v is not redefined (a
def-clear paths). Traditional data-flow techniques for procedural programs have been extended by Harrold
and Rothermel to handle object-oriented code [14]. To perform intra-class testing, we apply this technique
to compute a subset of the def-use association for a class [5]. The subset that we are interested in computing
are all the def-use associations involving scalar instance variables of a class.

To be able to perform interclass data-flow analysis, we need to extend the data-flow technique presented
by Harrold and Rothermel [14].

For a scalar variable, definitions and uses are syntactically identifiable in a straightforward way: any
assignment to the variable is a definition, and any access to its value is a use. For an object, however, a
definition is not necessarily a simple assignment. Consider the following example:

class Foo { class Bar {
public: private:
int x; Foo foo;
1. wvoid incX () { public:
2. xX++; void m() {
5. foo .x=0;
3. int getX () { 6. foo.ineX ();
4. return x; 7. print (foo.getX ());
} }
}; }s

We can easily identify a definition of object foo at statement 5, but we cannot assess the effect of
statement 6. Statement 6 may contain a definition of foo, a use of foo, or both, depending on the semantic
of method Foo: :incX. Therefore, the analysis of statement 6 requires a prior analysis of class Foo. The same
consideration holds for statement 7. On the other hand, after analyzing class Foo, we are able to classify
its methods as methods that define, use, or both use and define Foo’s attributes (i.e., methods modifying,
inspecting, or both inspecting and modifying Foo’s state). For this example, we classify Foo::incX() as a
method that inspects and modifies Foo’s state, and Foo: :getX() as a method that inspects Foo’s state. By
using this summary information, we can correctly identify a use and a definition of foo at statement 6 and
a use of foo at statement 7.

In general, we say that an object is defined (resp., used) at a statement when any of its member variables
is defined (resp., used) at that statement. This definition is recursive because a member variable can in turn
be an object. Therefore, before analyzing a class, C' we need summary information for the set S of classes
that C' is directly or indirectly depending on. As an example, consider the following slightly different version
of classes Foo and Bar:

class Complex; class Bar {

private:
class Foo { Foo foo;
public: bublic:
Complex x; Void'm() {
1. wvoid incX () { e .
2. x.incRe (); 3. foo.incX ();
b }

s

To be able to analyze class Bar, we need summary information for class Foo (direct dependence) and for
class Complex (indirect dependence through Foo).



In this context, computing summary information for a class means classifying the methods of the class as
modifier, inspector, or inspector-modifier methods, according to the effect of the method executions on the
state of the class. A method is a modifier method if its invocation causes a modification on the state of the
class, that is, an assignment to a member variable of the class or the invocation of a modifier method on a
member variable. A method is an inspector method if its invocation causes the use of the value of a member
variable or the invocation of an inspector method on a member variable. A method is an inspector-modifier
method if it is both an inspector method and a modifier method. Methods independent from the state of the
class (i.e., methods that neither modify nor use instance variables) are ignored in the incremental analysis.

Therefore, to analyze a class C'; we need to compute summary information for the closure of both the
aggregation and use relations starting from C. The total ordering of the classes in the system, computed in
the previous step, lets us perform such computation in an efficient way by always analyzing a class before
the classes that depend on it.

By using summary information, we are able to perform interclass data-flow analysis incrementally. At
each step of data-flow analysis, we consider a single class. Interactions with other classes are implicitly taken
into account by using summary information that identifies inspector and modifier methods.

So far, we considered methods comprising a single path. If a method contains more than one execution
path, the method can be a modifier along some paths, an inspector along some other paths, an inspector-
modifier along yet other paths, and cannot affect at all the state of the object along different paths. If we
lose the distinction among the different paths when computing the summary information, we can generate
incorrect results. For example, we can generate a sequence of calls that contains a modifier and an inspector
such that neither the modifier actually traverses any definition nor the inspector traverses any use.

To consider the different characteristics of paths within a method, we can simply consider each path in
a method as if it were a different method of the class, and thus apply data-flow analysis as described above
to each path. This approach works well for small- and mid-sized applications, but may be impractical for
large and complex applications, since at every step we must consider all combinations of paths identified at
the former steps.

A similar problem occurs also for traditional data-flow testing techniques: in large programs the number
of combinations of definitions and uses can grow very large. Traditional data-flow testing techniques overcome
this problem by introducing different testing criteria that require to cover different subsets of combinations
of definitions and uses. In this way, it is possible to contain the number of test cases to be generated at the
price of performing a less effective test [12].

In our approach, we adopt an analogous solution. When the size of the system does not allow to consider
each path independently, at each step we select only one path representative of each data-flow fact occurring
in the method.

The reduction can be selectively applied during the analysis, and involves user intervention. When the
number of combinations of paths considered grows bigger than a given threshold, the user can backtrack the
analysis and decide what paths to discard, based on his or her knowledge and depending on their importance.
The reduction implies that the definitions and uses occurring in an ignored path are tested only up to the
point where the path is discarded from the analysis. This incremental abstraction of details is a common
practice in testing of large and complex systems.

3.2 Generating Test Cases

The def-use associations produced by data-flow analysis identify a set of test cases for interclass testing.
A test case corresponding to a def-use association is a sequence of method invocations that starts with a
constructor and includes the invocation of both methods occurring in the def-use associations through a
def-clear path. We attempt to generate test cases corresponding to def-use associations by first identifying
pre- and post-conditions for the executions of paths within single methods using symbolic execution, and
then matching the generated conditions using automated deduction techniques.

Interclass Symbolic Ezxecution. As a result of the previous phase, we get for each class a set of pairs of
methods that define and use the state of a given object. For each pair, the first method contains a definition
of the state of the object it belongs to. Such definition can be either direct or indirect, through a call to
a modifier method; in both cases, we simply refer to it as the definition in the following. Analogously, the
second method contains a use of the state of the object, which can be either direct or indirect, through a



call to an inspector method; in both cases, we simply refer to it as the use in the following.

Symbolic execution computes the conditions leading to the execution of the paths within each method.
We limit our attention to paths that contain the definitions and the uses identified in the previous step.
Symbolic execution is performed on each method of each class, one method at a time. Symbolic execution
lets us compute, for the relevant paths within each method, (1) the conditions associated with the execution
of the path, and (2) the relationship between input and output values of the method with respect to the
path.

Classes are analyzed in the order identified in the first step, that is, from classes with simple state to
classes with state that includes objects of other classes. Methods within a class are analyzed in the order
defined by the intraclass call graph [15], starting from leaf methods. In this way, methods are symbolically
executed before their callers. Thus, a call can be executed symbolically by checking the validity of the pre-
condition of the called method in the current symbolic state. If the pre-condition is satisfied, we substitute
the symbolic values occurring in the current symbolic state with the symbolic values of the corresponding
variables after the execution of the called method, according to the method’s post-conditions. The path
condition is also updated with the pre-conditions of the called method. If the method contains several
paths, they must be considered with the same strategy illustrated in the previous subsection, that is, each
method call shall be considered a call to each different path individually. In the presence of direct or indirect
recursion, the call graph contains cycles. In this case, the involved methods cannot be executed before their
callers, and we perform symbolic execution by unfolding the calls up to a given threshold.

Symbolic execution may fail to compute execution conditions for a path because of the presence of
unsolvable constraints or unbounded loops. However, we apply symbolic execution to single methods, which
are usually procedures with a simple control structure [32]. We also bind the number of executions of
loops, so to avoid potentially unbounded computations. Moreover, the failure of symbolic execution on a
method does not affect the possibility of analyzing other methods, and can be overcome by adding suitable
information, such as loop invariants [7].

Symbolic execution can deal with simple usages of pointers (e.g., in parameter passing), but cannot
handle unconstrained dynamic allocation of memory. For generating test cases in the presence of pointers,
programs must be suitably annotated with assertions, as illustrated in Section 6.

Test Case Generation. The last step of our technique consists in the generation of sequences of calls to
methods that exercise each def-use association.3

For the sake of clarity, in the rest of this section, we use the following terminology: wu is a statement
containing a use of variable v; d is a statement containing a definition of variable v; m, is the method
containing u; mgy is the method containing d; PCU is the path-condition of m,;* a def-free method with
respect to a variable v is a method whose execution does not cause a redefinition of v; finally, a def-free path
with respect to a variable v is a sequence of def-free methods with respect to v.

Given a def-use association (d,u,v) for a class C, a sequence of method invocations that exercise the
association must satisfy the following properties:

e Begin with the invocation of a constructor of class C. (The constructor instantiates C' and all classes
that define directly or indirectly the state of C.)

e Contain an invocation of method mg4 that causes the execution of statement d. (Such statement can
be a simple assignment or an invocation of either a modifier or an inspector-modifier method.)

e Contain an invocation of method m,, that causes the execution of statement u. (Like statement d, such
statement can be a direct use or an invocation of either an inspector or an inspector-modifier method.)

e The sequence of invocations between mg and m, must be a def-clear path with respect to variable
v, that is, it cannot cause the execution of any statement that defines, either directly or indirectly,
variable v.

31t is worth noting that, by construction, def-use associations identified in Step 2 consist of definitions and uses within the
same class.

4For the sake of clarity, we present the test case generation phase assuming that each method contains exactly one path.
The case of methods containing more paths can be addressed by treating each path as a different method and by possibly
considering only subsets of paths, if the number of paths becomes unmanageable.



We generate such a method sequence in reverse order, starting from m,, and applying a set of backward-
chained deductions. In brief, our initial goal is condition PCU. If there is a method whose postconditions
imply PCU, we add the method to the front of the sequence. If no such method is found, we look for a
method whose postconditions do not contradict PCU, and add it to the front of the sequence—we refer to
the added method as my hereafter. To compute the new goal, we (1) simplify the current condition by
eliminating those clauses (if any) satisfied by my’s postconditions, (2) perform the union of the simplified
condition and my’s preconditions, and (3) further simplify the resulting condition, if possible. Because, at
each chaining step, there can be multiple suitable mj methods, the deductive process for a given def-use
association can be represented as a tree. Each tree node corresponds to a pair consisting of a method and
a condition (a predicate on the instance variables of the class and on the parameters of the method). The
root of the tree corresponds to method m, and condition PCU.

The first objective of the deductive process is to add a node corresponding to mg to the tree. The second
objective is to add a class constructor to the subtree rooted at my. The deductive process ends when this
second objective is satisfied. A constraint on the deductive process is that only def-free methods with respect
to v can be added to the tree before the first objective is met (i.e., the path between mg4 and m, must be a
def-clear path).

The deductive process may end for one of three reasons: (1) both the above objectives are met, that is,
the search for a feasible method sequence is completed successfully; (2) the tree cannot be further expanded,
which means that the def-use association is infeasible; or (3) the depth of the tree reaches a given threshold
before a feasible sequence is found.

To improve the efficiency of the deductive process, we use several heuristics. First, we reduce the
deduction-tree size by pruning subtrees whose roots have conditions that imply a predecessor’s condition.
This is achieved by avoiding further exploration of such roots, unless they correspond to either method my
or a constructor, whose inclusion in the tree represents an objective of the deduction process. Second, we
insert a node corresponding to the method responsible for the definition (i.e., mg4) as soon as possible and
as a unique successor. Also, when exploring the successors of mg, we insert a constructor in the tree as soon
as possible.

Our technique for the construction of the tree is based on the use of automated deduction. Even if
automated deduction techniques, such as constraint solving, may fail when coping with complex expressions,
nowadays there are several efficient constraint solvers that can efficiently handle large sets of expressions
(e.g., [29, 30]). In addition, failures of the constraint solver can be overcome by requiring user intervention.

4 Tool Support

In this section, we outline the architecture of a tool for the automatic generation of test cases based on the
technique presented in the paper. We also describe a prototype that has been implemented to experimentally
evaluate the technique.

Figure 1 shows the main components of the tool. Each component performs one of the main steps of
the method. A Class Analyzer parses the source code, generates the interclass control-flow graph, and
computes the method and class ordering to be used by the data-flow analyzer and the symbolic executor for
their incremental analysis. At this stage, the analysis may require additional user-provided information for
eliminating cycles from the graph.

The Data-Flow Analyzer computes def-use associations in the classes under test. The analysis is per-
formed starting from simple to more complex classes, according to the order identified by the Class Analyzer.

Externally-provided data-flow information may be used for classes that have been already analyzed, such
as external code belonging to previously-analyzed packages, or that we cannot analyze, such as pre-compiled
libraries.

The Symbolic Executor computes the execution conditions of paths containing definitions or uses. Sym-
bolic execution of the methods in the classes composing the system is performed following the order computed
by the Class Analyzer. Like for the Data-Flow Analyzer, externally-provided information may be used for
classes that have been already analyzed or for classes whose source code is not available.

The Sequence Generator is responsible for computing sequences of method invocations that exercise def-
use associations within classes. To this end, the generator exploits the information provided by the Data-Flow
Analyzer (i.e., the def-use associations) and by the Symbolic Executor (i.e., the execution conditions for paths



within methods). Both the Symbolic Executor and the Sequence Generator rely on a constraint solver for
the simplification of expressions.
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Figure 1: Software architecture for the test-case generator.

Based on above architecture, we implemented a prototype test-case generator for C++ code. The grey
boxes in Figure 1 provide the details of the implementation of the corresponding architectural elements
(white boxes). The Class Analyzer implementation relies on the EDG front-end compiler [11], which handle
the complete C++ language.

The Data-Flow Analyzer is based on a polynomial algorithm specialized for the computation of def-use
association involving class’s members [27]. The current implementation of the analyzer handles only C++
code that does not use exception-handling constructs, polymorphic calls, and pointers.

The Symbolic Executor implementation is based on SAVE, a symbolic executor for C [8]. To be able to
use SAVE, we translate single C++ methods in C code.

Both the Sequence Generator and the Symbolic Executor use the Constraint Solver based on the Sicstus
prolog libraries for simplification [30].

5 Empirical Study

In this section, we illustrate a case study performed on an application provided by our industrial partners to
assess the applicability of our approach. We used the prototype described in Section 4 to generate test cases
for a microscope controller developed for the European Space Laboratory of the Columbus Orbital Facility
(hereafter MSController).

MSController is part of the on-board system that controls (1) the motors responsible for the movement
along the three axes of the microscope’s slide support, (2) the automatic focus of the microscope, and (3) the
selection of different slides and different lenses. Table 1 summarizes the main characteristics of the analyzed



code. The numbers of lines of code shown in the table do not include comments. Classes Motor and Arm
contain cycles and thus an unbounded number of paths. The number of paths indicated in Table 1 refers to
the bounded number of paths automatically analyzed by the tool, which considers up to two iterations of
each loop. The complete code of MSController, modified to account for the limitations of the prototype, is
provided in the Appendix.

Class Lines Methods | Paths | Included
of code Objects

Coord 67 6 6 0

Slide 37 3 3 0

Lens 47 4 4 0

Motor 85 5 14 0

Arm 81 5 14 0

SlideSelector | 58 3 23 1

MScope 121 5 89 7

Total | 496 | 31 ] 139 |

Table 1: Characteristics of the analyzed C++ code

We performed the study by (1) seeding state-dependent faults in the program (Section 5.1), (2) using our
tool for generating test cases for the system, and (3) assessing the effectiveness of the generated test cases
in revealing the seeded faults (Section 5.2).

5.1 Faults Seeding

We inserted faults by randomly picking a set of definitions and uses of instance variables and modifying
them. The seeded faults affect both direct and indirect definitions and uses of instance variables, and are
distributed in four classes—Motor, Arm, SlideSelector and MScope. We selected those four classes for the
seeding because they are the most complex classes in the system. Table 2 shows the characteristics of the
seeded faults.

Class | Line | Type of Fault

Arm 65 instance variable not updated (directly)

Motor 39 instance variable not updated (directly)

SlideSelector | 37 erroneous update of instance variable

SlideSelector | 48 instance variable not updated (indirectly,
through method invocation)

MScope 42 instance variable not checked

MScope 55 erroneous value in parameter passing

MScope 85 instance variable not updated (directly)

MScope 109 | instance variable not updated (indirectly,
through method invocation)

MScope 111 | erroneous update of instance variable

Table 2: characteristics of seeded faults

As shown in the table, there are five types of faults. The first three types of faults (erroneous update of
instance variable and instance variable not updated—directly and indirectly) are representative of cases in
which the state is not suitably modified. We seeded those types of faults because our technique is mostly
targeted at identifying errors that result in an inconsistent state of the software.

The fourth type of faults, erroneous value in parameter passing, may result in errors that affect the state
in an indirect way. Also the fifth type of faults, instance variable not checked, which modifies the control
flow within the program, affect the state of the application only indirectly. We inserted these kinds of error
to check whether our technique can help in identifying also errors that are not directly related to the state.



5.2 Sequence Generation

The interclass control-flow graph produced by the Class Analyzer does not contain cycles. The Class Analyzer
computed the following class order for the analysis: Coord, Slide, Lens, Motor, Arm, SlideSelector, and
MScope.
After the first run of the tool, the test cases generated were able to reveal six of the nine seeded errors.
The error at line 65 of class Arm is revealed by the following test case:
Arm () ;
reset ();
isMoving ();
with execution condition true. This sequence of method invocations reveals that, at the end of the execution,
the motor of the mechanical arm is still moving. This behavior is incorrect because, after the execution of
method reset (), the mechanical arm should be stopped.
A similar error, at line 39 of class Motor, is revealed by the following sequence of method invocations:
Motor ();
goForward (phase );
goBackward (phase);

with execution condition phase = 1. The fact that the variable moving is not updated in method goForward ()
causes the skipping of the body of method goBackward (), due to the initial check performed on that variable.
As a consequence, the motor incorrectly remains at position 1, instead of returning at position 0.
The error at line 37 of class SlideSelector is revealed by the following sequence of method invocations:
SlideSelector ();
getSlide (position );
puSlide (position);
with execution condition true. It is worth noting that the other error in class SlideSelector, at line 48,
cannot be revealed—the body of method getSlide() is never executed because of the error at line 37.
The error at line 55 of class MScope is revealed by the following sequence:
MScope () ;
MoveSlideTo (x1,yl,z1);
MoveSlideTo (x0,y0,z0);

with execution condition (1 = 2) A (0 = 1). This sequence reveals the incorrect behavior of method
MoveSlideTo(), which moves the mechanical arm in the wrong direction along the X axis in case of a
negative delta between the new and the old position.
The error in line 85 of class MScope is revealed by the sequence:
MScope () ;
autoFocus ();
autoFocus ();

with execution condition ¢rue. The second invocation of method autoFocus() causes an additional move-
ment of the microscope objective, whereas it should have no effects.

The error at line 111 in class MScope is revealed by the sequence:

MScope () ;

changeSlidePosition (positionl );

changeSlidePosition (position0 );
with execution condition position0 < 0 A positionl = 1. This sequence results in a wrong behavior of
SlideSelector, which puts a new slide on the microscope without removing the previous slide.

No other errors were revealed by the test cases generated during the first run of the tool. Therefore, we
fixed the identified errors and reran the tool. The second run of the tool produced test cases that revealed
two of the three remaining errors.

The error at line 48 of class SlideSelector is revealed by the same sequence that revealed the error at

line 37:
SlideSelector ();

getSlide (position );
putSlide (position );

10



with execution condition true. In this case, the removal of the previous error reveals the incorrect behavior
in the body of putSlide()—the mechanical arm begins its movement from a wrong position and the slide
is thus misplaced.
Analogously, the error at line 109 of class MScope is revealed by the same sequence that revealed the

error at line 111:

MScope () ;

changeSlide (positionl);

changeSlide (position0);

with execution condition position0 < 0 A positionl = 1. The second invocation of method changeSlide
results in a misplacement of the first slide because the position of the slide on the microscope has not been
updated.

The last error, at line 42 of class MScope, is not revealed because the check of the instance variable
becomes redundant when the other methods behave correctly.

Although this study is performed considering one system and only a small number of (seeded) faults, it
provides some insights on the technique and its applicability. A first finding is that, not surprisingly, the
most effective way of applying the technique is to target the leaf classes in the call graph first and then
incrementally consider classes at higher levels. At each level, the process is to run the tool on the classes
in that level, remove possibly revealed faults, and reiterate until no more errors are revealed. In this way,
we limit the cost of the technique by avoiding to analyze methods whose errors may depend on faults in
methods that are lower in the call hierarchy. It is also worth noting that, for the system considered, a single
run of the tool generates a set of test cases able of revealing all the identified faults. In fact, the two errors in
classes SlideSelector and MScope that are not revealed in the first test run would be revealed by a second
run of the same test cases, after the elimination of the revealed faults—without requiring the generation of
additional test cases.

After the removal of all the seeded faults, we have performed an additional run of the tool on the
(supposedly) correct code. The Data-Flow Analyzer automatically computed 471 def-use associations and
the Symbolic Executor successfully produced the execution conditions for all paths without requiring manual
inputs. The Sequence Generator automatically produced 128 test cases.

Table 3 lists, for each class, the number of def-use associations generated by the Data-Flow Analyzer,
the number of associations covered by the generated test cases, and the execution times of the prototype.
For the study, we used a system running Linux (kernel 2.4.18) on an 850 MHz Athlon with 512 megabytes
of RAM.

Class def use covered execution
associations | def use ass. | time

Coord 18 18 < 1 sec
Slide 2 2 < 1 sec
Lens 4 4 < 1 sec
Motor 50 37 43 sec
Arm 40 29 82 sec
SlideSelector | 240 109 1630 sec
MScope 627 257 4536 sec
Total | 981 | 456 | 6294 sec

Table 3: Tool Execution Statistics

The considerable number of def-use associations is due to the combinatorial effect of combining paths
while traversing the aggregation hierarchy, as discussed in Section 3. The combinatorial effect is also re-
sponsible for the increasing percentage of infeasible def-use associations because the def-use associations
of higher-level classes include also combinations of infeasible paths within lower-level classes. Obviously,
the combinatorial effect could be significantly reduced by discarding, through user intervention, a subset of
paths while traversing the aggregation hierarchy. The execution times of the Data-Flow Analyzer and of
the Symbolic Executor are almost negligible. Most of the computation time is spent in the constraint solver
used by the Sequence Generator.
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6 Limitations and Applicability of the Technique

In the former sections, we indicated some limitations for the applicability of our technique. In this section,
we summarize such limitations. We first discuss a set of object-oriented features that are not handled by
our technique, but that may be handled orthogonally using different approaches. We then discuss the main
limitations of the technique proposed in this paper. Finally, we briefly recall the current limitations of the
prototype that constraint the experimental evaluation of the technique.

Object-Oriented Features. Object-oriented programs contain several features that require specific at-
tention during testing: the hidden state of objects, inheritance, polymorphism and dynamic binding, and
exception handling. The technique proposed in this paper mostly accounts for problems related to the ob-
jects’ state, and does not specifically address problems related to other object-oriented features. (However,
the presence of such features does not prevent the applicability of our technique.) Therefore, the test cases
generated with our approach must be complemented with test cases generated using approaches specifically
designed for addressing different object-oriented features. The generation of different test suites for dealing
with different characteristics of the application under test is common good practice, and allows for a useful
and sometime needed separation of concerns.

Carefully considering inheritance allows for reducing the testing effort by avoiding re-testing methods
already tested in the ancestor classes. Ignoring inheritance by flattening class hierarchies simply results in
the generation of redundant test cases. Specific techniques, such as the testing history approach presented by
Harrold, McGregor, and Fitzpatrich”, ([13]), can be used to reduce the number of test cases to be generated.

Testing object-oriented programs in presence of polymorphism and dynamic binding requires considering
different bindings for each polimorphic call. Such bindings can be computed with specialized techniques
(e.g., the technique proposed by Orso and Pezzé in Reference [26]. The presence of information about which
bindings to test could be used to generate additional test-case specifications for our technique.

Exception-handling constructs complicate testing due to the presence of implicit transfers of control that
occur when exceptions are raised. Again, there are testing techniques that are specifically designed to address
exception handling (e.g., the technique proposed by Sinha and Harrold in Reference [31]) and that could be
used in conjunction with our technique.

Limitations of the Technique. Our technique comprises two main phases: generation of test-case spec-
ifications through data-flow analysis and generation of feasible test cases through symbolic execution and
automated deduction.

Test-case specifications can be automatically generated for almost any object-oriented program. To
apply the technique, we need the source code of the program, and we require that the aggregation and use
relationships among classes do not form cycles. The availability of the source code is a common requirement of
structural testing approaches, but excludes the possibility of handling pre-compiled libraries. The presence of
such libraries can be overcome by indicating inspector and modifier methods in the libraries and by providing
pre- and post-conditions for methods’ execution. Absence of cycles in aggregation and use relationships is
considered good practice in the design of object-oriented software [4] and cycles are in fact not present in
several object-oriented programs that we examined. Moreover, even in the presence of cycles, it is always
possible to break such cycles by eliminating one or more aggregation or use relation (although the breaking
requires the involvement of the user).

The presence of pointers does not affect the applicability of our technique. The only requirement for our
data-flow analysis in the presence of pointers is the availability of some kind of alias analysis, such as the
one provided by SUIF [33]. The presence of methods with multiple or even virtually infinite paths is not
a problem for data-flow analysis. However, as discussed in Section 3, incrementally reducing the number of
paths can largely reduce the computations costs (and can be done with little overhead by expert users).

Test case generation from test case specifications is based on symbolic execution and automated deduction
techniques. Despite the presence of powerful tools (e.g., [8, 30]), such techniques have some intrinsic limita-
tions. Symbolic execution can handle all static data structures, including arrays [7], but cannot deal with
unconstrained dynamic memory allocation. Therefore, although our technique can automatically generate
test-case specifications for almost all object-oriented programs, it can automatically generate corresponding
test cases only for programs that do not make use of unconstrained dynamic memory allocation. Safety
critical applications belong to this class of programs. In fact, we successfully applied our tool for generating
test cases for safety critical applications, such as the one presented in Section 5.
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Moreover, the presence of dynamic memory allocation can be partially overcome by manually inserting
pre- and post-conditions for methods that make use of such feature. For example, method pop of a class
stack that uses a linked list can be annotated with a pre-condition that requires the stack to be empty
and a post-condition that indicates the modification in the number of elements in the stack. A good use of
encapsulation can greatly simplify the job of annotating programs. However, the presence of unconstrained
use of dynamic memory may greatly reduce the applicability of our technique for automatically generating
test cases. In these cases, our technique will only generate test-case specifications and, possibly, a subset of
test cases for those parts of the program that do not use dynamic memory.

Loops do not constitute a problem for the application of our technique because the technique does not
need to consider all possible paths. I is always possible to limit the number of paths by constraining the
number of loop iterations or by manually adding invariants [7].

Undecidability of automated deduction my affect the generation of test cases. However, the tools currently
available on the market can handle more and more complex expression give us confidence in the applicability
of the technique for a meaningful set of systems.

Limitations of the Prototype. The prototype described in Section 4 and used in our experiments on C++
programs has some additional limitations that constraint its applicability.

The data-flow analyzer does not accept code that contains inheritance, polymorphism, exception-handling
constructs and goto’s. Although, conceptually, none of these features constitute a problem, such constructs
must currently be preliminary eliminated to be able to run the tool due to limitations of the implementation.
Similarly, we do not perform alias analysis yet and information about aliases must be pre-computed and
provided to the tool.

The symbolic executor has not been extended to treat arrays yet, and requires all methods using pointers
to be suitably annotated. Annotations are not required for a limited use of pointers, such as in parameter
passing. The Sicstus simplifier [30] used for automated deduction is programmed to handle integers and
floating point numbers only.

7 Related Work

The problem of testing object-oriented software has been addressed by many authors. However, only a few
authors address the specific problem of test case generation for classes. All the existing techniques generate
sets of message sequences starting from some kind of description of the class under test. Most techniques
generate message sequences from formal or semi-formal class specifications [6, 10, 20, 22, 34].

Our technique is code-based rather than specification-based. To our knowledge, the only other technique
for generating test cases from code was defined by Kung et al. [21]. That technique generates message
sequences for class testing from a state-based model extracted from source code. The intermediate state-
based model is a set of finite state machines, one machine for each instance variable. These state machines
are built through a combination of symbolic execution and deductive techniques. Subsequently, message
sequences are generated through an exhaustive reachability analysis performed by combining the different
state machines.

Analogously to our method, the approach of Kung et al.’s performs well when instance variables are
scalar and when symbolic execution can be completed successfully. However, their technique fails to produce
any useful information when these assumptions do not hold. This is in contrast with our approach, which
always produces information useful to testers. An additional disadvantage of their approach is that it does
not consider possible dependencies among instance variables in the preconditions on method execution. For
instance, if a precondition on the execution of a given path includes even a very simple predicate of the form
(z < y), where  and y are instance variables, their approach fails to take this predicate into account when
constructing method sequences. Finally, Kung et al.s technique is defined only for single classes.

Some authors tackle the issue of class test automation from a different viewpoint, mostly concerned with
the problems related to the generation of scaffolding code [25, 17]. Those approaches start from the tester’s
knowledge of the source code and seek to generate automatically drivers and stubs for the CUT. Because
these techniques are concerned with the automation of the execution of tests, rather than their generation,
they are complementary to the technique presented in this paper.

13



8 Conclusion

We described an approach for the automatic generation of test cases for interclass testing of object-oriented
systems. Our approach seems to be quite powerful in that the test cases that we generate automatically
can detect faults due to the combined effects of method invocations on the objects’ state. An additional
advantage of our technique is that it works in phases of increasing complexity; the analysis of a system
considers the simple classes in the system first and then uses the results to further analyze more complex
classes. Furthermore, by using an incremental approach, we can also account for the possible failure of some
of the analysis phases due to their computational complexity; at every step, the technique can exploit user-
provided information (in the form of summary information) to abstract details of the analyzed classes and
to complete the test-case generation process. Finally, our approach is a generative technique. Consequently,
it does not require code instrumentation to ensure the adequacy of the generated test cases because coverage
is granted by construction.

The applicability of the approach has been initially evaluated by examining a set of C++ application
provided by our industrial partners. Among these applications, we selected a microscope controller developed
for the European Space Laboratory of the Columbus Orbital Facility, and performed a case study. We
successfully generated a set of test cases for the system using our prototype, and the generated test cases
were able to reveal a set of faults seeded in the program.

We are currently working on improving the implemented prototype to reduce some of its limitations and
on identifying additional systems to be used as subjects for experimentation.
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Appendix

Listing 1: Class Lens.

1 #ifndef _LENS_

2 #define _LENS_

3 Fdefine ZoomType unsigned int

4 class Lens

5

6

7 ZoomType zoom;//10 — 100 — 1000
8 unsigned int focusDistance;

9

10 public:

11 Lens ();

12 void setLens (ZoomType zooml,

13 unsigned int focusDistancel );
14 ZoomType getZoomType ();

15 unsigned int getFocusDistance ();
16 };

17 #endif

18

19 #include "Lens.h”

20

21 Lens:: Lens()

22

23 zoom=0;

24 focusDistance=0;

25}

26

27 void Lens::setLens(ZoomType zooml,
28 unsigned int focusDistancel)
29 {

30 zoom = zooml;

31 focusDistance = focusDistancel;
32 }

33

34 ZoomType Lens::getZoomType ()

35 {

36 return zoom;

37}

38

39 unsigned int Lens::getFocusDistance ()
40

41 return focusDistance;

42}
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Listing 2: Class Coord.

#ifndef .COORD_
#define . COORD_
class Coord

{

int x;

int y;
int z;

public:

Coord ();

void moveTo(int x1, int yl, int zl);
void moveBy(int dx, int dy, int dz);
int getX();

int getY ();

int getZ();

}s

#endif

#include ” Coord.h”

Coord :: Coord ()

{

<

}

0;
0;
0;

void Coord::moveTo(int x1, int yl, int zl)

{

<

}

x1;
yl;
zl;

void Coord::moveBy(int dx, int dy, int dz)

{

X += dx;
y +=dy;
z += dz;

}

int Coord::getX()

{

return x;

}

int Coord::getY ()

{

return y;

}

int Coord::getZ()

{

return z;

}
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Listing 3: Class Arm.
#ifndef _ARM_
#define _ARM_

class Arm

{

unsigned int position;
unsigned int moving;

public:
Arm();
void moveToMScope (unsigned int number);
void moveFromMScope (unsigned int number);
void reset ();
unsigned int isMoving ();

IS
#endif
#include ”"Arm.h”

Arm:: Arm()

{
position=0;
moving =0;

}

void Arm:: moveToMScope (unsigned int number)

{
if (moving==0){
moving=1;

while (position<number)
position++;

moving=0;

}
}

void Arm::moveFromMScope (unsigned int number)

{
if (moving==0){
moving=1;

while (position<number)
position++;

moving=0;

}
}

void Arm::reset ()

{
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62
63
64
65
66
67
68
69
70
71
72

}

if (moving==0){
moving=1;

while (position>0)

position——;
// ERROR: motor should be turned off
// moving=0;

}

unsigned int Arm::isMoving ()

{
}

return moving;
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Listing 4: Class Motor.

#ifndef MOTOR.
#define MOTOR_
class Motor
{
unsigned int moving;
unsigned int curPhase;
public:
Motor ();
void goForward (unsigned int phase);
void goBackward (unsigned int phase);
unsigned int isMoving ();
void reset ();
b
#endif
#include ”Motor.h”

Motor : : Motor ()
{
moving = 0;
curPhase =

}

0;

void Motor :: goForward (unsigned int phase)

{
if (moving==0){
unsigned int toPhase = curPhase + phase;

moving = 1;

while (curPhase < toPhase)
curPhase++;

//ERROR: motor should be turned off
//moving = 0;

}

return;

}

void Motor :: goBackward (unsigned int phase)
{
if (moving==0){
unsigned int toPhase = curPhase — phase;

moving = 1;

while (curPhase > toPhase)

curPhase——;
moving = 0;
return;

}
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61
62
63
64
65
66
67
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69
70
71
72
73
74
75
76
7

unsigned int Motor::isMoving ()

{
}

return moving;

void Motor:: reset ()

{

}

if (moving==0){

}

moving=1;

while (curPhase > 0)
curPhase ——;

moving =0;
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Listing 5: Class Slide.
#ifndef _SLIDE_
#define _SLIDE._
class Slide

{
unsigned int number;
public:
Slide ();
void setPosition (unsigned int position);
unsigned int getPosition ();
}i
#endif

#include ” Slide .h”

Slide :: Slide ()
{

}

void Slide::setPosition (unsigned int position)

{
}

unsigned int Slide :: getPosition ()

{
}

number=0;

number=position ;

return number;
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Listing 6: Class SlideSelector.

#ifndef _SLIDE_SELECTOR-
#define _SLIDE_SELECTOR._
#include ”"Arm.h”

class SlideSelector

{

Arm arm;
unsigned int slideOnMicroscope;

public:

SlideSelector ();

void getSlide (unsigned int position);
void putSlide (unsigned int position );

}s
#endif

#include ” SlideSelector.h”

SlideSelector :: SlideSelector ()
{

slideOnMicroscope=0;

}
void SlideSelector :: getSlide (unsigned int position)
{
if (arm.isMoving()==0 && slideOnMicroscope==0)
arm.reset ();
arm . moveToMScope ( position );
// ERROR: slideOnMicroscope erroneously updated (should be 1)
slideOnMicroscope =0;
}
}

void SlideSelector :: putSlide (unsigned int position)

{

if (arm.isMoving()==0 && slideOnMicroscope!=0)

//ERROR: arm should be reset
//arm.reset ();

arm . moveFromMScope ( position );
slideOnMicroscope =0;
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Listing 7: Class MScope.

#include ” Coord.h”
#include ” Slide .h”
#include ”Lens.h”

#include ”Motor.h”
#include ” SlideSelector.h”

class MScope

{

Coord curPos;

unsigned int curFocus;
Slide slide;

unsigned int slideLocked;

Lens

curLens;

Motor motorx;
Motor motory;
Motor motorFocus;

SlideSelector selector;
public:
MScope () ;
void moveSlideTo (Coord newMSPos);

}s

void
void
void

changeLens (unsigned int lens);
autoFocus ();
changeSlide (unsigned int position);

#include ”MScope.h”

MScope : : MScope ()

}

slideLocked =0;
curFocus = 3;
curLens.setLens (10,3);

void MScope:: moveSlideTo (Coord newMSPos)

{

//ERROR: slideLocked should be checked
//ERROR: before motor movement

//if
if

(slideLocked!=0)

((motorx.isMoving()==0) &&
(motory.isMoving()==0) &&
(motorFocus.isMoving ()==0))

int delta = newMSPos.getX()—curPos.getX ();

if (delta>0)
{

motorx . goForward (delta );

}

else
{ //ERROR: delta should be —delta
motorx . goBackward (delta);

}

delta = newMSPos.getY ()—curPos.getY ();
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60 if (delta>0)

61 {

62 motory . goForward (delta );

63 }

64 else{

65 motory . goBackward(—delta );

66 }

67

68 }

69 }

70

71 void MScope:: changeLens (unsigned int lens)
2 {

73 if (lens==1) curLens.setLens (10,3);
74

75 else if (lens==2) curLens.setLens (100,8);
76
77 else if (lens==3) curLens.setLens(1000,13);

78}

79

80 void MScope:: autoFocus ()

81

82 //ERROR: curFocus should be updated

83 int distance = curFocus — curPos.getZ ();

84 distance = curLens.getFocusDistance() — distance;
85 //curFocus = curLens.getFocusDistance()+curPos.getZ ();
86

87 if (distance > 0)

88 {

89 motorFocus. goForward (distance );

90 }

91 else

92 {

93 motorFocus . goBackward(—distance );

94 }

95

9% }

97

98 void MScope:: changeSlide (unsigned int position)
99 {

100 if (slideLocked!=0)

101

102 slideLocked =0;

103 unsigned int tempPosition=slide.getPosition ();
104 selector . putSlide (tempPosition );

105 }

106

107 selector.getSlide (position);

108 //ERROR: slide position should be updated

109 //slide .setPosition (position);

110 //ERROR: slideLocked erroneously updated (should be 1)
111 slideLocked =0;
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