
Requirements Validation by Lifting Retrenchments in B

Michael Poppleton
School of Electronics and Computer Science

University of Southampton
Southampton SO17 1BJ, UK

mrp@ecs.soton.ac.uk

Richard Banach
Department of Computer Science

University of Manchester
Manchester M13 9PL, UK

banach@cs.man.ac.uk

Abstract

Simple retrenchment is briefly reviewed in the B spec-
ification language of J.-R. Abrial [1] as a liberalization
of classical refinement, for the formal description of ap-
plication developments too demanding for refinement. The
looser relationships allowed by retrenchment between adja-
cent models in the development process may capture some
of the requirements information of the development. This
can make requirements validation more difficult to under-
stand since the locus of requirements should be the models,
and not their interrelationships, as far as possible. Hence
the universal construction of [6], originally proposed for
simple transition systems, is reformulated in B, in order
to “lift” a given retrenchment conceptually, thus retract-
ing such requirements information back to the level of ab-
straction of the abstract, ideal model. Examples demon-
strate the cognitive value of retracting requirements to the
abstract level, articulated in a well-understood formal lan-
guage. This is also seen to yield a more understandable way
of comparing alternative retrenchment designs. Some new B
syntax in the pre- and postcondition style is presented to fa-
cilitate expression of the lifted requirements.

1. Introduction

Refinement has for a long time been a well respected
method for developing concrete models and executable
code from (not necessarily executable) specifications which
are expressed using mathematics that is unconcerned with
the actual capabilities of any real computing device [4, 5,
13, 15]. The robustness and reliability of the refinement
technique come from the relatively strong, precise condi-
tions that have to hold before a refinement can be asserted
between two models of a system. A retrieve, or abstrac-
tion relation is defined between the data types of the first,
more abstract model, and the second, more concrete and al-
gorithmic model. The retrieve relation defines how the con-

crete data type represents the abstract one. Essentially, re-
finement requires that any concrete behaviour simulates any
corresponding abstract behaviour by preserving the retrieve
relation. Therein lies a problem, because many situations
in which developers of high consequence and complex sys-
tems might wish to faithfully use refinement to express (and
verify) their development route, feature a series of models
whose desired relationships (desired that is, from an engi-
neering perspective) do not satisfy the exacting conditions
for refinement. Examples of such model combinations are
easily found in modern distributed systems, e.g. [16], and
have been examined in a retrenchment setting: [12] consid-
ers the construction of feature-oriented specifications with
inconsistency, and [19] is a control engineering example
which describes the inherently approximate and varying re-
lationship between continuous- and discrete-time models.
In the face of this, developers either abandon any attempt to
use refinement, contenting themselves with less formal but
more flexible (and unfortunately less rigorous) techniques,
or they deliberately choose to fail to meet the criteria for re-
finement in various ways, perhaps by working with models
that represent reality less faithfully than might otherwise be
desired.

Retrenchment [9, 10, 11, 8] was introduced to make
available a formal technique for addressing such situations,
which while lacking the guarantees that refinement offers
(since one cannot have both the rigour of refinement and
the flexibilty that developers crave), is nevertheless still for-
mal, and thus allows some formal statements to be made
about scenarios in which such a level of rigour would oth-
erwise be unavailable. Retrenchment achieves this goal by
weakening the main proof obligation (PO) of refinement in
a way that enables it to express relevant facts about the more
general situations envisaged. The weakening involves intro-
ducing extra relations into the PO (which, for refinement
is roughly speaking expressed via a single relation, the re-
trieve relation). These are the within and concedes relations,
whose job it is to accomodate the lack of precise adherence
to the refinement PO criteria.

Of key importance is the need for retrenchment and re-
finement to work smoothly together, so that the power of the
developer’s arsenal of tools amounts to more than the sum
of its parts, and this paper is concerned with some aspects
of this interworking. In [6], it is shown that an arbitrary re-
trenchment, from an abstract model Abs to a concrete model
Conc, can be factored into firstly a retrenchment from Abs
to a model Univ that preserves the level of abstraction of
Abs (in a certain well defined sense), and secondly a refine-
ment from Univ to Conc, that bridges the abstraction gap of
the original retrenchment, such that the composition of the
two recovers the original retrenchment from Abs to Conc.
This achieves a useful separation of concerns given the great
flexibility of the retrenchment notion.

To state this more precisely, for a putative development
step to be captured via a retrenchment from Abs to Conc,
one can start by concentrating on the requirements1 that the
development step is intended to address, without worrying
about issues around levels of abstraction. It will not be nec-
essary to avoid requirements information appearing in the
within and concedes relations of the retrenchment, which
give the semantic relationship between the models. One can
use the construction in [6] to factorize the given retrench-
ment. The factorization lifts this requirements information
to the original level of abstraction and includes it explic-
itly in the syntax of the constructed operation specification
in Univ. It is well understood that requirements can reside in
a refinement relation: for example, [11] shows how refine-
ment of a specification by reduction of nondeterminism can
introduce behavioral properties not explicitly specified. The
requirement of defined approximate representation of ab-
stract (real-world) by concrete (computer) state, carried by
evolving retrieve and concedes relations in retrenchment,
was demonstrated in arithmetic [18] and control engineer-
ing [19] applications.

In this paper, we reinterpret the factorization construc-
tion of [6], originally developed for simple transition sys-
tems, within the context of the B-Method. This means pay-
ing attention to a number of matters of technical detail in
which the two approaches differ. For instance the meaning
of the retrieve relation needs to be reexamined, and the dis-
tinctive role of the B-Method’s machine invariants must be
incorporated. The meaning of a transition step needs to be
interpreted within B.

Section 2 gives a brief introduction to the syntax, seman-
tics and refinement method of B. In Section 3, the rationale
for and definition of retrenchment is reviewed, as a liber-
alization of refinement. Section 4 gives some new syntax
for B specification in a pre-postcondition style. The lifting
construction of [6] is reformulated in the B terminology in

1 Our use of the term “requirements” is general: it comprises, and does
not distinguish between, functional and nonfunctional requirements,
implementation and environmental constraints.

Section 5. In Section 6, we consider two small example re-
trenchments which we use to illustrate the requirements val-
idation ideas above. Section 7 concludes.

2. Specification and refinement in B

The B language was defined by the B-Book [1] and is
disseminated by textbooks such as [21]. A wide-spectrum
language covering specification and programming, it is sup-
ported by full-lifecycle verification toolkits such as Atelier
B [2], and has been instrumental in successful safety-critical
system developments such as signalling on the Paris Metro
[14].

B has as its central construct the generalized substitu-
tion: [S]R (read “S establishes R”, and more convention-
ally written wp(S, R)) is the weakest precondition under
which program S is guaranteed to terminate satisfying post-
condition R. Specifications, in the style of nondeterminis-
tic programs, are written using constructors inspired by Di-
jkstra’s Guarded Command Language, called the General-
ized Substitution Language (GSL). The basic operation is
the simple substitution (assignment, in procedural program-
ming terms): for replacement of free variable x in formula R
by expression E we write [x := E]R. The remaining simple
constructors of B are axiomatised (for unbounded choice z
does not appear bound, i.e. is nonfree in R; written z \ R):

[skip]R ≡ R skip

[P | S]R ≡ P ∧ [S]R precondition

[S [] T]R ≡ [S]R ∧ [T]R bounded choice

[P =⇒ S]R ≡ P⇒ [S]R guard

[@z • S]R ≡ ∀ z • [S]R z \ R unbounded choice (1)

The precondition constructor explicitly strengthens the ter-
mination set, guard strengthens the feasibility set, bounded
choice gives demonic nondeterministic choice between two
operations, and unbounded choice a universally quantified
demonic choice over all operations indexed on some (exter-
nal) variable.

The action of an operation S, with state variable (list) x,
on predicate R(x) can be expressed in the following normal
form theorem, where P is a predicate in variable x, Q is a
predicate in variables x and x′ (x′ distinct from x):

[S]R ≡ P ∧ ∀ x′ • (Q⇒ [x := x′]R) (2)

This decomposition into predicates P and Q is unique (mod-
ulo logical equivalence of predicates). P is called trmS (the
termination predicate: before-states from which S is guar-
anteed to terminate) and we define two transition predicates
(called the transition and step predicates respectively):

trmS =̂ P prdS =̂ P⇒ Q stpS =̂ P ∧ Q (3)

Theorem (2) gives a conventional, relational expression of
the effect of a GSL operation [S]. It interprets predicate

transformer S: from initial state x, S establishes R precisely
when S terminates at x and every x′ reachable from x un-
der S satisfies R. The B-Book gives trm, prd equivalences
(straightforwardly extensible to stp) for the GSL construc-
tors. Conversely, since

[S]R ≡ trmS ∧ ∀ x′ • (prdS ⇒ [x := x′]R)

≡ trmS ∧ ∀ x′ • (stpS ⇒ [x := x′]R) (4)

constructors of the GSL can be specified in terms of ar-
bitrary predicates: in this paper we will interpret selected
predicates as trm and stp.

The abstract syntax of the GSL is complemented by the
concrete syntax of the Abstract Machine Notation (AMN),
which includes constructs for modular structuring. Fig. 1
gives the B syntax for an abstract machine and a refining
machine. We see that the unit of modularity is the machine,
which contains inter alia a state variable (list) u, an invari-
ant predicate InvA(u) expressing type and other required
state constraints, an initialisation InitA(u), and a set of op-
erations OpA(u, i, o), which are expressed in terms of state,
input and output variables.

Refinement is the classic model-based formal method for
the verifiably correct stepwise construction of a program
from its specification; see [13] for a thorough historical ac-
count. Refinement in B (Fig. 1) constitutes a change to more
concrete, program-oriented state data types, and the addi-
tion of algorithmic structure to the operations. We give a
generalization of standard B refinement, called IO-filtered
refinement from [10], in which the types of IO elements
may change across the refinement step: machine Abs with
state u ∈ U has local invariant InvA; refining machine Conc
has state w ∈ W and local invariant InvC. State w repre-
sents state u through retrieve relation K. For the operation
refinement of OpA to OpC, within relation ROp(i, k) relates
concrete inputs k ∈ K to abstract inputs i ∈ I, and output re-
lation VOp(o, q) relates outputs o ∈ O to q ∈ Q.

MACHINE Abs(a)
VARIABLES u
INVARIANT InvA(u)
INITIALISATION InitA(u)
OPERATIONS

o←− OpA(u, i, o) · · ·
END

MACHINE Conc
VARIABLES w
INVARIANT InvC(w)
RETRIEVES K(u, w)
INITIALISATION InitC(w)
OPERATIONS

q←− OpC(w, k, q) · · ·
WITHIN ROp(i, k)
OUTPUT VOp(o, q)

END

Figure 1. B machine and refinement syntax

The basic machine consistency proof obligations (POs)
are initialisation (the initialisation establishes the invariant)

and operation consistency (given invariant and operation
termination, then the operation establishes the invariant):

[InitA]InvA InvA ∧ trmOpA ⇒ [OpA]InvA (5)

The refinement POs generalise the classical forward sim-
ulation rules [13] and are expressed as follows. Two ab-
stract machines Abs and Conc have a total onto retrieve rela-
tion K(u, w). For every refining operation pair (OpA, OpC)
there are total onto relations ROp(i, k) (within) and VOp(o, q)
(output). If for every such pair the following POs (6) hold,
then Abs is refined by Conc (written Abs v Conc): ini-
tialisation refinement (for every concrete initial step, there
is an abstract initial step that establishes the retrieve re-
lation) and operation refinement (for any concrete step of
OpC, there is some abstract step of OpA that establishes
the retrieve and output relations). As shorthand we write
OpA vK,ROp,VOp

OpC. The unfamiliar [· · ·]¬ [· · ·]¬ syn-
tax expands to a ∀−∃ sequence of quantifiers as per (2):

[InitC]¬ [InitA]¬ K
InvA ∧ K ∧ InvC ∧ trmOpA ∧ ROp

⇒ trm(OpC) ∧ [OpC]¬ [OpA]¬ (K ∧ VOp) (6)

As mentioned above, this work generalizes standard B re-
finement slightly, not least in allowing IO types to change.
Moreover, standard B refinement has some redundancy: the
usual REFINEMENT construct defines a machine in the
product space Abs × Conc. Our definition makes the re-
finement a distinct machine with access to abstract frame
u, i, o. Since the construction we exploit is itself located in
the product space Abs × Conc, use of the standard defini-
tion in defining the refinement of Univ to Conc would result
in unacceptable proliferation of product constructions.

3. From refinement to retrenchment

Simple retrenchment weakens the retrieve relation be-
tween two levels of abstraction: loosely speaking, it
strengthens the precondition, weakens the postcondi-
tion, and introduces mutability between state and IO at the
two levels. The precondition is strengthened by a within
clause between abstract and concrete before-state and in-
put, restricting the joint frame to the precise region
where the retrenchment relation is to be posited. Com-
pare this more expressive within clause P in (7) with
ROp in (6), which simply relates input types. The post-
condition comprises a disjunction between a retrieve
relation between after-state at both levels, where refin-
ing behaviour is described, and a concession relation
between after-state and output at both levels. This con-
cession (where non-refining concrete behaviour is related
back to abstract behaviour) is the vehicle in the postcondi-
tion for describing state-output mutability. Before-state and
input may also appear in the concession as “history” in-
formation. The disjunctive concession C in (7) can be

contrasted with the conjunctive ROp in (6), which simply re-
lates output types.

The semantic definition of retrenchment is by analogy
with refinement (6). The initialisation proof obligation is
the same as for refinement. The retrenchment of OpA by
OpC w.r.t. retrieve G, within P and concession C (as short-
hand we write OpA . G,P,C OpC), is defined by the follow-
ing PO:

InvA(u) ∧ G(u, w) ∧ InvC(w) ∧ P(i, k, u, w) ∧ trm(OpC(w, k, q))

⇒ trm(OpA(u, i, o)) ∧ [OpC(w, k, q)]¬ [OpA(u, i, o)]

¬ (G(u, w) ∨ C(u, w, o, q; i, k, u0, w0)) (7)

It is easy to see that retrenchment generalizes refinement:
choose P =̂ trm(OpA) and C =̂ false in (7).

The retrenchment PO (7) should be seen as a relation
between models that methodologically extends and gen-
eralizes the refinement relation. Given an abstract model,
and a more concrete, implementation-oriented one, a refine-
ment can usually be posited over some region of the joint
before-state-input frame (which region may be so small as
to be practically useless). It is always possible to posit a re-
trenchment - a true-concession retrenchment always holds
over within clause trm(OpA) - and we may call this the
vacuous retrenchment. Hence (unless the two models are
completely unrelated) it will be possible to posit informa-
tive retrenchments over suitable selected within-concession
pairs. The PO states that, starting in the within region, ei-
ther the retrieve relation will be satisfied, i.e. simulation re-
established, or the weaker representation of the concession
relation over the joint after-state-output frame will be estab-
lished. This is a more qualified and approximate statement
than a refinement, but certainly more informative than no re-
finement at all! Finally, there may be a within region where
we can guarantee establishment of some concession with-
out considering the retrieve relation: this possibility goes
beyond simple retrenchment to the proposal of general re-
trenchment [7], which we do not discuss further here.

Thus the retrenchment approach gives a richer and more
graduated picture of the relation between two models than
pure refinement: a small, refining region, is surrounded (per-
haps, included in) a number of larger regions where defined
retrenchments hold. All are included in the universal (true-
within) region of the vacuous retrenchment.

We demonstrate the syntax of retrenchment with a sim-
ple example, rather than giving a full syntactic definition,
which is available in e.g. [10]. Fig. 2 specifies the excep-
tion retrenchment of some ideal arithmetic, addition, of the
natural numbers D-NAT to some finite natural type M-NAT.
For brevity, we make some simplifications and mix standard
abstract and concrete syntaxes, of B GSL (1), and machines
and refinement (Fig. 1) respectively. The retrenchment of
abstract OpA by concrete OpC is defined syntactically by

the addition to the text of OpC of a ramification compris-
ing the WITHIN and CONCEDES (concession) clauses.

IO mutability is demonstrated by representing ab-
stract state summand b by concrete input parameter bb
(WITHIN), and the addition of an exception status out-
put resp (CONCEDES). Ideal addition is simulated in the
concrete model provided the sum of the arguments does
not overflow, otherwise it provides exception process-
ing with the relationship of such processing to the abstract
model recorded in the concession clause.

MACHINE Divine
VARIABLES a, b
INVARIANT

a, b ∈ D-NAT
INITIALISATION · · ·
OPERATIONS

DAdd =̂
a := a + b

· · ·
END

MACHINE Mundane
RETRENCHES Divine
VARIABLES aa
INVARIANT aa ∈ M-NAT
RETRIEVES aa = a
INITIALISATION · · ·
OPERATIONS

resp←− MAdd(bb) =̂
bb ∈ M-NAT |

aa + bb ≤ Max
=⇒ aa := aa + bb || resp := Ok

[] aa + bb > Max
=⇒ resp := Fail

WITHIN bb = b
CONCEDES C(a, b, aa, resp; bb, a0, b0, aa0)
· · ·

END

Figure 2. Retrenchment of natural addition

The within and concession relations, like the retrieve re-
lation, are matters of design choice. Here, representation of
abstract state b by concrete input bb requires their identifica-
tion in WITHIN. One possible concession design for clause
C in Fig. 2 is

CAdd1(a, b, aa, resp, bb, a0, b0, aa0) =̂

aa0 + bb ≤ Max ∧ aa = a ∧ resp = Ok
∨ aa0 + bb > Max ∧ aa = a− b ∧ resp = Fail (8)

which is a typical exception concession pattern, total on the
before-state-input frame with a partition of two regions. The
effect of concrete behaviour on the abstraction relation be-
tween aa and a, b is described exactly, a priori in terms of
this partition. The first clause of each disjunct is effectively
a guard. The second clause gives the effect of the step on the
abstraction relation: either the concrete addition does not
overflow, and simulation (and the retrieve relation) is main-
tained, or it overflows, and simulation fails. CAdd1

specifies
that in the latter case aa stays unchanged (aa = a− b). The
third clause in each disjunct specifies the output status in-
formation to be returned.

Concession CAdd1
exploits history information in order

to be applicable over a wide (bb = b) within region. To
give a more graduated picture of the relationship between
the models in Fig. 2 as discussed above, it is in principle

possible to define both a simpler, less incisive retrenchment
and a refinement between DAdd and MAdd. A retrenchment
that does not distinguish between refining and conceding
behaviour in the manner of CAdd1

, is:

G =̂ aa = a P =̂ bb = b
C =̂ aa = a − b ∧ resp = Fail (9)

Imagine for a moment that concrete model is changed - con-
crete input bb must become concrete state - in order to de-
fine a refinement as per (6):

R =̂ aa + bb ≤ Max K =̂ aa = a ∧ bb = b
V =̂ resp = Ok (10)

4. Pre-postcondition specification in B

We present some new B syntax for manipulat-
ing stp-defined operations and their expression in a
pre-postcondition style in B.

Recalling the axioms (1) of B GSL, it is obvious that
each axiom has a corresponding pair of trm, prd state-
ments for these relational components as defined by (3);
e.g. trm(S [] T) ≡ trm(S) ∨ trm(T). The following, cor-
responding, equivalences for total-correctness stp relations
will be useful:

stp(R =⇒ S) ≡ stp(R | S) ≡ R ∧ stp(S)

stp(S [] T) ≡ stp(S) ∨ stp(T) if trm(S) ≡ trm(T) ≡ true
stp(@z • S) ≡ ∃ z • stp(S) if ∀ z • trm(S) ≡ true (11)

We recollect from [1] the definition of the “nondeterminis-
tic pre-postcondition assignment” operation, so named be-
cause it is nondeterministic and refers to variable values in
both pre- and postcondition. By x : Q we mean “assign to x
any value satisfying predicate Q”:

x : Q =̂ @x′ • ([x0, x := x, x′]Q =⇒ x := x′)

where x′ \ Q (12)

Note the syntactic difference between operation form x : Q,
with x0, x free in Q, and relational forms prd and stp, with
x, x′ free. It follows that

trm(P | x : Q) ≡ P
prd(P | x : Q) ≡ P⇒ [x0, x := x, x′]Q
stp(P | x : Q) ≡ P ∧ [x0, x := x, x′]Q (13)

and it is easy to show the following GSL operation equali-
ties2 (we may read the following as a definition of parallel
composition ||):

2 The nonfreeness sidecondition x\Q, y\P does not preclude x0 from
being free in Q, or y0 from being free in P.

P | x, y : Q ∧ R = P | (x : Q || y : R) where x \ R, y \ Q

P | (x : Q [] x : R) = P | x : Q ∨ R

P | x : Q⇒ R = P | (x : ¬ Q [] x : R) (14)

It is also easy to show the following results. Any precondi-
tion clause factors through as above3:

(x : x = x0) = skip

because prd(x : x = x0) ≡ x′ = x

(x : x = E(x0)) = x := E(x)

because prd(x : x = E(x0)) ≡ x′ = E(x)

(x : F(x0, z) ∧ E(x0, x)) = (F(x, z) =⇒ x : E(x0, x))

where z \ x (15)

5. Lifting a retrenchment to an operation
specification

We give the factorization of a B retrenchment into a re-
trenchment followed by a refinement. The result is analo-
gous to that for simple transition systems [6]. Fig. 3 shows
the construction relating the three models Abs, Conc, Univ.
We assume a retrenchment (7), i.e. OpA . G,P,C OpC, is
given between Abs and Conc, which will be factored into
the sequential composition of a retrenchment OpA . OpU

and a refinement OpU v OpC, via constructed operation
OpU in Univ.

Univ

OpA(u,i,o)

OpU(v,j,p)

retrenches(H,Q,D)

Conc

OpC(w,k,q)

Abs

retrenches (G,P,C)
refines(K,R,V)

Figure 3. Factorization of a retrenchment

Abs and Conc have state, input, and output spaces U, I, O
and W, K, Q respectively. The state, input, and output space
of Univ is V, J, P. The Univ spaces are constructed from

3 When we write E(x0) and E(x) in the same context, we mean by the

former that x \ E(x0) and by the latter [x0 := x]E(x0)

Abs and Conc as follows: V = U × W, J = I × K and
P = O × Q. The invariant on the state space V is given by:

InvU(v) = (v = (u, w) ∧ InvA(u) ∧ InvC(w)) (16)

Next, Univ has a set of operations OpU ∈ OpsU that cor-
respond to operations OpC in Conc. By the nature of re-
trenchment there are in general more OpC in Conc than
OpA in Abs. To give the transitions of Univ we first note
that OpsU comprises operations OpU in either OpsA or in
OpsU−OpsA. For an operation OpU ∈ (OpsU −OpsA),
the trm and stp predicates are defined:

trm(OpU)(v, j) = (v = (u, w) ∧ j = (i, k) ∧ trm(OpC)(w, k))
stp(OpU)(v, j, v′, p) = trm(OpU) ∧ stp(OpC)(w, k, w′

, q)

∧ (v = (u, w) ∧ j = (i, k) ∧ v′ = (u′

, w′) ∧ p = (o, q)

∧ u = u′ ∧ o = ε) (17)

Thus the non-OpA transitions of OpU form a copy of
the OpC stp relation with identity behaviour on the ab-
stract component, asserted to terminate on states/inputs that
project to trm(OpC). For an OpU ∈ OpsA we have:

trm(OpU)(v, j) =

(v = (u, w) ∧ j = (i, k) ∧ trm(OpA)(u, i) ∧ trm(OpC)(w, k))
stp(OpU)(v, j, v′, p) = trm(OpU) ∧ InvA(u′) ∧ InvC(w′)

∧ (v = (u, w) ∧ j = (i, k) ∧ v′ = (u′

, w′) ∧ p = (o, q))

∧ (G(u, w) ∧ P(i, k, u, w)⇒

stp(OpA)(u, i, u′

, o) ∧

(G(u′

, w′) ∨ C(u′

, w′

, o, q; i, k, u, w))) (18)

Note that the implicational form admits many junk steps,
namely ¬ (G ∧ P) ∧ InvA ∧ InvC ∧ o ∈ O ∧ q ∈ Q.
The last element of the universal machine is its initializa-
tion:

InitU(v) =̂ (19)
v : v = (u, w) ∧ stp(InitA)(u) ∧ stp(InitC)(w) ∧ G(u, w)

The consistency obligations for Univ are satisfied for both
OpU ∈ OpsU − OpsA and OpU ∈ OpsA:

[InitU]InvU

InvU ∧ trm(OpU)⇒ [OpU]InvU (20)

We now give the retrenchment OpA . H,Q,D OpU and the re-
finement OpU v OpC. The data for the retrenchment con-
sists of the retrieve relation, and the within and concedes re-
lations for this operation pair:

H(u, v) =̂ (v = (u, w) ∧ G(u, w)) (21)
Q(i, j, u, v) =̂ (j = (i, k) ∧ v = (u, w) ∧ P(i, k, u, w))

D(u′

, v′, o, p; i, j, u, v) =̂ (v′ = (u′

, w′) ∧ p = (o, q) ∧ j = (i, k)
∧ v = (u, w) ∧ C(u′

, w′

, o, q; i, k, u, w))

The retrenchment POs are satisfied for OpU ∈ OpsA:

[InitU] ¬ [InitA] ¬H
InvA ∧ InvU ∧ H(u, v) ∧ trm(OpU) ∧ Q(i, j, u, v)
⇒ trm(OpA) (22)
∧ [OpU] ¬ [OpA] ¬ (H(u′

, v′) ∨ D(u′

, v′, o, p; i, j, u, v))

For the refinement OpU vK,R,V OpC, the data consists of the
retrieve, within, and output relations. These are simply the
projections:

K(v, w) =̂ (v = (u, w))

R(j, k) =̂ (j = (i, k))
V(p, q) =̂ (p = (o, q)) (23)

The refinement POs are satisfied for both OpU versions:

[InitC] ¬ [InitU] ¬K
InvU ∧ InvC ∧ K(v, w) ∧ trm(OpU) ∧ R(j, k)
⇒ trm(OpC) ∧ [OpC] ¬ [OpU] ¬ (K(v′, w′) ∧ V(p, q)) (24)

It remains to define the composition of the retrenchment and
IO-filtered refinement just constructed. This requires care
since not only are retrenchments and refinements different
concepts, but also the collections of variables of the inter-
mediate system occurring in abutting relations are not the
same. We define the composition to be a retrenchment for
which the component relations are given as follows. The re-
trieve relation is the (usual) composition of the component
retrieve relations:

(H;K)(u, w) =̂ ∃ v • (H(u, v) ∧ K(v, w)) (25)

The within relation is the composition of the component
within and retrieve relations in the following sense:

(Q; (R ∧ K))(i, k, u, w)

=̂ (∃ v, j • Q(i, j, u, v) ∧ R(j, k) ∧ K(v, w)) (26)

The concedes relation is a combination of the component
concedes, retrieve, output, and within relations in the fol-
lowing manner:

(D; (K′ ∧ V ∧ R ∧ K))(u′

, w′

, o, q; i, k, u, w)

=̂ (∃ v, j, v′, p • D(u′

, v′, o, p; i, j, u, v) ∧ K(v′, w′) ∧ V(p, q)

∧ R(j, k) ∧ K(v, w)) (27)

The reader may check that this notion of composition recov-
ers the defining relations of the original retrenchment (7).

In this reinterpretation the work of [6] in B, we have re-
constructed the factorization of the original retrenchment
through a certain retrenchment and a refinement. In fact
the original construction of Univ [6] is universal, or min-
imal, in a category-theoretic sense, within a class of mod-
els with similar properties: any other candidate construction
Univ′ 6= Univ for the factorization, itself factors through
Univ in a particular way. The reinterpretation of this univer-
sal property in B, not itself required in this paper, is work in
progress.

6. The factorized retrenchment: example

The construction OpU of section 5 represents the “lift-
ing” of the given retrenchment, via the factorization, to an
operation specification at the level of abstraction of the orig-
inal ideal operation OpA. Using the equivalences of section
4, we express the construction in B GSL. We then discuss
its utility in two example retrenchment specifications.

Since only the case OpU ∈ OpsA is of interest, we ex-
press its step relation stpOpU

(18) over input-state-output
space I × K × U × W × O × Q in B GSL:

u, w, o, q : InvA(u) ∧ InvC(w) ∧ trmOpA (u0, i) ∧ trmOpC (w0, k)
∧ (G(u0, w0) ∧ P(i, k, u0, w0)

⇒ stpOpA
(u0, i, u, o) (28)

∧ (G(u, w) ∨ C(u, w, o, q; i, k, u0, w0)))

We expand the lifted trmOpU , stpOpU
definition (18) and ap-

ply (14,15) to define OpU(i, k, u, w, o, q):

trmOpA (u, i) ∧ trmOpC (w, k)

| (¬ G(u, w) ∨ ¬ P(i, k, u, w) =⇒ u, w, o, q : InvA(u) ∧ InvC(w)

[] u, w, o, q : InvA(u) ∧ InvC(w) ∧ stpOpA
(u0, i, u, o) ∧ G(u, w)

[] u, w, o, q : InvA(u) ∧ InvC(w) (29)

∧ stpOpA
(u0, i, u, o) ∧ C(u, w, o, q; i, k, u0, w0))

OpU is the most nondeterministic operation at the level
of abstraction of OpA, that both satisfies the postcondi-
tion G ∨ C of the given retrenchment and refines to
OpC. The WITHIN, RETRIEVES and CONCEDES clauses
that describe the relationship between OpA and OpC may
include requirements information; these clauses now be-
come explicit in the specification (29) of OpU in the pre-
postcondition assignment style. Returning to the example
of Fig. 2, we note that

InvA(a, b) =̂ a, b ∈ D-NAT InvC(aa) =̂ aa ∈ M-NAT
stpDAdd(a, a′

, b, b′) ≡ a′ = a + b ∧ b′ = b (30)

Thus we can express the universal OpU for Fig. 2, with con-
cession CAdd1

(8), in the expanded pre-post form of (29).
Recall that in the pre-post style, before and after variables
are denoted zero- and unsubscripted, respectively:

OpU(a, b, aa, bb, resp) =̂ bb ∈ M-NAT |
a 6= aa ∨ b 6= bb =⇒

a, b, aa, resp : a, b ∈ D-NAT ∧ aa ∈ M-NAT
[] a, b, aa, resp : a, b ∈ D-NAT ∧ aa ∈ M-NAT

∧ a = a0 + b0 ∧ b = b0 ∧ aa = a
[] a, b, aa, resp : a, b ∈ D-NAT ∧ aa ∈ M-NAT

∧ a = a0 + b0 ∧ b = b0

∧ aa0 + bb ≤ Max ∧ aa = a ∧ resp = Ok
[] a, b, aa, resp : a, b ∈ D-NAT ∧ aa ∈ M-NAT

∧ a = a0 + b0 ∧ b = b0

∧ aa0 + bb > Max ∧ aa = a− b
∧ resp = Fail (31)

We number the cases of (31) from 1, (31.1) being the tech-
nical “junk” transition case. In the cases (31.1, 31.2) resp
does not appear free in the predicate and thus may take ei-
ther defined value Ok, Fail.

The cases can be simplified using the results of section
4, and the assumption that in the before-state InvU, that is,
InvA(u0) ∧ InvC(w0) always holds - these clauses are as-
sumptions of all POs defining any context in which OpU

is interpreted. The precondition clause in bb distributes im-
plicitly to each case.

For case (31.2), the precondition is irrelevant, by equal-
ity of predicates in that context we replace aa = a with
aa = a0 + b0, and InvA(a, b) follows from the equalities on
a, b. As before resp is undetermined in the predicate. The
concrete assignment cannot be simplified; InvC(aa) pre-
vents overflowing abstract additions appearing in this refin-
ing case:

(31.2) = (a, b := a + b, b)

|| aa : aa = a0 + b0 ∧ aa ∈ M-NAT
|| resp : resp ∈ {Ok, Fail} (32)

In the above resp is left undetermined because the con-
struction (28) does not define a relationship between ab-
stract and concrete output in the refining G postcondition
region; such a relationship is only defined in the concession
C region. This “output-incompleteness” of simple retrench-
ment (7) has been dealt with by the recent proposal of out-
put retrenchment [8], which conjoins an OUTPUT clause to
the retrieve relation, similarly to refinement (6). Notice that
case (31.3) below determines resp by virtue of extra infor-
mation in the concession.

(31.3) is reduced similarly, and here a guard is extracted
from the concrete before-state-input clause. InvA(a, b) fol-
lows as before, and InvC(aa) follows from the guard, so that
all assignments become simple:

(31.3) = aa + bb ≤ Max =⇒

a, b, aa, resp := a + b, b, a + b, Ok (33)

Similarly, for (31.4) we extract a guard. We replace aa =
a − b with aa = a0 by equality of predicates, and use the
retrieve relation a0 = aa0 to infer InvC(aa):

(31.4) = aa + bb > Max =⇒

a, b, aa, resp := a + b, b, a, Fail (34)

Putting the pieces together gives

OpU(CAdd1)(a, b, aa, bb, resp) =̂ bb ∈ M-NAT |
a 6= aa ∨ b 6= bb =⇒

a, b, aa, resp : a, b ∈ D-NAT
∧ aa ∈ M-NAT ∧ resp ∈ {Ok, Fail}

[] (a, b := a + b, b) || aa : aa = a0 + b0 ∧ aa ∈ M-NAT
|| resp : resp ∈ {Ok, Fail}

[] aa + bb ≤ Max =⇒ a, b, aa, resp := a + b, b, a + b, Ok
[] aa + bb > Max =⇒ a, b, aa, resp := a + b, b, a, Fail (35)

Since we can see informally that aa + bb ≤ Max defines
precisely the region where aa : aa = a0 + b0 can estab-
lish that aa ∈ M-NAT, case (35.2) contains case (35.3) as a
set of transitions. In particular (35.2) is more nondetermin-
istic w.r.t. the concrete output resp. Thus we might choose
to refine OpU (35) without losing any relevant information,
by deleting case (35.2). It is a curiosity that in this case, the
first, refining CAdd1

disjunct makes the retrieve relation G
redundant.

Although this is a simple example, the utility of the lift-
ing construction in providing an alternative perspective on
the original retrenchment, is evident. Whereas in the origi-
nal retrenchment, the relationship between operations OpA

and OpC is located in a third conceptual “place”, i.e. in the
retrenchment PO (7), this relationship is now explicit in the
OpU specification in the single Univ frame. In each non-
junk case we see all variable transitions, abstract and con-
crete, related by the conditions that pertain in the subregion
in question (defined by G or by C-disjunct).

6.1. Discussion

A stronger concession than CAdd1
(8) seems desirable in-

sofar as, intuitively, it seems redundant for the concession
region to overlap with the retrieving region. An obvious
choice is the non-refining disjunct of CAdd1

:

CAdd2 =̂ aa0 + bb > Max ∧ aa = a − b ∧ resp = Fail (36)

This version of OpU (which we might call OpU(CAdd2
)) has

the form (35) minus transitions (35.3): notwithstanding the
increased resp nondeterminism discussed above, this gives
a more succinct universal specification.

In this example we note that CAdd2
⇒ CAdd1

, and
that OpU(CAdd2

) may be constructed by deletion of tran-
sitions from OpU(CAdd1

). In fact, deleting transitions
amounts to refinement over the same variable type: con-
sider (6) with identity within, retrieve and output rela-
tions. Any concrete transition reestablishes the identity
postcondition, witnessed by the identity, abstract tran-
sition. Hence OpU(CAdd1

) v OpU(CAdd2
) here. More-

over, concession strengthening in OpA . OpC amounts
to refinement of OpU: imagine two candidate conces-
sions C1, C2 for the given retrenchment such that C2 ⇒ C1.
Then C1 ⇔ (C2 ∨ (¬ C2 ∧ C1)), and deletion of the tran-
sition set that establishes ¬ C2 ∧ C1 in OpU constitutes a
refinement.

This is another useful feature of the lifting construction.
There is considerable concession design freedom in specify-
ing a retrenchment of operations. It is obvious that, for the
given retrenchment, a stronger concession which is closer
to false, moves closer to specifying a refinement, which
is more incisive than a retrenchment. Alternative retrench-
ment designs can be compared as OpU specifications. If two
such designs differ only by relative concession strength,
then these designs lift to two operations related by refine-
ment.

The point is emphasised by considering

CAdd0 =̂ aa0 + bb > Max⇒ aa = a − b ∧ resp = Fail (37)

Since CAdd1
is equivalent to the implicative guarded form

(gd ⇒ txnOk) ∧ (¬ gd ⇒ txnFail) provided txnOk ∧

txnFail ⇔ false, it follows that CAdd1
⇒ CAdd0

and thus
that OpU(CAdd0

) v OpU(CAdd1
) v OpU(CAdd2

). That
OpU(CAdd0

) contains OpU(CAdd1
) as a set of transitions is

clear from calculating the former explicitly from (29) as be-
fore:

OpU(CAdd0)(a, b, aa, bb, resp) =̂ bb ∈ M-NAT |
a 6= aa ∨ b 6= bb =⇒

a, b, aa, resp : a, b ∈ D-NAT
∧ aa ∈ M-NAT ∧ resp ∈ {Ok, Fail}

[] (a, b := a + b, b) || aa : aa = a0 + b0 ∧ aa ∈ M-NAT
|| resp : resp ∈ {Ok, Fail}

[] aa + bb ≤ Max =⇒ (a, b := a + b, b)

|| aa, resp : aa ∈ M-NAT
∧ resp ∈ {Ok, Fail}

[] a, b, aa, resp := a + b, b, a, Fail (38)

The junk and refining cases (38.1, 38.2) are the same as for
(35). (38.3) is the case of the negation of the CAdd0

guard
aa + bb > Max, which leaves aa, resp undetermined. This
case therefore contains transitions (35.3). Finally, the con-
cession assignment clauses now being unguarded, (38.4)
contains (35.4).

In the limit, a false concession in the given retrenchment
constitutes the refinement of OpU (29) by deletion of all
conceding case (29.3) transitions.

Finally, it is illustrative to compare CAdd1
with

stpMAdd(aa, bb, aa′

, resp) =̂

bb ∈ M-NAT ∧
((aa + bb ≤ Max ∧ aa′ = aa + bb ∧ resp = Ok)
∨ (aa + bb > Max ∧ aa′ = aa ∧ resp = Fail)) (39)

These two predicates differ only in the precondition term
which types bb in stpMAdd, and insofar as the second, ab-
straction clause in each disjunct of CAdd1

is replaced by a
state transition clause in stpMAdd. Observe that in the con-
text of Fig. 2 CAdd1

⇒ stpMAdd: in this simple determinis-
tic example, a full concession account of the transformation
of the abstraction relation, over the retrenchment step, im-
plies the concrete step relation.

6.2. A second example

We consider, in outline only, an approximation retrench-
ment example with richer and more general syntactic struc-
ture from [20]. The example is a simple resource allocator.
Abstract model Abs states a simple functional requirement
about resource allocation, based on yes/no availability. Abs
makes a simple binary guarded choice between allocating
some available resource x in the environment, which meets
an input requirement parameter i, or skipping if no resource
is available. Any selected x is added to set of allocated re-
sources, the state variable u.

Concrete model Conc models the constraints of provid-
ing resources that meet requirements, in a distributed en-
vironment, in a three-way choice: allocation of an avail-
able and trusted resource to state variable w, allocation
of the best available but only partially trusted resource to
w, or skipping. This gives quite a general pattern of ab-
stract/concrete model specification and retrenchment. Two
operations, each constituting a choice over a set of guarded
commands, have decoupled guard sets, where the degree of
decoupling depends on how much Conc differs from Abs.
Each operation also incorporates nondeterministic choice
over a set of candidate resources.

The retrenchment describes the approximate represen-
tation of abstract allocated set u by concrete w, via re-
trieve and concession relations which are quite different
in shape and design intention from the previous exam-
ple. Here we have “RETRIEVES Gδ,n” and “CONCEDES
Gδ+1,n ∨ Gδ,n+1”; δ counts how much bigger u is than w,
assuming that Conc will fail to allocate more often than Abs
will. n counts the number of partially trusted elements allo-
cated in w.

Schematically, OpA has a precondition AP(u, i), and a
guard Q(x, i, u) which determines the availability of an al-
locatable resource x meeting requirement i:

OpA =̂ AP(u, i) | @x • (Q(x, i, u) =⇒ u := u ∪ {x})
[] ¬ ∃ x • Q(x, i, u) =⇒ skip) (40)

Since the GSL definition of OpU (29) makes no reference
to the concrete syntax of OpC, we need not define the lat-
ter explicitly. By instantiating (29) and applying (11,15) as
before we have:

OpU =̂ AP(u, i) ∧ trm(OpC)(w, k) |

(¬ G(u, w) ∨ ¬ P(i, k, u, w) =⇒ u, w, q : u ∈ U ∧ InvC(w)

[] @x • (Q(x, i, u) =⇒ u, w, q : u = u0 ∪ {x}

∧ (Gδ,n ∨ Gδ+1,n ∨ Gδ,n+1) ∧ u ∈ U ∧ InvC(w))

[] ¬ ∃ x • Q(x, i, u) =⇒ u, w, q : u = u0 (41)

∧ (Gδ,n ∨ Gδ+1,n ∨ Gδ,n+1) ∧ u ∈ U ∧ InvC(w))

As before, the requirements in the retrenchment parameters
- here, the change in approximate representation - are lifted
to the OpU specification. The simplifications in the first ex-
ample were made possible by the concession style: detailed
partitioning of the before-state-input frame and specifica-
tion of transitions in each case. This is not possible with the
concession style here.

However, it is illustrative to consider, as before, the way
alternative retrenchment designs lift and compare in Univ.
In the first example, we saw how concession-implication
lifted to refinement. It is obvious in (29.1) that relative P-
weakening (i.e. ¬ P-strengthening) lifts to refinement in the
same way by deletion of junk transitions in OpU .

Conversely, P-strengthening consitutes abstraction
in Univ by addition of junk transitions in the ¬ P case
(29.1). The full treatment [20] of the resource alloca-
tor proposes a method of decomposition of a retrench-
ment. It is shown how, by considering a set of strength-
ened P clauses (which partition the before-state-input frame
in terms of enabled abstract and concrete guards) it is possi-
ble to produce a corresponding set of stronger-concession,
finer-grained retrenchments exploiting that partition in-
formation. In this example this produces four clauses that
characterize the four possible situations that can arise in
Abs, Conc. These clauses are named P11 (abstract allo-
cate, concrete allocate), P12 (abstract allocate, concrete
partial-trusted allocate), P13 (abstract allocate, con-
crete skip), and P23 (abstract skip, concrete skip). These
four retrenchments have in turn postconditions Gδ,n (re-
finement), Gδ,n ∨ Gδ,n+1, Gδ,n ∨ Gδ+1,n, and again
Gδ,n.

In the P13 case we see how the retrenchment defini-
tion (7), by mandating a G ∨ C postcondition shape, pre-
vents a simpler (concession-only) postcondition statement
Gδ+1,n being made. The G ∨ C statement is too weak
where we can prove it is precisely the concession that will
hold in the postcondition. In this example the concession
is strictly weaker than the retrieve relation, so here this ex-
cessive postcondition-weakness is not an issue. However,
precondition-strengthening (41) as per [20] to P13 gives, for
the (41.2) case:

@x • (Q(x, i, u) =⇒

u, w, q : u = u0 ∪ {x} ∧ (Gδ,n ∨ Gδ+1,n)

∧ u ∈ U ∧ InvC(w)) (42)

Thus it is intruiging that, once lifted to Univ, the P13 case
can be refined by deleting the Gδ,n transitions to estab-
lish precisely the postcondition statement Gδ+1,n. This in-
dicates that the lifting construction provides in this sense,
through refinement, a more finely-grained, incisive specifi-
cation method than simple retrenchment. This suggests that
there is an opportunity, by “unlifting” OpU back to the level
of abstraction of the original retrenchment, of making cor-
respondingly finer-grained statements about the relationship
between Abs and Conc than are possible in simple retrench-
ment.

7. Conclusion and further work

We have seen different ways in which requirements can
be represented semantically in the retrenchment relations
between models, as well as being syntactically represented
within those models. The universal factorization [6] of a
given retrenchment Abs . Conc into a universal retrench-
ment Abs . Univ followed by a refinement Univ v Conc

was reformulated in B. It was then shown how this construc-
tion “lifted” the semantic retrenchment information in the
within, retrieves, and concedes relations to syntactic oper-
ation specification in the universal model Univ. Some new
pre-postcondition syntax for B facilitates this lifting pro-
cess by enabling the lifted operation to be expressed using
the full B GSL language in the conventional way.

The examples showed the cognitive utility of lifting re-
trenchment information in this way. In particular the lifted
operation, as a highly nondeterministic set of transitions, is
very manipulable by refinement by the deletion of transi-
tions. This kind of refinement in Univ also provides a sim-
ple way to compare alternative retrenchment designs (re-
lated by relative C-strength, or P-weakness) at the specifi-
cation level. The second example showed how other forms
of analysis of the retrenchment, such as decomposition, can
be lifted and analysed by combining abstraction and refine-
ment in the Univ transition space. This gives a viewpoint, at
the level of the Univ specification, that maps back to a more
finely-grained relationship between Abs and Conc than the
original retrenchment. These forms of analysis look promis-
ing and will be investigated further.

Animation and model-checking technology (e.g. ProB
[17] for B) has been applied to the verification of refine-
ments, and is in principle similarly applicable to retrench-
ments. The lifted model offers a more understandable lo-
cus (in the checking of traces, rather than pairs of traces)
for model-checking.

References

[1] J.-R. Abrial. The B-Book: Assigning Programs to Meanings.
Cambridge University Press, 1996.

[2] J.-R. Abrial. http://www.atelierb.societe.com/index uk.html,
1998. Atelier-B.

[3] K. Araki, S. Gnesi, and D. Mandrioli, editors. Interna-
tional Symposium of Formal Methods Europe, volume 2805
of LNCS, Pisa, Italy, September 2003. Springer.

[4] R. J. R. Back and J. von Wright. Refinement calculus part I:
Sequential nondeterministic programs. In J. de Bakker, W.-P.
de Roever, and G. Rozenberg, editors, Proc. REX Workshop,
Stepwise Refinement of Distributed Systems, volume 430 of
LNCS, pages 42–66. Springer, 1989.

[5] R. J. R. Back and J. von Wright. Refinement Calculus: A Sys-
tematic Introduction. Springer, 1998.

[6] R. Banach. Maximally abstract retrenchments. In Proc.
IEEE ICFEM2000, pages 133–142, York, August 2000.
IEEE Computer Society Press.

[7] R. Banach. Aspects of general retrenchment: Symmetric
propositional theory. work in progress, 2004.

[8] R. Banach and C. Jeske. Output retrenchments, defaults,
stronger compositions, feature engineering. 2002. sub-
mitted, http://www.cs.man.ac.uk/˜banach/some.pubs/ Re-
trench.Def.Out.pdf.

[9] R. Banach and M. Poppleton. Retrenchment: An engineer-
ing variation on refinement. In D. Bert, editor, 2nd Interna-
tional B Conference, volume 1393 of LNCS, pages 129–147,
Montpellier, France, April 1998. Springer.

[10] R. Banach and M. Poppleton. Sharp retrenchment, modu-
lated refinement and simulation. Formal Aspects of Comput-
ing, 11:498–540, 1999.

[11] R. Banach and M. Poppleton. Engineering and the-
oretical underpinnings of retrenchment. submit-
ted, http://www.cs.man.ac.uk/˜banach/some.pubs/ Re-
trench.Underpin.pdf, 2002.

[12] R. Banach and M. Poppleton. Retrenching partial require-
ments into system definitions: A simple feature interaction
case study. Requirements Engineering Journal, 8(2), 2003.
22pp.

[13] W.-P. de Roever and K. Engelhardt. Data Refinement:
Model-Oriented Proof Methods and their Comparison. Cam-
bridge University Press, 1998.

[14] B. Dehbonei and F. Mejia. Formal development of
safety-critical software systems in railway signalling. In
M. Hinchey and J. Bowen, editors, Applications of Formal
Methods, chapter 10, pages 227–252. Prentice-Hall, 1995.

[15] J. Derrick and E. Boiten. Refinement in Z and Object-Z.
FACIT. Springer, 2001.

[16] P. Henderson. Reasoning about asynchronous behaviour in
distributed systems. In Proc. Eighth IEEE Int. Conf. on Engi-
neering of Complex Computer Systems (ICECCS02), pages
17–24, Greenbelt, Maryland, December 2002. IEEE Com-
puter Society Press.

[17] M. Leuschel and M. Butler. ProB: a model checker for B. In
Araki et al. [3], pages 855–874.

[18] M. Poppleton and R. Banach. Retrenchment: Extending
refinement for continuous and control systems. In Proc.
IWFM’00, Springer Electronic Workshop in Computer Sci-
ence Series, NUI Maynooth, July 2000. Springer.

[19] M. Poppleton and R. Banach. Controlling control sys-
tems: An application of evolving retrenchment. In D. Bert,
J. Bowen, M. Henson, and K. Robinson, editors, Proc.
ZB2002: Formal Specification and Development in Z and
B, volume 2272 of LNCS, Grenoble, France, January 2002.
Springer.

[20] M. Poppleton and R. Banach. Structuring retrenchments in
B by decomposition. In Araki et al. [3], pages 814–833.

[21] S. Schneider. The B-Method. Palgrave Press, 2001.

