Formal Test-case Generation for UML Statecharts *

Stefania Gnesi, Diego Latellaand Mieke Massink
CNR/ISTI, ViaMoruzzi 1, 156124 Pisa, ITALY
{Stefania.Gnesi,Diego.Latella,Mieke Massink} @isti.cnr.it

Abstract

The Unified Modeling Language has been introduced
as a notation for modeling and reasoning about large and
complex systems, and their design, across a wide range of
application domains. System modeling and analysis tech-
niques, especially those based on formal methods, are more
and more used for enhancing traditional System Engineer-
ing techniques for improving system quality. In particular
this holds for model-based formal test case derivation using
formal conformance testing. The contribution of the present
paper is to provide a solid mathematical basis for confor-
mance testing and automatic test case generation for UML
Statecharts (UMLSCs). We propose a formal conformance-
testing relation for input-enabled transition systems with
transitions labeled by input/output-pairs (IOLTSs). IOLTSs
provide a suitable semantic model for a behavioral sub-
set of UMLSCs. We also provide an algorithm which, for a
UMLSC specification and the alphabet of implementations,
generates a test suite. The algorithm is proven exhaustive
and sound w.r.t. the conformance relation.

1. Introduction and Related Work

Modern societies strongly depend, for their function-
ing as well as for the protection of their citizens, on sys-
tems of highly interconnected and interdependent infras-
tructures, which are increasingly based on computer sys-
tems. The complexity of such systems, and those of the
near future, will be higher than that of any artifact which
has been built so far. In recent years, the Unified Model-
ing Language (UML) [18] has been introduced as a nota-
tion for modeling and reasoning about large and complex
systems, and their design, across a wide range of applica-
tion domains. Moreover system modeling and analysis tech-

* This work has been carried out under the Agreement between CNR
CNUCE/IEland GMD in the frame of the Project “Formal Test Cases
Derivation for UML Statechart Diagrams Specifications”. It has been
partially funded by projects EU-IST 1ST-2001-32747 (AGILE) and
MIUR/SP4.

niques, especially those based on formal methods, are more
and more used for enhancing traditional System Engineer-
ing techniques for improving system quality. In particular
this holds for model-based formal test case derivation us-
ing formal conformance testing, of which the present paper
addresses the theoretical foundations.

Testing and conformance relations in the context of la-
beled transition systems (LTSs) have been thoroughly in-
vestigated in the literature. Broadly speaking, conformance
testing refers to a field of theory, methodology and appli-
cations for testing that a given implementation of a system
conforms to its abstract specification, where a proper con-
formance relation is defined using the formal semantics of
the notation(s) at hand. An account of the major results in
the area of testing and conformance relations can be found
in [9, 22]. The theory has been developed mainly in the con-
text of process algebras and input/output transition systems.

In [13, 14] and in this paper we set the theoretical basis
for testing and conformance theories for UML Statecharts
(UMLSCs, for short), thus making them available for prac-
titioners in industry where the Unified Modeling Language
has become a de facto standard, in particular for the devel-
opment of complex systems®. The UML consists of a num-
ber of diagrammatic specification languages, among which
UMVLSCs, that are intended for the specification of behav-
ioral aspects of software systems. This diagrammatic nota-
tion differs considerably from process algebraic notations.
In UMLSCs, transitions are labeled by input/output-pairs
(i/o-pairs), where the relation between input and output is
maintained at the level of the single transitions. This is nei-
ther the case in traditional testing theories, like [9], where
no distinction is made between input and output, nor for
the input/output transition systems used in standard confor-
mance testing theory [22]. In our approach we use LTSs
labelled over i/o-pairs where a generic transition models a
step of the associated statechart (step-transition). Preserv-
ing the atomicity of input acquisition and output generation
in a single step has two important advantages. First of all,
this reflects in a more direct way the semantics of UMLSCs

1 Although we refer to UML 1.5, the main features of the notation of
interest for our work have not changed in later versions.

steps; each step, according to [18], is triggered by an in-
put event and causes both a change in the current configura-
tion and the execution of certain actions such as those that
generate output events. The use of LTSs with separate in-
put and output events [22] would require the introduction of
additional, intermediate, global states and transitions at the
semantics level, thus breaking the neat correspondence be-
tween the notion of step of the statechart and that of step-
transition of its associated LTS. Secondly, a testing theory
based on i/o-pairs preserves the compatibility of the test-
ing models with the rest of the semantics framework that
we have developed for UMLSCs (e.g. [11, 8]) and that is
based on re-use of a basic set of deduction rules (the “core
semantics”) leading to a high degree of homogeneity, mod-
ularity and re-use.

Our LTSs labelled over i/o-pairs are very similar to Finite
State Machines (FSMs), in particular Mealy Machines. A
considerable number of studies in the field of testing FSMs
are available in the literature. An excellent survey can be
found in [16]. Many such proposals deal with test case gen-
eration but mainly in the context of deterministic machines.
In some proposals, like the one in [3], further restrictions
on the machines are introduced, requiring that they must be
strongly connected.

To our knowledge, the study of conformance relations,
and of testing theory in general, in the context of non-
deterministic machines, or LTSs over i/o-pairs, has received
scant attention. On the other hand, non-determinism is a key
notion in the area of formal approaches to system model-
ing and verification and, in fact, it is a central notion in tra-
ditional testing theories for LTSs [9] and their variants for
systems with inputs and outputs [13, 14, 17].

In this paper we propose a formal conformance testing
relation and a test case generation algorithm for input en-
abled labeled transition systems over i/o-pairs (IOLTSs).
IOLTSs are LTSs where each state has (at least) one outgo-
ing transition for each element of the input alphabet of the
transition system. Intuitively, such transition systems can-
not refuse any of the specified input events, in the sense
that they cannot deadlock when such events are offered to
them by the external environment. Whenever a machine, in
a given state, does not react on a given input, its modeling
IOLTS has a specific loop-transition from the correspond-
ing state to itself, labelled by that input and a special “stut-
tering” output-label.

IOLTSs have been used as semantic model for a behav-
ioral subset of UMLSCs [7]. In this paper, we will assume
that system specifications are given as UMLSCs and we will
concentrate on their associated IOLTSs. IOLTSs are suit-
able also for modeling implementations of systems speci-
fied by such diagrams. Modeling implementations as input
enabled transition systems is common practice in the con-
text of formal conformance testing - see e.g. [22]. We focus

on conformance testing and the soundness and exhaustive-
ness properties of a test case generation algorithm relative
to a conformance relation for IOLTSs. The conformance re-
lation we define is similar to the one of Tretmans [22], with
adaptations which take care of our semantic framework for
UMLSCs. As a by-product of our work, we also define and
propose a specific test case language.

In [13] we defined a general testing theory for UMLSCs,
using a framework similar to that proposed in [17], which
was in turn inspired by the work of Hennessy for traditional
LTSs [9]. The general approach of the above mentioned the-
ories is based on the well known notions of MAY and MUST
preorders and related equivalences. Intuitively, for systems
Aand B, A EMAY B means that if a generic experimenter
(i.e. test case) E has a successful test run while testing A,
then E has also a successful test run when testing B. On
the other hand, A EMUST B means that if all test runs of
a generic experimenter £ are successful when testing A,
then it must be the case that all test runs of E are success-
ful when testing B. It can be shown that EMAY con-
cides with trace inclusion and that A EMUST B implies
B EMAY A. Thus, the testing preorders focus essentially
on the observable behaviour of systems and are strongly re-
lated to their internal non-determinism and deadlock capa-
bilities; intuitively, if both A & Band A §

MAY MUST
hold, then A is “more non-deterministic” than B and can
generate more deadlocks than B can, when tested by an ex-
perimenter. Finally, if also the reverse preorders hold, i.e.
BL Aand BL A aswell, then A and B are test-

MAY MUST
ing equivalent since no experimenter can distinguish them.
The main semantic assumptions in [9] are that (i) system in-
teraction is modeled by action-synchronization rather than
input/output exchanges, and (ii) absence of reaction from
a system to a stimulus presented by an experimenter re-
sults in a deadlock affecting both the system and the exper-
imenter. In [17], and later in [13] specifically for UMLSCs,
assumption (i) has been replaced by modeling system in-
teraction as input/output exchanges, but assumption (ii) re-
mained unchanged. In particular, in [13], absence of reac-
tion of a given state s on a given input is represented by the
absence of any transition with such an input 7 from s, in a
way which is typical of the process-algebraic approach. We
refer to the resulting semantic model as the “non-stuttering”
one, as opposed to input enabled IOLTS, i.e. the “stuttering”
semantics, used in the present paper. The above two differ-
ent ways of dealing with absence of reaction, and in par-
ticular, the ability for experimenters to explicitly detect ab-
sence of reaction turns out to be of major importance for
determining the relative expressive power of the various se-
mantics. More specifically, in [14] we defined MAY and
MUST preorders also for the stuttering semantics and we
provided a formal comparison between the Hennessy-like,
non-stuttering semantics [13, 9], and the stuttering seman-

tics w.r.t. testing and conformance ordering relations; we
showed that if two UMLSCs, say A and B, are in confor-
mance relation (i.e. A conforms to B) in the stuttering se-
mantics, then they are also in MAY and in the reverse-MUST
relations (i.e. A & Band B & A) in the non-
MAY MUST

stuttering semantics, but not vice-versa. This shows that the
Hennessy-like, non-stuttering, semantics [13, 9] is not ade-
quate for reasoning about issues of conformance, since the
detection of absence of reaction, explicitly modeled only in
the stuttering semantics, plays a major role when dealing
with conformance. Accordingly, the following results have
been proven: the conformance relation coincides with the
MAY preorder in the stuttering semantics. Moreover, in the
stuttering semantics, nice substitutivity properties hold; for
instance, testing equivalent implementations conform to the
same specifications and implementations conform to test-
ing equivalent specifications.

Related work on automatic test generation based on
UMLSC:s is being developed in the context of the Agedis
project [20]. In that approach a system model, composed
of class, object and statechart diagrams is translated into a
model expressed in an intermediate format suitable as in-
put for model checking and test generation tools. It follows
a pragmatic, industrial approach with a clear focus on the
test selection problem, but with less emphasis on UML for-
mal semantics. In contrast, we follow a ’Semantics-first’
approach (also) with respect to conformance testing. Sim-
ilarly, in [15] emphasis is put primarily on support tool im-
plementation. Other approaches to automatic test genera-
tion include [19] that describes the use of the CASE tool
AutoFocus. The authors emphasize the need for a formally
defined semantics and use state transition diagrams that re-
semble a subset of the UML-RT, but it seems there is no for-
mal relation between their diagrams and the subset of the
UML-RT. Automated test generation has been developed
also for classical Harel statechart diagrams, e.g. [2], which
semantically differ considerably from UMLSCs (e.g., a dif-
ferent priority schema as well as a different semantics for
the input queues are used).

The paper is organized as follows: in Sect. 2 IOLTSs
are defined and a running example is introduced showing
how IOLTSs can be used as semantic model for UMLSCs.
The notion of conformance and the formal definition of the
conformance relation are given in Sect. 3, together with
the formal definition of the notion of test case and an ac-
count of what it formally means for a system to pass a
test case and/or a test suite. The test case generation algo-
rithm is defined in Sect. 4 where its completeness theorem
is also provided. The application of the algorithm is illus-
trated by the derivation of some test cases for the example
of Sect. 2. Some conclusions and lines for future research
are discussed in Sect. 5. The proofs of the results presented
in this paper can be found in [7], where all technical details

of the operational semantics definition are given as well.

2. I0LTSsand UMLSCs

In this section we summarize the basic definitions con-
cerning IOLTSs, which are necessary for developing the no-
tions of conformance and conformance testing. The exam-
ple of Fig. 1 shows the IOLTS (b) of a simple UMLSC (a).
It will be briefly discussed in Sect. 2.1 and will be used
as the running example throughout the paper. The formal
definition of the operational semantics of UMLSCs based
on IOLTSs is outside the scope of this paper. The inter-
ested reader is referred to [7]. Here we only point out that
the IOLTSs semantics of UMLSCs is essentially the same
as that proposed in [13]. The only difference from [13] is
the way stuttering is dealt with. In the context of UMLSCs,
stuttering occurs when no transition of the UMLSC is en-
abled by the current event e in the current (global) state o
of the underlying state-machine. In the semantics proposed
in [13] no step-transition with input label e leaves ¢. Thus,
the absence of reaction on input e is modeled implicitly by
the absence of corresponding transitions. This approach is
quite standard in the context of general testing theory. In
the IOLTSs semantics proposed in [7], instead, stuttering is
modeled explicitly: in the above situation, a step-transition,
with input label e and a special output symbol X, denot-
ing stuttering, leaves o and points back to o2.

As in [13], we consider a subset of UMLSCs, which in-
cludes all the interesting conceptual issues related to con-
currency in dynamic behavior—like sequentialisation, non-
determinism and parallelism—as well as UMLSCs spe-
cific issues—like state refinement, transition priorities, in-
terlevel/join/fork transitions. More specifically, we do not
consider history, action and activity states; we restrict events
to signals without parameters (actually we do not interpret
events at all); time and change events, object creation and
destruction events, and deferred events are not considered
neither are branch transitions; also variables and data are
not allowed so that actions are required to be just (sequences
of) events. We also abstract from entry and exit actions of
states. The definition of a sound “basic” kernel of a nota-
tion, to be extended only after its main features have been
investigated, has already proven to be a valuable and fruitful
methodology and is often standard practice in many fields
of concurrency theory, like process-algebra. We refer to e.g.
[11] for a deeper discussion on such “basic-notation-first”
and “semantics-first” versus “full-notation-first” issue.

2 This notion of stuttering is the UMLSCs analogous of quiescence in
the context of LTSs with separate input and output label sets, like in
[21]. Explicit representation of quiescence is common practice in the
study of formal conformance relations.

2.1. Basic definitions

In the following we give the basic definitions of LTS and
IOLTS and we briefly discuss the example of Fig. 1.
Definition 2.1 (LTS) A LTS S is a tuple (S,0%, L, —)
where S is the set of states with ¢° € S being the initial
state, L is the set of (transition) labelsand —C S x L x S
is the transition relation of the LTS. o

For (o,l,0") €— we write o Ly &' The notation o —»
will be a shorthand for 30". & - &'. Some standard defi-
nitions are given below 3.

Definition 2.2 For LTSS = (S,0°,L,—),0,0',0" € S,
le L,yeL*

e The transition relation — over finite sequences is
defined in the obvious way: (a) ¢ — o and (b) if
oL o' and o’ - o", theno LN a';

e The language of S is the set of all its traces:

Lan S ={ye L*|3o". 0°* L ¢'};

e The states of o after -y is the set

(0 aftery) = {0’ |0 - ¢'}. o
In this paper we will use LTSs where the labels in L are
i/o-pairs, i.e. L = Ly x Ly, for some input set L; and out-
put set Ly. For such LTSs the following auxiliary defini-
tions apply:
Definition 2.3 For LTSS = (S,0%, Ly x Ly, —),0 € S,
1€ Li,vye L*andset Z C S:

o the output of Z on i is the set
(out Z i) = U, ep{u€ Ly | o £31;
we let (OUT o «y 4) be the set (out (o after) 7);

e Sisinput enabled iff
Vo' € S,i€ Ly. 3u € Ly. o' &%,

We need similar operators as after and QUT also for sets of
traces over (Ly x Ly)*.

Definition 2.4 For ¥ C L*,i € Ly, v € L*
o the traces of F after -y is the set
(Faftery) ={v' |7 € F}
o the output of F on i is the set
(out Fi) ={u € Ly | Iy. (i,u)y € F};
we let (OUT F v i) be the set (out (F after v) i). o

3 In this paper we will freely use a functional programming like
notation where currying will be used in function application, i.e.
f a1 a2... an will be used instead of f(a1,a2,...,an) and func-
tion application will be considered left-associative. Moreover, for set
X, the set of finite sequences over X will be denoted by X*; for
z € X we let x denote also the sequence in X * composed by the sin-
gle element x, while for v,~' € X* we let the juxtaposition vy’ of v
with 4/ denote their concatenation.

Definition 2.5 (IOLTS) An IOLTS labeled over Ly x Ly
isa LTS (S,0% L; x Ly, —) which is input enabled. o

The operational semantics of a UMLSC is defined in [7]
as a IOLTS, where transitions are characterized by the step-
relation. Every step-transition models the collective firing
of a maximal set of enabled non-conflicting transitions of
the UMLSC which do not violate transition priority con-
straints [18, 12, 8].

The input component of the i/o-pair of a step-transition
is a single event which represents the stimulus for the tran-
sitions to fire while the output component is a collection of
events that the UMLSC returns to the environment as (part
of) the reaction to the stimulus (the other part being repre-
sented by the change in its global state). When stuttering oc-
curs, the output component is the special symbol X. Thus,
in the remainder of this paper we will focus on IOLTSs la-
beled over L; x Ly where X, with ¥ ¢ Lj, may belong
to Ly. In the following we will often use the word “transi-
tion” both for those of UMLSCs and for the step-transitions
of their associated semantics.

In the official definition of the UML [18], the dispatch-
ing policy of events to state machines by their external envi-
ronment is not specified. In our proposals for the formal se-
mantics of UMLSCs we used a parametric abstract data type
approach for modeling the environment policy. As a conse-
quence, also the collections of events generated by (the par-
allel execution of) more than one transition within a step
have been represented by instances of such data-types.

For the sake of simplicity, in the following examples we
will model such collections of events simply as sets, since
the dispatching policy is of no conceptual influence for for-
mal test case generation.

A sample UMLSC, H, is shown in Fig. 1 (a). The set of
input events of H is Ly = {al,a2,el,e2, f1, f2,r1,r2}.
The IOLTS of H, as obtained by applying the formal op-
erational semantics definition presented in [7], is shown
in Fig. 1 (b); labels (i,u) are drawn as ¢/« in the pic-
ture. For simplicity, several stuttering loops from/to the
same state, labeled by i;/%,...,ix/¥ have been col-
lapsed to a single loop labeled by iy,...,ix/3. No-
tice that more than one output event can be generated
by a single step, as a consequence of internal paral-
lelism in H. For instance, in the transition from state 2
to state 6 of the IOLTS events el and e2 are both gen-
erated as a reaction to receiving e2. State 2 of the
IOLTS corresponds to configuration {s0, s1, s7, s8, 510}
of H. The reader can easily check that the LTS is in-
deed input enabled over L; x Ly, where set Ly is
{2,0, {a1},{a2}, {e1}, {2}, {f1}, {r1}, {2}, {el, €2}
We close this section remarking that the LTSs gener-
ated according to the UMLSCs semantics definition
proposed in [7] are finite: the number of their states is fi-
nite as well as their number of transitions.

&
&
]
@
5
)
2

el{f1)
alele2f1f2rir2/ 3

ala2,rir2/z

(b)
Figure 1. A UMLSC and its IOLTS

2.2. Pragmatics

In the context of the present work, we assume that a
specification of system behavior is given in the form of a
UMLSC H and we make reference mainly to its seman-
tics, namely a IOLTS labeled over L = L x Ly for proper
Ly and Ly, which we denote by IOLTS H. An imple-
mentation for H will be modeled by an IOLTS labeled over
L' = L} x Ly; (with L not necessarily equal to Lr). Un-
der the above assumptions, for simplicity, we often speak of
specifications over L and implementations over L'. We re-
mind the reader that ¥ ¢ L; UL’ is assumed while ¥ € Ly
(resp. ¥ € L) represents stuttering of the specification
(resp. implementation). Notice that we do not require that
IOLTSs modeling implementations are necessarily gener-
ated from UMLSCs. Any such a model can be obtained by
any means, obviously including, but not limited to the case
in which the implementation is itself a UMLSC. The above

assumptions are quite standard in the context of formal con-
formance theory and its application [21].

3. Conformance Testing and the Confor-
mance Relation

As we briefly discussed in the previous section, from our
point of view, both specifications and implementations are
modeled as IOLTSs. A discussion on the adequacy of LTSs
as models for specifications and implementations is outside
the scope of the present paper. The interested reader is re-
ferred to [22].

Under the above modeling assumption, one of the most
successful formal conformance relations is the ioco relation
proposed by Tretmans [22]. Informally, for specification S
and implementation §’, S’ ioco S means that S’ can never
produce an output which could not be produced by S “in
the same situation”, i.e. after the same sequence of steps.

In [22], inputs and outputs are “irregularly” scattered
throughout the LTS, and a “quiescence” transition from a
state means that in this particular state no output is produced
by the system. We remark that, in such an approach, input
is not (always) required in order to produce some output.
In our setting, there is a clear causal relation between in-
put and related output. They both appear in the same transi-
tion. A stuttering transition in a given state—actually a stut-
tering loop—is labelled by (¢, ¥), which means that in that
state the system produces no output, or better, does not re-
act at all, on input i.

On the basis of the above considerations, with particu-
lar reference to the role played by the input events of transi-
tions, we give the following definition of our conformance
relation. We define it for generic LTSs over i/o-pairs, al-
though we will use it only for input-enabled ones. Finally,
we point out that we actually define a class of conformance
relations, in a similar way as in [21]. The class is indexed
by a set F of traces which determines the discriminatory
power of the relation. Such a parametric definition turns out
to be of technical help in the definition of the test case gen-
eration algorithm in the next section and in the proof of its
properties. The definition of the Conformance Relation CZ,
follows:

Definition 3.1 For LTSs S = (S,0°,L; x Ly,—), 8" =
(8',0% Ly x Ly, —"Yand F C (Lyx Ly)*: S' €, S
iffVy € F,i € L;. 0UT 6 i COUT 0° 7 i o

In the following we will let C_, (i.e. “conforms to”) denote
E(Lan S)__,

C we remind that Lan S denotes the language of
S—and we will mainly focus on C_,. Intuitively, S' C_, S
means that S’ can never produce an output which could not
be produced by S in the same situation, i.e. after the same
i/o sequence and the same input. In general, it is not re-
quired that L; = LY: for partial specifications we have that

L; C L%, while for incomplete implementations we have
that L, C Ly; The case that L; N L, = () does not make so
much sense. Notice that when ¥ € L the above definition
implies that S’ may produce no output at all due to stutter-
ing only if S can do so. This is also the case in [21, 22] but
its technical definition has been adapted here for UMLSCs.

In the next section we will define the test case generation
algorithm. Before we can proceed, however, we need to de-
fine precisely what a test case is and what testing an im-
plementation against such a test case means. The remainder
of this section will be devoted to these definitions, which
are inspired by those given in [13]. The basic notions be-
hind them have been introduced in [9] and [17].

Intuitively, a test case is a specially customized ‘environ-
ment” which interacts with the implementation under test
by providing it with an event, collecting all the output gen-
erated by the implementation as a reaction to that event, an-
alyzing its output and behaving accordingly: in particular
it may (i) report success and/or (ii) provide the implemen-
tation with a new event and wait for the new related out-
put and so on, or (iii) decide to stop testing. It is important
to point out that, after providing the implementation with
an event, the test case must be prepared to receive any pos-
sible outcome of the machine. If the implementation is an
IOLTS over Ly x Ly, such outcome can be any element of
Ly.

Definition 3.2 (Test Case) A Test Case 7 over Ly x Ly
is a tuple (Ty,v°, Ty, Ly, Ly, —) where Ty is the set
of output states, with v € Ty being the initial (output)
state, Tt C Ly — Ty is the set of input states, each in-
put state being a total function from L to output states. Fi-
nally —C (TU x L x T[) U (TU X {T,W} X TU) is the
transition relation, with (L; U Ly) N {r, W} = 0. o

A test case is similar to a transition system where some
states—namely the input states, i.e. states in which
the test case is supposed to get some output from the
implementation—are actually total functions from Ly to
output states. Totality guarantees that any output of the im-
plementation is accepted by the test case for analysis
in that state and, on the basis of the particular value re-
ceived, the test case will move to the next output state. No-
tice that ¥ € Ly makes test cases able to detect stuttering.
It is also worth pointing out here that, although for gener-
ality in the above definition an input state is a function in
Ly — Ty, for any practical purposes it is sufficient to con-
sider finite functions [13]. Output states are those in which
the test case can (i) produce specific events to be deliv-
ered to the implementation, or (ii) silently move, via T,
to other (output) states—thus a test case can be inter-
nally non-deterministic—or (iii) produce the special ac-
tion W by which the test case reports success. We say that

a test case 7 is finite whenever Ty, T; and — are fi-
nite sets.

Testing an IOLTS over Ly x Ly against test case 7~ amounts
to the Experimental System they characterize:

Definition 3.3 (Experimental System) For IOLTS
S = (S,0°,L;y x Ly,—) and test case
T = (Ty,v°, Ty, Ly, Ly, —>) , the experimental system
< T,8 > is the transition system (Ty x S, (v°,0°),~»).
The transition relation ~C (Ty x S) x (Ty x S)
is the smallest relation induced by the deduction sys-
tem below where ¢,0’ € S, v,v' € Ty, + € Tt and for
((v,0), (', 0")) e~ wewritev || o~ ' || o

T '
v —v

viu,awa', (tu) =2
vi|jo~dle

vlo~o o

The Success set of the experimental system is the set {v €
Ty | ' € Ty. v 25 0'} o

Notice that in the first rule in the above definition function ¢
is applied to u to obtain the next (output) state of v, namely
v'. The effect of silent moves of test cases is defined by the
second rule. Test runs are modeled by computations:

Definition 3.4 (Computations) A computation of experi-
mental system < 7, S > is a sequence of the form:

U0||00’\’>’U1||01’\'>U2||0'2’\'>...’Uk||0'k’v>...

which is maximal, i.e. either it is infinite or it is finite with
terminal element v, || o, which has the property that
U || o ~ 0" || &' for no pair o', o'. vy and oq are the
initial states of 7 and S. o

We let Comp(7,S) denote the set of all computations of
< T,S >. Acomputation is successful iff vy € Success for
some k > 0.

A verdict is the result of testing a system S against a test
case 7. The test is passed if all computations are success-
ful:

Definition 3.5 (Verdict) The verdictV of 7 on S is defined
as follows:

pass if Comp(7,S) contains only
successful computations
fail otherwise

VTS=

o

A test suite is a set of test cases. The verdict function is
extended to test suites in the obvious way; for test suite 7'S

pass ifV7T € TS. VT S = pass

VISS= { fail otherwise

The following definition relates test suites to specifications
using conformance relations and introduces the notions of
sound and exhaustive test suites.

Definition 3.6 (Soundness and Completeness) Given
specification S and test suite 7'S

e TS is sound w.rt. S and C7, iff S’ CZ S implies
VTS S = pass, for all implementations S';

e TS is exhaustive w.rt. S and CZ, iff V TS &' = pass
implies S’ CZ, S, for all implementations S’.

We say that a test suite is complete if it is both exhaustive
and sound. o

4. Automatic Test Case Generation

In this section we define the test case generation algo-
rithm. The algorithm generates test cases written in a lan-
guage introduced in [13], which is a mix of process al-
gebra (guarded action prefix, choice, and process defini-
tion/instantiation) and a simplified version of the lambda-
calculus.

4.1. The test language

Let I E be a set of events and O.S be a set of possible out-
putssuchthat > € OS\IE and (IEUOS)N{r,W} =
The abstract syntax of output test expressions ¢/, resp. input
test expressions Z, of the language is given below, where
e€ IEisanevent, o € {7,W}, U C OS, P and z are
test and input variables respectively, g is a boolean expres-
sion of the form “z = I forT" € OS or “z ¢ X” for
X C OS. The notion of free (input) variable is the same
as in lambda-calculus. Brackets as well as proper indenta-
tion will be used whenever necessary.

Uz=0d|leT|asU|g=>U|U+U|P

Tua=Ax:UU

A test case specification consists of a pair (i, U) where U
is an output test expression and U C OS. We will require
that no input variable occurs free in I/ and that a proper test
definition is associated with any test variable occurring in
U in the context where the test case specification is used.
Moreover, all input test sub-expressions of &/ must use the
same set U in their defining lambda-expression.

The test § performs no action. Expression e; Z offers event
e and then behaves like Z which is an input test expres-
sion, namely a function. Such a function will be applied to
the output produced by an implementation under test in an
experimental system (see Def.3.3 in Sect. 3). The specific
(output) state resulting from the application is obtained ac-
cording to the semantics of input test expressions, as given
by the following rewrite rule for function application:

Az :UU) T =U[T /]

el 57T a;d =S U

Uu-tye U-y¢
U+ ¢ U+uU-5¢
Uu-e¢ P=UUS¢

TRUE=U - ¢ Ny

Figure 2. Test Expressions Operational Se-
mantics

where /[I"/ z] denotes I/ where all free occurrences of z are
simultaneously replaced by I'. Notice that the above rule is
a simplification of 8-reduction of the lambda-calculus since
T is just an element of O.S: It cannot contain variables or
lambda-expressions. Expression a; U produces « and then
behaves like /. Notice that o can be either 7 or the success
action W, so no interaction with implementations can take
place (see again Def.3.3 in Sect. 3). In order for a guarded
action prefix to proceed it is necessary that the guard evalu-
ates to true. The choice expression U; + Us behaves as U,
or Us. Finally, if P := U is the definition for P, P behaves
like U.

The operational semantics of test case specifications is
given in a similar way as for process algebra, by means of
the Structural Operational Semantics rules of Fig. 2 where
u € IEU{r,W} and £ stands both for output and for in-
put test expressions.

In order to formally derive the test case denoted by a test
case specification we first need a couple of auxiliary defini-
tions where by F &/ —% £ we mean that &/ - £ is deriv-
able using the rules of Fig. 2,

Definition 4.1 (Derivatives) The derivatives of test case
specification (¢, U) is the smallest set Dy, 1) Of test ex-
pressions which satisfies the following three conditions:

1. U e ’D(u, U)!

2. if output test expression &' is in Dy, 7y and - U’
& thenalso £ isin Dy, vy;

3. if input test expression Z is in Dy, ¢y then (Z w) is in
D, vy forallu € U. o

Definition 4.2 (Labels) The labels of test case specifica-
tion (U, U) Lab(U) is defined recursively as follows:

Lab(6) =
Lab(e; I) = {e}
Lab(o; U) = {a} U Lab(Uf)

Lab(g = U) = Lab(Ud)

Lab(Uy + Us) = Lab(Ur) U Lab(Us)

Lab(P) = Lab(U) where P := U is the definition for P o

We can now formally define the test case associated with
test case specification (U, U):

Definition 4.3 The test case associated with test case spec-
ification (4, U) is the test case over L = Lab(U) x U with
output states the output test expressions in D, ¢y, the ini-
tial state being ¢, input states the input test expressions
in Dy, vy and transition relation {(U',u,&) | U',E €

D(qu),'_uIL}g} o

In the sequel we will omit set U in test case specification
(U,U) when U is clear from the context. Moreover we will
identify (U, U) with the test case it denotes.

The following is an example of a very simple test case
overIxU,wherel = {r;}andU = {X,{a1},{e1}, {r2}}
which starts by sending r; to the implementation under test
and then, if the latter responds with {a; } it reports success,
otherwise it stops without reporting success:

ri; e U z={a1} = 1, W;é
+
z ¢ {{a1}} =6

4.2. The Test Case Generation Algorithm

The definition of the test case generation algorithm T'D
is given in Fig.3. Note that 7D is non-deterministic. Given
L =Ly xLyand L' = L} x Ly; and F C L*, af-
ter a finite number of recursive calls, TD returns a test
case U in the test case language. The intuitive behaviour
of the algorithm is rather simple; at each call, the algo-
rithm generates a single test case. In particular, at each
call, it may (non-deterministically) either generate the test
which always reports success (7; W; d), after which it ter-
minates, or generate a test case as follows. An event e is
(non-deterministically) chosen which belongs both to the
input alphabet of the specification (L) and to that of the
implementation (L) and such that the set out F e =
{T'1,...,T'x} is non-empty (notice that such an e exists
when dealing with IOLTSs associated to UMLSCs, due to
input-enabledness; see detailed proofs in [7]). Intuitively,
I'y,..., 'y are the expected correct values for the output of
the implementation under test as reaction to input e. Con-
sequently, a test case is generated which first sends e to the
implementation and then, if the output of the implementa-
tion does not match any of the expected values 'y, ..., Ty,
it stops without reporting success, otherwise, assuming that
the output of the implementation is T';, it continues as U;.
Notice that test case U; is generated by a recursive call of
the algorithm.

The set of all test cases which can be generated from
F, L and L' by repeated application of T'D is denoted by
(TDr1 F).

For L = L; x Ly and L' = L} x L}, we define the follow-
ing non-deterministic algorithm which, given set 7 C L*, after a
fi nite number of recursive calls, returns a test case in the test lan-
guage.

TDL,LI .7: =

Non-deterministically choose between options (1) and (2) below
1) generate “r; W; 4"

2) generate ‘e;Ar: Ly x=T1 = Uh

+

+

=T = U

+

x¢{1“1,...,1“k} = ¢

where:

e is non-deterministically chosen in L; N L}

such that out F e = {T'1,...,I'x} # 0, and

U; € TDy 1 (F after (e,I';))forj=1,...,k

Figure 3. The Test Case Generation Algo-
rithm

Notice that, by construction, test cases generated by T'D

have a tree-like structure; there is no looping possibility in
their execution.
The following lemma easily follows from the definition
of the algorithm, and the above remark, by observing that
sets {I'y, ..., 'y} are finite when F is the language of the
IOLTS of a UMLSC:

Lemma 4.1 For every UMLSC H with IOLTS H over
i/o-pair set L, and i/o-pair set L', every test case U €
TDy, 1 (Lan(IOLTS H)) is finite. o

Typically Lan(IOLTS H) is an infinite set. This does
not affect the effectiveness of T'D since, at each recursive
step, it uses only the first elements of the traces in the set,
postponing the use of their tails to the next recursive calls.
Thus, proper lazy techniques can be used for the evalua-
tion of Lan(IOLTS H). Notice also that the set of all test
cases generated using T'Dy, ; on Lan(IOLTS H) is infi-
nite. Each individual test case is however finite. As an im-
mediate consequence of the above lemma and the fact that
the test cases generated by the algorithm do not contain
loops, we have that all computations involving test cases
inTDy, 1 (Lan(IOLTS H)) are finite.

The following theorem establishes completeness of the
test case generation algorithm, when applied to (the lan-
guage of) a specification IOLTS H:

Theorem 4.1 For every UMLSC H with IOLTS H over
i/o-pair set L, and i/o-pair set L', the test suite

TDy, 1 (Lan(IOLTS H))

alelrir2/z

al/{r2}

el.e2,rl,r2/ ZC

Figure 4. An implementation

rl/{al} alele2r2/

Uy mepdz:U((z={e1} = Us) + (z & {{e1}} = 9))
Us =30z U 2= {ar} = Us

+

r=Y=>U,

+

z ¢ {{a1},X} =6
Us = a; x U ((z = {r2} = Us) + (z & {{r2}} = 9))
Uy =T; W30

Figure 5. A test case generated from the run-
ning example

is complete w.r.t. IOLTS H and C_. <

The above important result means that if a test case gener-
ated by the algorithm for a certain specification H reports
a failure when running against an implementation, then we
can be sure that the latter does not conform to the specifica-
tion H; moreover, if an implementation does not conform
to specification H, then a test case can be generated by the
algorithm which will report failure when executed against
such an implementation.

We close this section with an application of test cases
derivation to our running example. Let us consider again
the specification S of Fig. 1 and the implementation S’
over LII X LIU with LII = {01,61,62,7“1,7‘2} and LIU =
{%,{a1},{e1}, {r2}} givenin Fig.4, which is obviously an
incomplete one. We can apply the algorithm in order to ob-
tain, among others, the test case /; shown in Fig. 5.

It is easy to see that V Uy S’ = pass. On the other hand,
S§' Z., S, and this can be checked using the test case U5
shown in Fig. 6, which is also derived using the algorithm.
Clearly V UsS' = fail.

5. Conclusions and Future Work

In this paper we proposed a formal conformance test-
ing relation for UMLSCs and an automatic test case gener-
ation algorithm. The algorithm has been proven complete,
i.e. sound and exhaustive.

Us :=ri; A U' (2 = {ar} = Us)+(z & {{a1}} = 9))

Figure 6. Another test case generated from
the running example

The conformance relation and its test case generation al-
gorithm are based on an operational semantics for UMLSCs
which has been proven to fulfill major behavioral require-
ments stated in the official UML definition [8, 7]. As we al-
ready pointed out, the main contribution of the present pa-
per is to set the theoretical basis for test case generation in
a conformance testing setting. In order to use the test gen-
eration algorithm in practice proper test selection strategies
are needed which will be a subject of our future work. Some
work on test selection in a formal test derivation framework
is already present in the literature (see, e.g. [4, 1, 6]), and in
particular random test case selection seems to be a promis-
ing option. In fact it nicely fits with the structure of our
algorithm; what is needed is to replace non-deterministic
choices with random, coin-flipping, ones. Moreover, ran-
dom test selection is receiving more and more attention due
to the high coverage that it can provide, using efficient au-
tomated tools. Another promising line of research is the use
of model-checking techniques for enhancing automatic test
case generation, which we are currently investigating [5].
Tightly connected to the above research lines is the area of
efficient implementation of test generation and selection al-
gorithms. There are already tools available to that purpose,
e.g. AutoFocus [19] and TGV/AGEDIS [20], and one of our
next steps will be an investigation on the possibility of con-
necting our work with such tools.

In the present paper we made no assumption on how test
cases are “implemented”, i.e. on their actual presentation.
They might be represented again as UMLSCs or as UML
Sequence Diagrams or just as code in a proper program-
ming language. This last possibility could allow for the im-
plementation of test runs using proper automatic tools, to be
integrated with the test case generation tools, which is our
ultimate goal.

Another line of future research deals with the extension
of the subset of UMLSCs we take into consideration. One
necessary extension consists in allowing the use of UML
specifications consisting of collections of UMLSCs inter-
acting via queues, which brings to distributed testing. The
use of a test language like the one proposed in the present
paper, which is easy to extend in order to allow control com-
munication between the experimenters to take place, greatly
facilitates the task of specifying complex distributed test
cases and to developing a suitable extension of testing the-
ory to the distributed case.

Another useful extension is the introduction of data val-
ues and variables in UMLSCs. We have already a semantics
definition for such an extension, fully developed in the con-
text of the the PRIDE project [10]. Of course (infinite) data
sets pose further problems in the test selection procedures.

References

[1]

(2]

(3]

[4]

5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

J. Alilovic-Curgus and S. Vuong. A metric based theory of
test selection and coverage. In A. Danthine, G. Leduc, and
W. P., editors, Protocol Specifi cation, Testing, and \erifi ca-
tion, XIlI, pages 289-304. IFIP WG 6.1, North-Holland Pub-
lishing Company, 1993.

K. Bogdanov, M. Holcombe, and H. Singh. Automated test
set generation for Statecharts. In D. Hutter, W. Stephan,
P. Traverso, and M. Ullmann, editors, Applied Formal Meth-
ods, volume 1641 of Lecture Notes in Computer Science,
pages 107-121. Springer-Verlag, 1998.

B. Bosik and M. Umit Uyar. Finite state machines based for-
mal methods in protocol conformance testing: from theory
to implementation. Computer Networks and ISDN Systems.
North-Holland, 22:7-33, 1991.

E. Brinksma, J. Tretmans, and L. Verhaard. A framework
for test selection. In B. Jonsson, J. Parrow, and B. Pehrson,
editors, Protocol Specifi cation, Testing, and Verifi cation, XI,
pages 289-304. IFIP WG 6.1, North-Holland Publishing
Company, 1991.

A. Fantechi, S. Gnesi, and A. Maggiore. Enhancing test
coverage by back-tracing model-checker counterexamples,
2004. (submitted for publication).

L. Feijs, N. Goga, S. Mauw, and J. Tretmans. Test selection,
trace distance and heuristics. In IFIP 14th International Con-
ference on Testing of Communicating Systems, 2002.

S. Gnesi, D. Latella, and M. Massink. Formal conformance
testing UML Statechart Diagrams Behaviours: From theory
to automatic test generation. Technical Report CNUCE-
B04-2001-16, Consiglio Nazionale delle Ricerche, Istituto
CNUCE, 2001. (Full version).

S. Gnesi, D. Latella, and M. Massink. Modular semantics for
a UML Statechart Diagrams kernel and its extension to Mul-
ticharts and Branching Time Model Checking. The Jour-
nal of Logic and Algebraic Programming. Elsevier Science,
51(1):43-75, 2002.

M. Hennessy. Algebraic Theory of Processes. MIT Press,
Boston, 1988.

Intecs and CNR-CNUCE. PRIDE Definition of Changes in
UML Notation. Technical Report PRIDE Deliverable 1.2,
PRIDE, 02.

D. Latella, I. Majzik, and M. Massink. Automatic verifi-
cation of a behavioural subset of UML statechart diagrams
using the SPIN model-checker. Formal Aspects of Comput-
ing. The International Journal of Formal Methods. Springer-
Verlag, 11(6):637-664, 1999.

D. Latella, 1. Majzik, and M. Massink. Towards a for-
mal operational semantics of UML statechart diagrams.
In P. Ciancarini, A. Fantechi, and R. Gorrieri, editors,

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

IFIP TC6/WG6.1 Third International Conference on For-
mal Methods for Open Object-Oriented Distributed Systems,
pages 331-347. Kluwer Academic Publishers, 1999. ISBN
0-7923-8429-6.

D. Latella and M. Massink. A formal testing framework for
UML Statechart Diagrams behaviours: From theory to au-
tomatic verification. In A. Jacobs, editor, Sxth IEEE Inter-
national High-Assurance Systems Engineering Symposium,
pages 11-22. IEEE Computer Society Press, 2001. ISBNO-
7695-1275-5.

D. Latella and M. Massink. On testing and conformance re-
lations of UML Statechart Diagrams Behaviours. In P. G.
Frankl, editor, Proceedings of the ACM SIGSOFT 2002 In-
ternational Symposium on Software Testing and Analysis,
pages 144-153. Association for Computing Machinery -
ACM, 2002. ACM Software Engineering Notes 27(4), ISBN
1-58113-562-9.

J. Le Traon, T. Jeron, J. Jezequel, S. Pickin, C. Jard, and
A. Le Guennec. System test synthesis from UML models
of distributed software. In D. Peled and M. Vardi, editors,
Formal Techniques for Networked and Distributed Systems
- FORTE 2002, volume 2529 of Lecture Notes in Computer
Science. Springer-Verlag, 2002.

D. Lee and M. Yannakakis. Principles and Methods of Test-
ing Finite State Machines - A Survey. Proceedings of the
IEEE, 84(8):1090-1123, 1996.

M. Massink. Functional Techniques in Concurrency. PhD
thesis, University of Nijmegen, Feb. 1996. ISBN 90-
9008940-3.

Object Management Group, Inc. OMG Unified Mod-
eling Language Specification - verson 1.5, 2003.
http://www.omg.org/cgi-bin/doc?formal/03-03-01.

A. Pretschner, O. Slotosh, H. Lotzbeyer, and E. Aiglstorfer.
Model based testing for real: The Inhouse Card study. In 6th
International ERCIM Workshop on Formal Methods for In-
dustrial Critical Systems, Paris, pages 79-94, 2001.

The Agedis Project. The Agedis Home Page, 2003.
http://ww. agedi s. de/ i ndex. shtnm .

J. Tretmans. Test generation with inputs, outputs and repeti-
tive quiescence. Software - Concepts and Tools, 17(3):103—
120, 1996.

J. Tretmans. Testing concurrent systems: A formal approach.
In J. Baeten and S. Mauw, editors, Concur '99, volume
1664 of Lecture Notes in Computer Science, pages 46-65.
Springer-Verlag, 1999.

