
Syntactic Fault Patterns in OO Programs∗

Roger T. Alexander
Colorado State University
Dept of Computer Science

Fort Collins, Colorado 80523
rta@cs.colostate.edu

Jeff Offutt
George Mason University
Dept of Info and Soft Engr

Fairfax, Virginia 22030
ofut@ise.gmu.edu

James M. Bieman
Colorado State University
Dept of Computer Science

Fort Collins, Colorado 80523
bieman@cs.colostate.edu

Abstract

Although program faults are widely studied, there are
many aspects of faults that we still do not understand, par-
ticularly about OO software. In addition to the simple fact
that one important goal during testing is to cause failures
and thereby detect faults, a full understanding of the char-
acteristics of faults is crucial to several research areas. The
power that inheritance and polymorphism brings to the ex-
pressiveness of programming languages also brings a num-
ber of new anomalies and fault types. In prior work we
presented a fault model for the appearance and realization
of OO faults that are specific to the use of inheritance and
polymorphism. Many of these faults cannot appear unless
certain syntactic patterns are used. The patterns are based
on language constructs, such as overriding methods that
directly define inherited state variables and non-inherited
methods that call inherited methods. If one of these syntac-
tic patterns is used, then we say the software contains an
anomaly and possibly a fault. This paper describes the syn-
tactic patterns for each OO fault type. These syntactic pat-
terns can potentially be found with an automatic tool. Thus,
faults can be uncovered and removed early in development.

1. Introduction

Inheritance and polymorphism add very useful expres-
siveness to OO programming languages, but they come at
a sometimes significant cost. The cost is new kinds of
anomalies and faults. We refer to these asobject-oriented
faults. Unfortunately, techniques that can eliminate faults
in procedure-oriented programs often do not apply to the
unique faults found in object-oriented programs.

This work primarily focuses on faults related tosubtype
inheritance. If classB uses subtype inheritance to inherit

∗This work is supported in part by the U.S. National Science Founda-
tion under grant CCR-98-04111.

from classA, then it is semantically possible for any in-
stance ofB to freely be used (substituted) when an instance
of A is expected [3]. This is called “substitutability”.

We consider variables and objects whose scope is the en-
tire class to bestate variables. Unless otherwise noted, we
assume that inherited state variables have sufficient visibil-
ity to allow direct reference by methods defined in descen-
dant classes. For example, in the languages Java and C++,
the access specifiers for the state variables arenot private.
in this work, a classextendsits parent class if it introduces a
new method name that does not override any methods in an
ancestor class. A classrefinesthe parent class if it provides
new behavior not present in the overridden method, does
not call the overridden method, and its behavior is seman-
tically consistent with that of the overridden method. The
methods used to extend and refine the parent class are called
extensionandrefinementmethods.

The remainder of this paper is organized as follows: Sec-
tion 2 provides background on faults that can result from
the use of inheritance and polymorphism. Much of Sec-
tion 2 is based on our previous paper [4], which included a
yo-yo graph model of inheritance and polymorphism and a
number of specific types of potential faults. Section 3 gives
detailed descriptions of syntactic fault patterns that can lead
to the faults presented in Section 2. Section 4 discusses the
significance of the syntactic fault patterns. Finally, Section
5 presents future work and conclusions.

2. Categories of Inheritance Faults and
Anomalies

Inheritance and polymorphism are powerful language
features that allow for more creative and flexible problem
solving during design, more efficiency and greater reuse.
Unfortunately, inheritance also allows a number of anoma-
lies and potential faults that anecdotal evidence has shown
to be some of the most difficult problems to detect, diag-
nose, and correct. This section summarizes a list of fault
types that can be manifested by polymorphism. These fault

1

bieman
To appear in Proc. Int. Conf. Engineering Complex Computer Systems (ICECCS), 2002.

Table 1. Faults and anomalies due to inheri-
tance and polymorphism.

Acronym Fault/Anomaly
ITU Inconsistent Type Use

(context swapping)
SDA State Definition Anomaly

(possible post-condition violation)
SDIH State Definition Inconsistency

(due to state variable hiding)
SDI State Defined Incorrectly

(possible post-condition violation)
IISD Indirect Inconsistent State Definition

types were first presented in our previous paper [4], which
included detailed descriptions and examples. This section
summarizes some of the key fault types in with the pur-
pose of analyzing syntactic language patterns that can lead
to these faults in Section 3. The fault types emphasized here
are summarized in Table 1 and briefly discussion in the fol-
lowing subsections; more details and examples are in our
previous paper [4].

Most of these types are programming language-
independent, although the language that is used will affect
how the faults manifest. In all cases, we are concerned with
how each anomaly or fault is manifested through polymor-
phism in a context that uses an instance of the ancestor.
Thus, we assume that instances of descendant classes can
be substituted for instances of the ancestor.

2.1. Inconsistent type use (ITU)

For this fault type, a descendant class does not override
any inherited method. Thus, there can be no polymorphic
behavior. Every instance of a descendant classC that is
used where an instance ofT is expected can only behave
exactly like an instance ofT . That is, only methods ofT can
be used. Any additional methods specified inC are hidden
since the instance ofC is being used as if it is an instance of
T . However, anomalous behavior is still a possibility. If an
instance ofC is used in multiple contexts (that is, through
coercion, say first as aT , then as aC, then aT again),
anomalous behavior can occur ifC has extension methods.
In this case, one or more of the extension methods can call
a method ofT or directly define a state variable inherited
from T . Anomalous behavior will occur if either of these
actions results in an inconsistent inherited state.

2.2. State definition anomaly (SDA)

In general, for a descendant class to be behaviorally com-
patible with its ancestor, the state interactions of the descen-

dant must be consistent with those of its ancestor. That is,
the refining methods implemented in the descendant must
leave the ancestor in a state that is equivalent to the state
that the ancestor’s overridden methods would have left the
ancestor in. For this to be true, the refining methods pro-
vided by the descendant must yield the same net state in-
teractions as each public method that is overridden. From a
data flow perspective, this means that the refining methods
must provide definitions for the inherited state variables that
are consistent with the definitions in the overridden method.
If not, then a potential data flow anomaly exists. Whether or
not an anomaly actually occurs depends upon the sequences
of methods that are valid with respect to the ancestor.

Any extension method that is called by a refining method
must also interact with the inherited variables of the ances-
tor in a manner that is consistent with the ancestor’s current
state. Since the extension method provides a portion of the
refining method’s net effects, to avoid a data flow anomaly
the extension must not define inherited state variables in a
way that would be inconsistent with the method being re-
fined. Thus, the net effect of the extension method cannot
be to leave the ancestor in a state that is logically differ-
ent from when it was invoked. For example, if the logical
state of an instance of a stack is currently not-empty/not-
full, then execution of an extension method cannot result
in the logical state spontaneously being changed to either
empty or full. Doing so would preclude the execution of
popor pushas the next methods in sequence.

2.3. State definition inconsistency due to state vari-
able hiding (SDIH)

The introduction of an indiscriminately named local state
variable can easily result in a data flow anomaly where none
would otherwise exist. If a local variable is introduced to a
class definition where the name of the variable is the same
as an inherited variablev, the effect is the inherited variable
is hidden from the scope of the descendant (unless explic-
itly qualified, as insuper.v). A reference tov by an exten-
sion or overriding method will refer to the descendant’sv.
This is not a problem if all inherited methods are overridden
since no other method would be able to implicitly reference
the inheritedv. However, this pattern of inheritance is the
exception rather than the rule. There will typically be one or
more inherited methods that are not overridden. There is a
possibility for a data flow anomaly to exist if a method that
normally defines the inheritedv is overridden in a descen-
dant when an inherited state variable is hidden by a local
definition.

2.4. State defined incorrectly (SDI)

Suppose an overriding method defines the same state
variablev that the overridden method defines. If the com-
putation performed by the overriding method is not se-
mantically equivalent to the computation of the overridden
method with respect tov, then subsequent state dependent
behavior in the ancestor will likely be affected, and the ex-
ternally observed behavior of the descendant will be differ-
ent from the ancestor. While this problem is not a data flow
anomaly, it is a potential behavior anomaly.

2.5. Indirect inconsistent state definition (IISD)

An inconsistent state definition can occur when a de-
scendant adds an extension method that defines an inher-
ited state variable. The method is an extension method,not
a refining method. For example, consider the class hierar-
chy shown in Figure 1A whereT specifies a state variable
x and methodm(), and the descendantD specifies method
e(). Sincee() is an extension method, it cannot be directly
called from an inherited method, in this caseT::m(), be-
causee() is not visible to the inherited method. However,
if an inherited method is overridden, the overriding method
(such asD::m() as depicted in Figure 1B) can calle() and
introduce a data flow anomaly by having an effect on the
state of the ancestor that is not semantically equivalent to
the overridden method (e.g. with respect to the variableT::y
in the example). Whether an error occurs depends on which
state variable is defined bye(), wheree() executes in the se-
quence of calls made by a client, and what state dependent
behavior the ancestor has on the variable defined bye().

T

D

x
y

m()

e()

Defines

Defines

Cannot
Call!

(A)

T

D

x
y

m()

Defines

Defines

Overrides

m()
e()Calls

(B)

Figure 1. IISD: Example of indirect inconsis-
tent state definition.

Table 2. Syntactic Inheritance Patterns
Acronym Syntactic Pattern
DNEM Descendant introduces

non-interacting EM
ECE EM calls another EM
ECI EM calls IM
ECR EM calls RM
EDIV EM defines ISV
RCE RM calls EM
RCI RM calls other IM
RCR RM calls another RM
RCOM RM calls OM
RDIV RMdefines ISV
RUIV RM uses ISV
CCIM Constructor calls IM
CCRM Constructor calls RM
CCEM Constructor calls EM
CDIV Constructor defines ISV
CDLV Constructor defines LSV
CUIV Constructor uses ISV
CULV Constructor uses LSV

3. Syntactic Patterns of Inheritance Faults and
Anomalies

In his dissertation, Alexander classified a number of ba-
sic syntactic patterns that can be used to extend a class
through inheritance [1]. The use of individual or combi-
nations of these patterns in part determines the semantics
of a descendant class and its behavioral compatibility with
its ancestor. It is this behavioral compatibility that deter-
mines whether or not instances of the descendant can be
safely substituted for instances of the ancestor. A list of
syntactic patterns that can lead to the faults discussed in
Section 2 are summarized in Table 2. Each entry gives an
acronym and a short description. The acronym’s EM, IM,
OM, RM, ISV, and LCV stand for extension method, inher-
ited method, overridden method, refining method, inherited
state variable, and local state variable.

Whether or not a descendant is compatible with its an-
cestor is a function of the effects that the descendant has
on the state of its ancestor. These effects are manifested
through methods contained in the definition of the descen-
dant. Each of these methods may either refine (through
overriding) a method specified by the ancestor, or reflect
behavioral extensions provided by the descendant. In either
case, it is the definitional interactions of these methods with
the ancestor’s state that determines the substitutability of
the descendant. Adirect definition interactionoccurs when
a state variable is used in an expression, such as an assign-
ment. An indirect interactionoccurs when an expression

calls a method that contains another expression that has a
direct interaction. A state interaction may either be a defini-
tion or use of a state variable. In some cases, compatibility
is guaranteed by virtue of the fact that no definitional inter-
actions are possible. This occurs when the descendant either
does not define new methods and does not override inher-
ited methods, or when the descendant defines new methods
that do not interact directly or indirectly with the inherited
state. That is, for the latter case, the new methods at most
use inherited state either by direct reference or by calling
inherited methods that return a value but do not change the
state of the ancestor.

The following subsections discuss each of these cases
and additional syntactic inheritance patterns that affect the
behavioral compatibility of a descendant class with its an-
cestor.

3.1. Descendant introduces extension methods

A descendant class can extend the behavior it inherits by
defining extension methods. Extension methods are meth-
ods contained in the specification of a descendant class.
They do not override inherited methods, rather, they add
additional behavior not already present in ancestor classes.
In so doing, extension methods may or may not effect in-
herited states.

Figure 2 shows an inheritance hierarchy that defines a
hypothetical Vehicle, WaterCraft, Submersible, and Subma-
rine. This example is used in the remainder of Section 3.
The corresponding definitions and uses are shown in Fig-
ure 3. This example extends the Vehicle class hierarchy by
adding Submarine as a direct descendant of Submersible.
This class is an abstraction of a hypothetical submarine that
has the additional capability of taking evasive action. Sup-
porting this are behaviors for filling and emptying ballast
tanks and setting the angle of diving planes. It also refines
the inherited behaviors for submerging and accelerating.
Descendant introduces Non-interacting Extension
Methods (DNEM). The descendant may introduce exten-
sion methods that do not interact with inherited state. This
form of extension method does not define inherited state
variables, nor does it call inherited methods that do. As part
of the extending behavior, the descendant may introduce
local state variables to support the behavior provided by
the extension methods, or it may use variables inherited
from an ancestor. The latter may be achieved through either
direct reference of a state variable, or by calling some other
method that uses the inherited variable.

Figure 2 shows the class WaterCraft and its immediate
descendant Submersible, which has the two extension meth-
odssubmerge()andsurface()and supporting state variable
depth. As the definition/use table in the Figure 3 shows,
these methods do not interact with the state of Vehicle or

+startEngine()
+stopEngine()
+accelerate(in rate : float)

#started : Boolean
#velocity : float

Vehicle

WaterCraft

+submerge(in rate : float, in toDepth : float)
+surface(in rate : float)

#depth : float

Submersible

+accelerate(in rate : float, in toVelocity : float)
+evade()
+submerge(in rate : float, in toDepth : float)
#blowBallast(in toLevel : float)
#closeVents()
#fillBallast(in toLevel : float)
#openVents(in pumpIsOn : boolean)
#setDivePlanes(in toAngle : float)

#divePlaneAngle : float
#ventsOpen : boolean
#ballastTankLevel : float
#ballastPumpOn : boolean

Submarine

Vehicle::startEngine

Vehicle::stopEngine

Vehicle::accelerate

Submersible::submerge

Submersible::surface

Method Called Methods

Submarine::blowBallast

Submarine::fillBallast

Submarine::setDivePlanes

Submarine::accelerate Vehicle::accelerate

Submarine::closeVents

Submarine::evade Submarine::accelerate
Submarine::blowBallast
Submarine::fillBallast
Submarine::setDivePlanes
Submarine::submerge
Submersible::surface
Vehicle::startEngine

Submarine::fillBallast
Submarine::setDivingPlanes
Submarine::accelerate
Vehicle::startEngine

Submarine::submerge

Submarine::openVents

Submarine::closeVents
Submarine::openVents

Figure 2. Example showing interaction of ex-
tension methods

WaterCraft (which has no state), nor do these methods call
inherited methods that alter state.

As part of a behavioral extension, a descendant class will
often have its own local set of state variables (as in the vari-
abledepththat is a member of classSubmersible). Collec-
tively, these variables serve to record the state of the descen-
dant with respect to its set of extension methods. To make
a local state change, one or more of the extension methods
must define each variable in the local state space. In so do-
ing, the behavioral extension of the descendant must either
introduce additional states not present in the ancestor (such
as when the descendant is capable of doing things that the
ancestor is not), or it must ensure that any additional states
are logically substates of the ancestor. That is, for the latter
case, the stateful behavior of the descendant must be con-
sistent with that of the ancestor.

Any state represented by the descendant’s state space
must partition each of the ancestor’s states for those cases
where an extension method can change the state of the de-
scendant. Put another way, the stateful behavior of the de-
scendant must fit within the state machine of the ancestor.
No transitions may be removed by the descendant, nor new
transitions added that would cause the ancestor to transition
to a different state.

Faults/anomalies manifested by DNEM. Since a de-
scendantD only has extension methods that do not interact
with inherited state, there can be no faults due to polymor-

started

Submersible

velocity

d

d

u d, u

Variable Vehicle

Method depth

d, u

d, u

State Variable Uses and Definitions

Vehicle::startEngine

Vehicle::stopEngine

Vehicle::accelerate

Submersible::submerge

Submersible::surface

Submarine::accelerate

Submarine::blowBallast

Submarine

Submarine::fillBallast

u u,dSubmarine::evade

Submarine::closeVents

Submarine::openVents

Submarine::submerge

Submarine::setDivePlanes

u,d

d, u

u

divePlaneAngle ventsOpen tankLevel ballastPumpOn

d

d

d

u,d

u,d

d

ballastTankLevel

u,d

u,d

Figure 3. Definitions and uses for extensions methods

phism whenD is used solely in the context of its ancestor.
The only methods that can execute in this situation are those
available through the ancestor’s context. There is, however,
still the possibility of inconsistent behavior due to incon-
sistent type use (Section 2.1). This would occur when an
instance ofD is used in the context of the ancestor as well
as that of the descendant. Thus, DNEM can manifest the
fault type ITU.

Extension method Calls another Extension method
(ECE). Quite often, as part of a descendant’s implemen-
tation, one extension methode will call another to achieve
some desired effect. It may be thate implements a high-
level algorithm (e.g. sorting) and delegates subproblems to
other methods (e.g. comparison). Regardless of the number
of methods called and the level of nested calls involved, the
net effect of callinge from a client’s perspective is the result
of the computation performed bye directly or through that
of any methods called (directly or indirectly) bye. In terms
of state space interactions, the net effect is the set of state
variables used or defined bye, or by a method called bye,
and so forth. Methode is said toabsorbthe effects of the
methods it calls or causes to be called.

ECE is illustrated in Figure 4, which presents an anno-
tated code fragment of a hypothetical implementation of
methodSubmarine::evade()in Java. As shown, an exam-
ple of ECE occurs at line 12 where the methodblowBallast
is called. This is ECE because bothevade()andblowBal-
last()are extension methods ofSubmarine. Though not an-
notated, other examples of ECE occur at lines 18 (setDive-
Planes()), 20 (fillBallast()), and 26 (setDivePlanes()).

Faults/anomalies manifested by ECE. Descendant
classes that use ECE have the possibility to manifest SDA
anomalies if the called extension methodc defines inherited
state variables or calls inherited methods that do. This will

1 public void evade()
2 {
3 // Prepare for emergency dive/surface
4 if (!started)
5 startEngine();
6
7 accelerate(MAX_ACCEL, MAX_VELOCITY);
8
9 if (depth < 0) // Are we already submerged?

10 {
11 setDivePlanes(-MAX_PLANE_ANGLE); // Max rate of ascent
12 blowBallast(0); // Emergency blow!
13 }
14
15 else
16 {
17 // No, so dive, dive, dive!
18 setDivePlanes(+MAX_PLANE_ANGLE);
19
20 fillBallast(100.0); // Take her down ASAP!
21
22 while (depth < MAX_DEPTH)
23 depth = ...;
24
25 // Now level off.
26 setDivePlanes(0.0);
27 }
28 }

ECI

ECR

EUIV

ECE

EUIV
EDIV

Figure 4. Code fragment for method Subma-
rine::evade()

possibly result in a fault if a method that is subsequently
called depends in some way on the state defined byc.

The possibility of a local anomaly exists ifc has public
visibility. In this case,c provides part of the interface of the
descendant and a component of its behavior. The anomaly
occurs ifc uses state variables that have not yet been de-
fined. Alternatively,c can cause an anomaly by defining a
set of state variables that are different from those that would
be defined by the next method invocation that should occur
given the current state of the ancestor.

3.2. Extension method Calls Inherited methods
(ECI)

In ECI, part of the behavior of a descendant classC is
defined by an extension methode that calls one or more in-
herited methods, which of which directly defines part of the
state inherited from the ancestor classA. The called meth-
ods may be specified in the same ancestor class that pro-
vides the state variable that is defined, or they may be in
another class that is also a descendant ofA but is an ances-
tor of C. In either case, execution ofe has an effect on the
inherited state space received byC. An example of this is
shown by the call toVehicle::startEngine()at line 5 in the
code fragment depicted in Figure 4.

Faults/anomalies manifested by ECI. If the inherited
methodi called by an extension method defines state vari-
ables (in the ancestor’s context), an SDA anomaly can occur
if a subsequently called method depends upon the ancestor’s
state in some way that has been affected byi, and possibly
will lead to a fault. Alternatively, an SDA anomaly will
exist if i uses state variables and is called out of sequence
with respect to the current state, particularly if those state
variables have not be defined by a prior method invocation.
Extension method Calls Refining method (ECR).An ex-
tension methode in the specification of a descendantD may
call a refining methodr that is also contained inD’s spec-
ification. In doing so,e interacts with the inherited state
through the computation carried out byr. This means that
eeffectively defines (and uses) the same variables thatr de-
fines, although not directly. The nature of this interaction is
completely out of the control and influence ofe; it is deter-
mined solely by the implementation ofr. However,e does
have the choice of when (or if)r is called during its ex-
ecution. To preserve behavioral compatibility between the
descendant and the ancestor, the designer ofecan take mea-
sures to ensure thatr is called in a manner that is consistent
with the current state of the ancestor. However, there is no
obligation or guarantee one’s designer to do so. An exam-
ple of ECR is shown at line 7 of Figure 4.

Faults/anomalies manifested by ECR. The problems
for ECR are similar to ECI (Section 3.2). But in this case, a
refining methodr is called. Ifr defines inherited state vari-
ables, an SDA anomaly can occur if a subsequently called
method depends upon the ancestor’s state in some way that
has been affected byr, and possibly will lead to a fault. A
fault will also occur if the state variables are defined incor-
rectly even though a definition is appropriate for the current
state of the ancestor. Similar to ECI, an SDA anomaly will
also exist ifr uses state variables and is called out of se-
quence with respect to the current state of the ancestor.
Extension method Defines Inherited state Variable
(EDIV). The specification of a descendant class includes
an extension method that directly defines one or more inher-

ited state variables. By defining the inherited variable, the
extension method directly affects the behavior of the ances-
tor class. An example is shown in Figure 4 at line 23 where
Vehicle::depthis defined (EDIV).

Faults/anomalies manifested by EDIV. Since the ex-
tension method is defining inherited state variables, there
is the possibility of SDA anomalies that have the potential
to cause failures in the context of the ancestor. Assuming
the extension method defines an inherited state variablev
at a time that is consistent with the current state of the an-
cestor, an SDI fault can result if the definition given tov is
not consistent with how the variable is defined by ancestor
methods.

3.3. Descendant introduces refining methods

Method refinement allows a descendant class to mod-
ify an ancestor’s behavior by providing overriding defini-
tions of inherited methods. When an overridden method is
called, the overriding definition is invoked instead of the
original inherited definition. This allows the descendant to
directly refine the behavior exhibited by the ancestor. This
refinement is manifested using any of three syntactic mech-
anisms: directly calling the refined (overridden) method, re-
placing the refined method, or directly defining inherited
state variables. Note that the last mechanism, out of neces-
sity, must be used in combination with only the first two.
Refining method Calls Extension method (RCE).As part
of its behavior, a refining method can call extension meth-
ods defined by the descendant. The latter can effect local
state changes, or simply participate in the refinement of the
overridden method. In either case, the behavior of the ex-
tension method becomes part of the net effect of the refining
method’s behavior. Thus, the gross behavior of the combi-
nation of methods must be consistent with the behavior of
the overridden method.

Syntactically, RCE looks just like any other free-
standing method call (that is, not through an instance con-
text). If an instance context is used to qualify the call, out
of necessity it must be through the context provided by the
self-referencing variable used to denote the current instance
(this in Java and C++, andcurrent in Eiffel).

An example of RCE is illustrated in Figure 5. At line 9,
the extension methodSubmarine::setDivePlanes()is called
by the refining methodSubmarine::submerge().

Faults/anomalies manifested by RCE. Anomalies and
faults manifested by RCE include SDA, SDI, and IISD.
A refining method manifests SDA by failing to define the
same set of the ancestor’s state variables as the overridden
method does. Similarly, if it does define the right state vari-
ables, it could define them incorrectly (an SDI fault). Fi-
nally, the refining method can exhibit an IISD anomaly (a
composite of SDA and SDI) if it calls one of the descen-

1 public void submerge(float rate, float toDepth)
2 {
3 // Prepare to dive.
4 if (!started)
5 startEngine();
6
7 accelerate(NORMAL_ACCEL, DIVING_VELOCITY);
8
9 setDivePlanes(rate);

10
11 fillBallast(50.0); // Take her down slowly.
12
13 while (depth < toDepth)
14 depth = ...;
15
16 // Now level off.
17 setDivePlanes(0.0);
18 }

RCI

RCR

RCE

Figure 5. Code fragment for method Subma-
rine::submerge

dant’s extension methods.
Refining method Calls other Inherited method (RCI).A
refining methodr calls another methodm that is inherited
from the ancestor, andm is not overridden by the descen-
dant. This has the effect of replacing the methodo over-
ridden byr with m in terms of the state effects on the an-
cestor, or possibly combining with those ofo if r calls it
(see RCOM, Section 3.3). An example of RCI is shown in
Figure 5 at line 5.

Faults/anomalies manifested by RCI. A refining
method that calls an inherited method (other than the over-
ridden methodo) can manifest both an SDA anomaly and
an SDI fault. This depends on the state effects of the inher-
ited methodi that is called. It could be thati defines the
same set of state variables aso does, or a different set. The
latter results in the SDA anomaly. Ifi does define the same
set of state variables aso (or a proper subset), but the se-
mantics of the resulting definition are different, then an SDI
fault occurs.
Refining method Calls another Refining method (RCR).
As part of its implementation, a refining method can call
other refining methods. Since both the caller and the called
method are members of the descendant, the call will gener-
ally be unqualified. However, if it is qualified, it must be
through a reference to the current instance (this in Java and
C++).

Faults/anomalies manifested by RCR. From an
anomaly and fault perspective, the effects of a refining
method calling another refining method are similar to a re-
fining method calling an extension (Section 3.3). Both SDA
anomalies and SDI faults are possibilities. An example of
RCR is shown on line 7 in Figure 5.
Refining method Calls Overridden Method (RCOM).

Perhaps the simplest form of behavioral modification is
where the refining method directly calls the refined (over-
ridden) method in addition to providing additional behav-
ior. This form of modification takes advantage of existing
behavior rather than replicating or replacing it completely.
The result of calling the inherited method is that the refin-
ing method interacts with the ancestor’s state indirectly by
virtue of having called the overridden methods. Method
Submarine::accelerate()in Figure 6 provides an example
of RCOM. The overridden methodVehicle::accelerate()is
called at line 6 through the instance context provided by the
explicit ancestorreference super.

1 PUBLIC VOID ACCELERATE(FLOAT RATE, FLOAT TOVELOCITY)
2 {
3 IF (VELOCITY < TOVELOCITY)
4 {
5 // ACCELERATE TO DESIRED VELOCITY.
6 SUPER.ACCELERATE(RATE);
7
8 // CONTINUE TO ACCELERATE.
9 WHILE (VELOCITY < TOVELOCITY)

10 VELOCITY = ...;
11
12 // STOP ACCELERATING.
13 SUPER.ACCELERATE(0.0);
14 }
15 }

RUIV

RCOM

RDIV

Figure 6. Code for Submarine::accelerateillus-
trating RUIV, RCOM, and RDIV

Faults/anomalies manifested by RCOM. When a refin-
ing methodr calls the overridden methodo, the net effect of
o is included inr. If r does nothing but callo, then there can
be no anomalies or faults that will be manifested as a result
of polymorphism. However, ifr does more, in particular, if
it defines additional state variables not defined byo or if it
redefines those defined byo, then SDA anomalies and SDI
faults are a possibility (see Section 3.3).
Refining method Defines/Uses Inherited state Variable
(RDIV/RUIV). The refining method can interact with the
state of an ancestor simply by defining or using state vari-
ables. Variables are defined through direct reference, such
as in an assignment statement, or indirectly by calling state
defining methods (if the variable is a reference to an ob-
ject).1 Similarly, a state variable can be used on the right-
hand side of an assignment and as part of a conditional ex-
pression. If the variable is a reference to an object, then
calling a method through the instance context provided by

1In some object-oriented languages, such as C++, it is possible to spec-
ify that a given method does not change the state of an object (through
the use ofconstmethods). In other languages, this is not possible. Thus,
without the availability of knowledge to contrary, we take the conservative
view that all method calls result in a state change of the object referred to
by the variable that provides the instance context of the call.

the variable is also an example of a use.
Both RUIV and RDIV are illustrated in Figure 6. At line

10, variableVehicle::velocityis defined (RDIV) by method
Submarine::accelerate(). The method also uses (RUIV)Ve-
hicle::velocityat line 3 (and also at line 9 though this is not
annotated).

Faults/anomalies manifested by RDIV and RUIV.
Both SDA anomalies and STI faults are possibilities for
RDIV. An SDA anomaly will occur if the refining method
does not define the same state variables as the overridden
method. An SDI fault will occur if the refining method de-
fines an inherited variable in a manner that is inconsistent
with how the overridden method defines the same variable.

An SDIH anomaly occurs in conjunction with RDIV if
the specification of the descendant includes a local state
variable v whose name is identical to one that is inher-
ited and that is defined by the refining method. An SDIH
anomaly also occurs with RUIV ifv is used to define an
inherited state variable.

3.4. Descendant Introduces Constructors

Classes in most OO languages have special methods,
calledconstructors, which initialize the state of newly cre-
ated instances. At the end of the construction process, the
state of the instance should be well-defined and consistent
with the class’s specifications.

There are a number of syntactic patterns that can be used
to define the behavior required for construction. A number
of the patterns involve calls to other methods. In some lan-
guages (including Java), there is inherent danger in calling
polymorphic methods from a constructor. The problem is
that the designer of the constructorc can never know for
sure that the called methodewill be the one executed. This
is due to method overriding and polymorphism. Ife is poly-
morphic and is overridden by some descendant class, then
when an instance of that child class is being constructed, the
overriding method will be the one executed from the con-
structor call instead ofe. This yields two further complica-
tions. First, there is no guarantee that the overriding method
will have the same effect on the instance being constructed
by c. Second, when the overriding method executes, it will
be in the context of the child class, which will not have been
constructed yet. Thus, there is a strong likelihood that a data
flow anomaly or fault will occur. Even though this is an un-
wise practice, it is possible and people do it

A constructor can introduce an IC anomaly if it fails to
properly initialize all state variables defined locally to the
class. This may result from the failure to assign a value to a
variable, assigning it the wrong value, or calling the wrong
method if the variable refers to an object. Either way, the
likely result will be anomalous behavior when the newly
constructed instance is used. Note that this applies to all of

the syntactic patterns that involve construction.
The following subsections describe each of the syntactic

patterns that involve construction in detail.
Constructor Calls Inherited Method (CCIM). During the
construction process, a descendant’s constructor can call a
methodm inherited from an ancestor. Unless overridden by
the descendant,mwill execute in the context of the ancestor
and affect the ancestor’s state. By the timem executes, the
ancestor’s construction process will have completed. Any
effectsm has will place the ancestor in a state that is differ-
ent from that provided by the constructor, and potentially
incorrect.

Faults/anomalies manifested by CCIM. A constructor
can introduce an SDA anomaly by defining a state variable
v inherited from the descendant’s ancestor. This can be ac-
complished either by directly definingv (Section 3.4), or
by calling an inherited method that definesv. Either way,
an anomaly will occur if the resulting definition is not con-
sistent with the current state of the ancestor. Observe that
by calling an inherited method, the descendant’s construc-
tor is effectively changing the construction process that the
ancestor has carried out. Note that if the inherited method
called by the constructor is polymorphic, then the anoma-
lous behavior described in the introduction to Section 3.4 is
possible.
Constructor Calls Refining Method (CCRM). Similar to
CCIM, during the construction process, a refining method
r may be called. The act of callingr might have an effect
on the local state of the descendant. Presumably, this ef-
fect will be part of the intended construction process and
will contribute to the initialization of a locally well-defined
state for the descendant. Note that the refining method may
call the overridden method (or another non-overridden in-
herited method). The result of such a call will be equivalent
to CCIM (Section 3.4).

Faults/anomalies manifested by CCRM. As with
CCIM (Section 3.4), a SDA anomaly will occur if the re-
sult of the called refining methodr is that the state of the
ancestor is defined in some manner that is inconsistent with
its state, or ifr uses portions of the ancestor’s state that are
not consistent with the assumptions made in the implemen-
tation of r. Note that if the refining method called by the
constructor is polymorphic, then the anomalous behavior
described in the introduction to Section 3.4 is possible.
Constructor Calls Extension Method (CCEM). A con-
structor can call an extension methode as part of the con-
struction process. Similar to CCRM (Section 3.4), callinge
might affect the local state of the descendant. Likewise,e
could also call other methods (extension, refining, or inher-
ited) that affect either the local or inherited state.

Faults/anomalies manifested by CCEM. The fault
model for CCEM is the same as for CCRM: an SDA
anomaly will occur if the result of the called extension

methode is that the state of the ancestor is defined in a way
that is inconsistent with its state, or ife uses portions of the
ancestor’s state that are not consistent with the assumptions
made in the implementation ofe. Note that if the extension
method called by the constructor is polymorphic, then the
anomalous behavior described in the introduction to Sec-
tion 3.4 is possible.
Constructor Defines Inherited state Variable (CDIV). A
constructor will define one or more state variables during
the construction process. These are usually local to the class
being constructed. However, it is possible for a constructor
to define an inherited state variable, either directly through
assignment or indirectly through method call (if the variable
refers to an object).

Faults/anomalies manifested by CCRM. Both SDA
anomalies and SDI faults are possibilities for CDIV. An
SDA anomaly will occur if the refining method does not de-
fine the same state variables as the overridden method. An
SDI fault will occur if the refining method defines an inher-
ited variable in a manner inconsistent with how the overrid-
den method defines the same variable.
Constructor Defines/Uses Local state Variable
(CDLV/CULV). A constructor can use both local and
inherited state variables. The key distinction between the
two is that the ancestor’s construction process has com-
pleted, and the inherited state variables should be properly
initialized. For local state variables, proper initializations
will only have occurred before being used if the constructor
has defined their values, or if there are suitable default
initializations provided (as in Java).

Faults/anomalies manifested by CCRM. An SDIH
anomaly occurs in conjunction with CDLV if the specifica-
tion of the descendant includes a local state variablevwhose
name is identical to one that is inherited and that is defined
by the refining method. An SDIH anomaly also occurs with
CULV if v is used to define an inherited state variable.

4. Discussion

For expository purposes, the discussion of the anomalies
and fault types described in Section 3 and summarized in
Table 3 has primarily focused on single instances of syntac-
tic patterns of inheritance. In reality, and out of necessity,
the patterns are often combined to form complex aggregates
of control and data flow. Naturally, this combination of pat-
terns can result in combinations of faults.

As the examples have shown, the control flow that results
from inheritance and polymorphism can be quite complex,
and can yield very complicated faults and anomalies. In
fact, the use of polymorphism induces non-determinism to
the actual flow of control [2]. Sadly, the situation in reality
can be far more complicated than the examples have indi-
cated. If inheritance hierarchies are deep, visibility is un-

Table 3. Fault/anomaly types manifested by
syntactic patterns

Fault Type
ITU SDA SDIH SDI IISD

DNEM X
ECE X
ECI X
ECR X
EDIV X X
RCE X X X
RCI X X
RCR X X
RCOM X X
RDIV X X X
RUIV X
CCIM X
CCRM X
CCEM X
CDIV X X
CDLV X
CUIV X
CULV X

restricted, and polymorphic methods are abundant, the flow
of control resulting from a single method invocation can be
inordinately complex, depicted by the simple yo-yo graph
shown in Figure 7. Likewise, it can be expected that the
effort required to detect, diagnose, and correct the resulting
faults will increase significantly in complexity.

Ancestor

f e

i1 i 2

r2Descendant

call
call

call

Figure 7. Yo-yo effect resulting from exten-
sion method calling inherited method

A number of benefits result from the categorization of
the syntactic patterns of the faults presented in Section 2.
The most significant of these is that the presence of one
of the patterns in a program signifies a possible anomalous
use of inheritance. While the anomaly does not necessarily
indicate the manifestation of a fault, it does raise a concern
that should be investigated to determine if a fault is present
or not.

Another benefit is that automated tools, similar to the

Unix tool lint, can be developed to identify these patterns.
This would give developers of object-oriented programs the
ability to detect anomalies early in the development process.
This would likely result in the identification and elimination
of faults that are related to inheritance and polymorphism.
This is particularly important given the insidious nature of
these faults and the associated difficulty in their identifica-
tion and diagnosis.

5. Conclusions and Future Work

This paper has presented a set of syntactic patterns that
correspond to anomalies in programs written using object-
oriented languages. The patterns are directly based on types
of OO faults developed previously [4]. These patterns are
useful because they indicate the possible presence of faults
that result from the use of inheritance and polymorphism. If
a particular pattern is found to be present in a program, the
set of associated fault types enables a programmer to per-
form targeted early fault diagnosis. This can be achieved
automatically through static analysis, which requires con-
siderably less effort than testing. Further, since faults that
result from inheritance and polymorphism can be difficult
to detect and diagnose, the use of these fault patterns has
the potential to result in significant overall cost savings.

These syntactic patterns should be viewed as “primi-
tives”, and it is clear that combinations of multiple patterns
could result in more complex patterns.

A number of interesting questions arise from the work
presented in this paper. One ishow often do the syntac-
tic patterns actually occur?If they occur relatively infre-
quently, then their value as a diagnostic tool is somewhat
small. Another question isgiven the presence of a particu-
lar pattern, how often are the associated faults manifested?
A third question is given that a particular fault described
in Section 2 is present in a program,is one of the corre-
sponding syntactic patterns also present? If the answer is
no, there may be other patterns leading to the fault that we
have yet to identify.

To answer the above questions, we are developing a tool
that will scan software written using an object-oriented lan-
guage to detect the presence of the syntactic fault patterns.
This tool will initially support Java, but it is anticipated that
future versions will support other object-oriented languages
such as C++ and C#. Our intent is to use these tools to an-
swer these questions by initially conducting a series of case
studies against various open source software packages (e.g.
NetBeans) and professionally written software. Later stud-
ies will involve controlled experiments.

References

[1] Roger T. Alexander.Testing the Polymorphic Relation-
ships of Object-oriented Programs. PhD thesis, George
Mason University, 2001.

[2] Robert V. Binder. Testing object-oriented software: A
survey.Journal of Software Testing, Verification & Re-
liability , 6(3/4):125–252, 1996.

[3] B. Liskov and J. M. Wing. A behavorial notion
of subtyping. ACM Transactions on Programming,
Languages, and Systems, 16(1):1811–1841, November
1994.

[4] Jeff Offutt, Roger T. Alexander, Ye Wu, Quansheng
Xiao, and Chuck Hutchinson. A fault model for sub-
type inheritance and polymorphism. InTwelfth IEEE
International Symposium on Software Reliability Engi-
neering (ISSRE’01), pages 84–95, Hong Kong, PRC,
November 2001.

