
GENESIS - A Framework for Automatic Generation and Steering
of Testbeds of Complex Web Services ∗

Lukasz Juszczyk, Hong-Linh Truong, Schahram Dustdar
VitaLab, Distributed Systems Group

Information Systems Institute
Vienna University of Technology, Austria

{juszczyk,truong,dustdar}@infosys.tuwien.ac.at

Abstract

Nowadays, the importance of Web services is steadily in-
creasing in domains where interoperability is of paramount
importance. This trend is especially observable in com-
plex computer systems which consist of a large number of
interacting distributed components, often implemented us-
ing Web services. Large-scale systems and high complex-
ity usually result in higher error-proneness in the develop-
ment process. This should be addressed as early as pos-
sible during the development of complex service-oriented
systems, ideally before they are actually deployed on a dis-
tributed infrastructure. In this paper we present GENESIS -
a software framework for solving this problem. Our frame-
work allows automatic generation and steering of testbeds
of complex Web services, thereby empowering developers
to specify functional and non-functional properties of Web
services, to generate and deploy Web service instances on
remote hosting environments, to enhance the functionality
of the framework with plug-ins, and to control the behavior
of the testbed during runtime.

Keywords: Web services, Service-oriented Architecture,
testbed generation.

1 Introduction

In spite of their various shapes and occurrences [31],
complex computer systems have always involved a large
number of (distributed) components [21] and interactions.
While in the past these components were hosted in pre-
dominantly homogeneous environments, such as inside or-
ganizations or military systems, today’s complex systems
have evolved into being used in heterogeneous environ-
ments which incorporate, for instance, legacy systems.

∗This work is partially supported by the European Union through the
FP6-2005-IST-5-034749 project WORKPAD.

As a consequence, interoperability has become an im-
portant issue, which lead to the establishment of SOAP [10]
as a de-facto communication standard and the encapsula-
tion of transportation functionality in Web services tech-
nologies [12]. This trend has also influenced the design
and development process of complex systems by making
it attractive to engineers to follow the principles of service-
oriented architecture (SOA). At first sight, SOA brings var-
ious benefits, such as flexibility, modularity, composabil-
ity, and reusability, just to name the most well-known ones.
However, as a side-effect, these features pose challenges to
the developers due to their complexity and error-proneness.
This problem needs to be addressed early in the devel-
opment phase. As a consequence, much effort has been
put into the development of methods and tools for auto-
mated testing and detection of error-prone components in
SOAs [18, 26, 30, 34, 36, 40]. However, those solutions
mainly aim at analyzing only individual Web services by
performing various client-oriented checks. To our best
knowledge, there is no support for the deployment of whole
testbeds, consisting of real Web services, in order to test
complex features of SOAs during runtime.

In this paper we present GENESIS, a framework for
generating service-based infrastructures, which allows de-
velopers to set up SOA testbeds in a convenient manner.
GENESIS combines an approach for automatic generation
and deployment of Web services at the back-end with a
programmer-friendly API at the front-end. Developers can
specify functional and non-functional properties of Web
services which can be deployed on-the-fly on remote host-
ing environments. Complex behavior of the testbed can be
achieved with various plug-ins which extend the function-
ality of the individual Web services and can be steered re-
motely from the front-end. Therefore, GENESIS allows
setting up large-scale testing infrastructures for complex
service-oriented systems.

The rest of this paper is structured as follows. In

Section 2 we discuss the motivation for our contribution.
Sections 3 and 4 give an insight into the architecture of
GENESIS and the techniques used for creating complex
services, respectively. In Section 5 we discuss how our so-
lution can be applied in practice and present an example
to illustrate the usage of our concepts and prototype imple-
mentation. Section 6 addresses some details of our imple-
mentation. In Section 7 related work is being reviewed. Fi-
nally, in Section 8 we outline our future work and conclude
this paper.

2 Motivation and Requirements

Testing software for faults and failures is an essential part
of the development process, which should be performed
continuously during all stages of the process itself. This
includes unit tests [22] for checking the quality of the indi-
vidual modules, integration tests [25] when these modules
are being connected, functional tests [23] verifying whether
the functionality meets the specified requirements, and fi-
nally, tests of the whole system in later stages of the process.
A mapping of these levels to SOA development shows that
unit tests mostly involve only individual services [26, 30],
while the other methods aim at testing whole service infras-
tructures and applications operating on them [18, 34, 36].
However, although SOA has been an important topic in re-
search and industry during the last years, we noticed a lack
of tools supporting the developers to set up such infrastruc-
tures of services for testing purposes. Such a tool should
meet the following requirements:

• Flexibility: Specification of Web services with cus-
tomizable functional and non-functional properties.

• Extendability: Pluggable extensions of Web service
functionality.

• Distribution: Generation and deployment of Web ser-
vices on remote hosts.

• Complexity: Control structures and complex interde-
pendencies between services.

• Integration: Integration with existing SOA infrastruc-
tures.

• Convenience: Supporting the developer with a conve-
nient API.

Hence, the tool should be adaptable to the needs of the
test cases, instead of expecting the test cases to be adapted
to the limitations of the tool itself. To our best knowl-
edge, there is an absence of solutions which fulfill this.
GENESIS was designed to fill this gap.

Figure 1. Model used to describe Web ser-
vices in GENESIS

3 Concept and Architecture of GENESIS

The architecture of GENESIS (see Figure 2) includes
a single front-end part, for centralized control, and a dis-
tributed back-end hosting the Web services. Via the front-
end it is possible to specify the components and character-
istics of the testbed, while the back-end’s task is to generate
the testbed infrastructure based on this information. For this
reason, both parts share a common description model for
Web services, based on which they exchange data. Figure 1
depicts a simplified class diagram of this data model, which
consists of the following structures:

• Host: A back-end host contains a set of Web ser-
vices and is identified by a unique URL pointing to
the GENESIS instance running on it.

• Service: A Web service has a name, a unique URL,
and a set of operations. It can be either deployed or
undeployed and can communicate in an RPC-based
or message-oriented manner. Furthermore, the service
can reference plug-ins which are being invoked at de-
ployment and undeployment.

• Operation: An operation has a name, a set of input
types, and a single output type. A generic fault type is
predefined. Operations can be extended by referencing
plug-ins.

• Plug-In: Plug-ins extend the Web services’ function-
ality and declare a set of parameters via which their
behavior can be steered.

• Parameter: A parameter must be declared by a plug-in
in order to be accessible. It has a name, a data type,
and a value.

Based on this model, GENESIS provides a Java API
for creating and manipulating Web service descriptions and
for transferring them to the back-end. The developer is
free to utilize the API in his/her own applications at the
front-end. Alternatively, the developer can use the provided

Figure 2. Architecture of GENESIS

Steering Component which is built upon the Jython script
interpreter [9]. In Section 5 we show sample scripts which
demonstrate how testbeds can be created and steered.

At the back-end side, the functionality is split into mod-
ules. Incoming requests, encoded as Web service descrip-
tions, are received by the Controller Web Service and for-
warded to the Web Service Generator which transforms
them into real service instances. These instances are be-
ing deployed at the JAX-WS-based [8] Web Service Con-
tainer. This step is described in more detail in Section 4.1.
Plug-ins, which implement extensions to these Web ser-
vices, are registered at the Plug-in Container and are being
controlled by changing their parameters in the local Plug-in
Configuration Database. We provide a set of basic plug-ins
which implement, for example, simulation of QoS attributes
and workflow functionality. In Section 4.2 we give a short
overview about them and explain how custom ones can be
developed.

In between the front-end and the back-end, the commu-
nication is based on SOAP as well as on a simple text- and
TCP-based protocol, as illustrated in Figure 3. Although
we decided to provide access to all relevant functionality of
the back-end via a HTTP-based SOAP Web service, we re-
garded it also as necessary to establish a light-weight com-
munication for the manipulation of remote plug-in parame-
ters. Since these parameters may be changed frequently, it
makes sense to avoid unnecessary protocol overhead, such
as SOAP envelopes, but to exchange data in a fast manner.

4 Generating Complex Web Services

At the back-end, the generation of Web services is de-
rived from techniques used in Model-driven development
(MDD) [16, 17, 33, 38, 39] and the idea of extending ser-

Figure 3. Communication in the testbed

vice skeletons with plug-ins. The Web Service Generator
creates by default plain yet runnable Web services. Via
plug-ins these can be extended to provide real functionality,
to establish complex interdependencies inside the testbed,
to simulate non-functional attributes, and to introduce any
kind of customized behavior.

4.1 Generating Web Services

The Web Service Generator parses the service descrip-
tion to retrieve knowledge about the interfaces and function-
ality of the service, and generates a deployable Web service
instance based on this knowledge. This procedure involves
multiple steps which are depicted in the sequence diagram
in Figure 4:

1. The Web service description is checked for referenced
plug-ins. Plug-ins which are missing at the remote
back-end host have to be transferred and registered.

Figure 4. Web service generation

2. The description is checked whether the service uses
solely primitive data types (e.g., string, integer) in-
side the requests and responses or whether complex
data types, described in XML Schema Definitions
(XSD) [14], are referenced. Complex types are passed
to xjc, which is a XSD processor of JAX-WS, for
generating corresponding Java classes.

3. The JAX-WS-compliant source code of the Web ser-
vice is generated using Apache Velocity-based [1] tem-
plates.

4. The source code is passed to javac, the Java com-
piler.

5. The compiled Web service is passed to wsgen, which
is again a part of JAX-WS, to generate the necessary
stubs for deployment.

6. The class loader reads in the compiled Web service,
instantiates it and initializes all plug-ins.

7. Finally, the Web service is deployed at the HTTP-
SOAP endpoint.

Listing 1 shows the generated Java source code of a sam-
ple Web service named BookService. According to the

description, the communication is set to Remote Procedure
Call (Line 8) and an operation named getISBN() is gen-
erated (Lines 16-36). The Web service extends the abstract
class AWebService which provides basic yet manda-
tory functionality. This includes the invocation of plug-ins
(Lines 27-28, callPlugin()) as well as the generation
of a context for all plug-ins (Line 21, getContext()).
The context is used by the plug-ins to access the opera-
tion arguments, to set a return value, and also as a commu-
nication facility for passing data between individual plug-
ins. Apart from being used inside the web service opera-
tion getISBN(), plug-ins are invoked on deployment and
undeployment (Lines 39-52) to register the service at a reg-
istry.

4.2 Establishing Complex Dependencies through
Plug-Ins

Service-oriented architecture (SOA) is often propagated
as an all-round solution to miscellaneous software engineer-
ing issues which have existed since decades, such as inte-
gration of heterogeneous systems, component decoupling,
or software reuse. The concept of SOA is based on public
available services exchanging data and being coordinated
and composed in a flexible and optimized manner, regard-

1 package r e p o s i t o r y . wsp103292 ;
2
3 import . . . ;
4 import a t . ac . t u wi en . v i t a l a b . g e n e s i s . s e r v e r . AWebService ;
5
6 @WebService (name = "BookService" ,
7 t a r g e t N a m e s p a c e = "http://...")
8 @SOAPBinding (s t y l e = SOAPBinding . S t y l e . RPC)
9 p u b l i c c l a s s BookServ ice ex tends AWebService {

10
11 / / c o n s t r u c t o r
12 p u b l i c BookServ ice () {
13 wsName="BookService" ;
14 }
15
16 @WebMethod
17 p u b l i c S t r i n g getISBN (
18 @WebParam (name="article") schemaTypes . Book a r t i c l e
19) throws E x c e p t i o n {
20
21 WebServ iceCon tex t c o n t e x t = g e t C o n t e x t ("getISBN") ;
22
23 / / make arguments a v a i l a b l e f o r plug−i n s
24 c o n t e x t . a rgumen tVa lues . p u t ("article" , a r t i c l e) ;
25
26 / / c a l l t h e plug−i n (s)
27 c a l l P l u g i n ("QOSPlugin.simulateDelay" , c o n t e x t) ;
28 c a l l P l u g i n ("QOSPlugin.simulateFailure" , c o n t e x t) ;
29
30 / / check whe ther r e t u r n v a l u e has been s e t
31 i f (c o n t e x t . r e t u r n V a l u e != n u l l) {
32 re turn c o n t e x t . r e t u r n V a l u e ;
33 }
34 / / o t h e r w i s e c r e a t e dummy
35 re turn (S t r i n g) createDummyObject (S t r i n g . c l a s s) ;
36 }
37
38 / / d e p l o y m e n t hook
39 p r o t e c t e d void onDeploy () {
40 WebServ iceCon tex t c o n t e x t = g e t C o n t e x t ("onDeploy") ;
41
42 / / c a l l t h e plug−i n (s)
43 c a l l P l u g i n ("RegistryPlugin.register" , c o n t e x t) ;
44 }
45
46 / / undep loymen t hook
47 p r o t e c t e d void onUndeploy () {
48 WebServ iceCon tex t c o n t e x t = g e t C o n t e x t ("onUndeploy") ;
49
50 / / c a l l t h e plug−i n (s)
51 c a l l P l u g i n ("RegistryPlugin.deregister" , c o n t e x t) ;
52 }
53 }

Listing 1. Source of generated Web service

ing their descriptions and properties. However, the more co-
ordination and composition is needed, the more the system
becomes complex. Taking languages for service choreogra-
phy and orchestration, such as WS-CDL [13] or BPEL [3],
as examples, we can identify various forms of complex-
ity, e.g., dependencies between services, control constructs,
fault handlers, optimization techniques, and service discov-
ery. It is safe to say that the overall complexity of a SOA-
based system increases with the number and intricacy of in-
terdependencies between the services. In GENESIS, com-
plexity inside the testbed can be realized by applying plug-
ins to the individual Web services.

At the implementation level, these plug-ins must extend

an abstract class called AWebServicePlugin, which de-
fines mandatory constructor and destructor methods, pro-
vides serialization functionality for transferring plug-in
code to remote hosts, and registers itself automatically at
the corresponding container. Each plug-in gets access to the
input and output variables of the invoked operations, to the
SOAP headers, and to all other Java artifacts which are visi-
ble inside the Web service’s scope. Furthermore, the plug-in
is free to define a set of parameters through which it can be
controlled remotely from the front-end. Taking as example
a plug-in for registering the Web service at some registry,
such as UDDI [11], possible parameters would specify the
host name of the registry server, authentication data, and
additional meta-data about the service.

With the current implementation of GENESIS, we pro-
vide four sample implementations of plug-ins:

QOSPlugin: Simulates performance- and dependability-
specific QoS metrics, such as processing time, scala-
bility, throughput, availability, and accuracy. Perfor-
mance attributes are simulated by delaying responses,
while dependability is simulated by throwing faults
and making the service unavailable. In the current sta-
tus the QOSPlugin works in a simple manner with pre-
defined dependency curves between processing time,
scalability, and throughput and without the possibility
to simulate different QoS behavior for different input
data. The plug-in can be controlled by setting the cor-
responding parameter for each metric, e.g., a percent-
age value for availability.

BPELPlugin: Integrates the bexee [2] BPEL engine into
GENESIS and executes composed processes inside the
Web service operations. As a parameter it accepts
BPEL process definitions which can contain precise
as well as abstract partnerLinks. Precise partnerLinks
allow to integrate external Web services, for instance
already existing SOA infrastructures. Abstract defini-
tions just specify the portType and operation name and
are being resolved during runtime to concrete services,
based on the current status of the testbed. For this,
the BPELPlugin places hooks inside GENESIS to be
aware of all deployed Web services in the testbed. As
a result, it is possible to express complex service inter-
dependencies in simplified and flexible BPEL code.

LogPlugin: Logs the invocations of Web services and the
interactions within them. The format and destination
of the logs is specified via parameters.

RegistryPlugin: Registers and deregisters the Web service
at a registry. Currently, we only support UDDI but we
plan to extend it for VReSCO [27] and other standards.
In contrast to the other plug-ins, the RegistryPlugin
must be invoked at the deployment and undeployment

of the Web service, instead of being used inside the
Web service operations. The host and the authentica-
tion data of the remote registry have to be specified via
parameters. The meta-data about the service is mainly
retrieved from the description of the Web service itself.

In the current status, plug-ins expose their functional-
ity via public methods which can be invoked in a sequen-
tial manner. Although concurrence can be implemented by
using threads and synchronization, we plan to introduce a
more flexible approach in the future, where plug-ins are ar-
ranged and controlled based on event-driven programming.

5 Practical Application of GENESIS

GENESIS provides a Java API which covers all func-
tions to specify, to generate, and to steer testbeds. The API
can be embedded into any application, for instance a GUI,
or into the Bean Scripting Framework [7] which seamlessly
integrates scripting languages into Java. As a starting point
for developers we provide a Steering Component based on
the Jython script interpreter [9]. Jython establishes a con-
venient combination of the simplicity of Python scripts and
the flexibility of the API and, furthermore, allows to control
a simulation interactively as well as in an automated man-
ner. In the following, we show some sample scripts which
demonstrate how GENESIS can be applied in practice.

5.1 Testbed Configuration

In GENESIS, the testbed can be built from scratch by
defining all properties manually or, preferably, by using the
configuration facility of the API. The configuration itself
contains templates and declarations which can be reused
later. Listing 2 shows a sample configuration file.

First, all plug-ins are imported (Lines 2-5) and, if nec-
essary, the default values of their parameters are overridden
(Line 7). Furthermore, plug-ins can be joined to behavior
groups (Lines 9-15) which can be referenced later to com-
bine individual functionalities of plug-ins.

Second, complex data types, which are used inside re-
quest and response messages, can be defined in inline XML
Schema definitions (Lines 17-21) or can be imported from
external files.

Finally, Web services are specified, which are either de-
clared as abstract templates (Lines 24-42) or as deployable
instances inside host declarations (Lines 47-55). By using
abstract services, the developer defines common properties
which can be derived and extended for the sake of reuse.
This reduces the efforts for deployment of large environ-
ments consisting of similar services. Service operations are
declared (Lines 25-35, 51-54) containing a list of request
data types, a single response data type, and a list of invoked

1 <c o n f i g u r a t i o n>
2 <p l u g i n s>
3 a t . ac . t u wi en . v i t a l a b . qos . QOSPlugin
4 a t . ac . t u wi en . v i t a l a b . qos . R e g i s t r y P l u g i n @ / p a t h / r e g . j a r
5 </ p l u g i n s>
6
7 <d e f a u l t p a r a m e t e r s q o s a v a i l a b i l i t y ="0.95" . . . />
8
9 <b e h a v i o r>

10 <QOS d e f a u l t ="true">
11 QOSPlugin . s i m u l a t e D e l a y
12 QOSPlugin . s i m u l a t e F a i l u r e
13 </QOS>
14 <EmptyBehavior />
15 </ b e h a v i o r>
16
17 <schema x m l n s : x s ="http://www.w3.org/2001/XMLSchema">
18 <xs :complexType name="book">
19 . . .
20 </ xs :complexType>
21 </ schema>
22
23 <s e r v i c e t e m p l a t e s>
24 <s e r v i c e name="GenericService">
25 <o p e r a t i o n name="echo" >
26 <!−− o v e r r i d e d e f a u l t p a r a m e t e r s −−>
27 <p a r a m e t e r s q o s p r o c e s s i n g t i m e ="1000" />
28 <i n p u t r e q u e s t ="string" />
29 <o u t p u t r e t u r n ="string" />
30 <!−− o v e r r i d e d e f a u l t b e h a v i o r −−>
31 <b e h a v i o r>
32 EmptyBehavior
33 </ b e h a v i o r>
34 </ o u t p u t>
35 </ o p e r a t i o n>
36 <de p l oy>
37 R e g i s t r y P l u g i n . r e g i s t e r
38 </ d ep lo y>
39 <undep loy>
40 R e g i s t r y P l u g i n . d e r e g i s t e r
41 </ undep loy>
42 </ s e r v i c e>
43 </ s e r v i c e t e m p l a t e s>
44
45 <e n v i r o n m e n t>
46 <h o s t a d d r e s s ="http://somehost:8080/some/path" >
47 <s e r v i c e name="BookService"
48 t e m p l a t e ="GenericService"
49 de p l oy ="true">
50 <!−− e x t e n d t e m p l a t e s e r v i c e −−>
51 <o p e r a t i o n name="getISBN" >
52 <i n p u t a r t i c l e ="xs:book" />
53 <o u t p u t r e t u r n ="string" />
54 </ o p e r a t i o n>
55 </ s e r v i c e>
56 </ h o s t>
57 </ e n v i r o n m e n t>
58 </ c o n f i g u r a t i o n>

Listing 2. Testbed configuration

plug-ins and their local parameters. If the declaration of
plug-ins is left away, the default behavior is assumed, which
was defined at the beginning of the file. Moreover, plug-ins
can be invoked during deployment and undeployment of a
service (Lines 36-41).

The sample configuration in Listing 2 defines the ser-
vice BookService which derives the operation echo()
from the template GenericService and extends it with
getISBN(). The source code in Listing 1 was generated
from this configuration.

5.2 Generation and Steering of Web Services

The following Jython code snippets demonstrate the
convenience of GENESIS in deploying Web services and
steering their behavior. In the first sample, the service
newService is deployed on a remote host, with one plain
operation named helloWorld invoking the QOSPlugin.
A correct deployment can be verified by checking the
generated WSDL description of the service at http://
somehost:8080/some/path/newService?WSDL.

from a t . ac . t u wi en . v i t a l a b . g e n e s i s . model import ∗

r emoteHos t =Host ("http://somehost:8080/some/path")
newServ ice = S e r v i c e ("newService")
h e l l o O p e r a t i o n = O p e r a t i o n ("helloWorld")

i n p u t s =LinkedHashMap () % o r d e r e d i n p u t t y p e s
i n p u t s . p u t ("arg" ,"string") % i n p u t name & t y p e
h e l l o O p e r a t i o n . s e t I n p u t T y p e s (i n p u t s)
h e l l o O p e r a t i o n . s e t O u t p u t T y p e ("string")

p l u g i n s = Ve c t o r () % s e t plug−i n r e f e r e n c e s
p l u g i n s . add ("QOSPlugin.simulateQOS")
o p e r a t i o n . s e t I n v o c a t i o n s (p l u g i n s)

newServ ice . a d d O p e r a t i o n (h e l l o O p e r a t i o n)
remoteHos t . a d d S e r v i c e (newServ i ce)

newServ ice . de p l oy () % g e n e r a t e a t back−end

In cases where the back-end has been populated with
Web services before, the front-end application can retrieve
the handles to these services from the remote hosts and start
working on them.

r emoteHos t . l o a d S e r v i c e s ()

r emoteHos t . l i s t S e r v i c e N a m e s () % p r i n t names
> [someServ ice , newServ ice]

newServ ice = l o c a l h o s t . g e t S e r v i c e ("newService")

Control on plug-ins is achieved by modifying parame-
ters via getter/setter methods, whereas the setter methods
forward the changes to the corresponding plug-ins at the
back-end. When simple setting of parameter values is not
sufficient to implement a desired behavior, the developer
can use API methods for sophisticated manipulation. The
following code snippet shows how a plug-in parameter can
be changed continuously according to a sine function.

param= h e l l o O p e r a t i o n . g e t P a r a m e t e r (\
QOSPlugin . PROCESSINGTIME)

param . g e t V a l u e () % p r i n t v a l u e
> 2000
param . s e t V a l u e (2 5 0 0) % s i m p l e s e t t e r

i = 0
def s i n e () : % d e f i n e s i n e f u n c .
. . . g l o b a l i
. . . i = i +1
. . . re turn 1000+ Math . round (\

Math . s i n (Math . t o R a d i a n s (i))∗5 0 0)

param . s e t V a l u e (s i n e , 3 6 0 , 1 0 0 0) % change acc . t o s i n e

The GENESIS API provides various other methods for
sophisticated control of plug-ins, e.g., observe/notification
mechanisms for parameters. However, for the sake of sim-
plicity we showed rather primitive functions in the previous
samples, where only the QOSPlugin was used inside a stan-
dalone service which was not composed of other services.
The following example creates a more complex service us-
ing a template, which executes a BPEL process in the back-
ground and, in addition, simulates failures.
t e s t b e d = T e s t b e d ("/path/to/testbed.config")
t e m p l a t e = t e s t b e d . g e t S e r v i c e T e m p l a t e ("GenericService")

c o m p l e x S e r v i c e = newServ ice ("ComplexService" , t e m p l a t e)
o p e r a t i o n =new O p e r a t i o n ("run")

i n p u t s = . . . % l i s t o f i n p u t t y p e s
o p e r a t i o n . s e t I n p u t T y p e s (i n p u t s)
o p e r a t i o n . s e t O u t p u t T y p e ("xs:Statistics") % xsd t y p e

p l u g i n I n v o c a t i o n s = V ec to r ()
p l u g i n I n v o c a t i o n s . add ("BPELPlugin.run")
p l u g i n I n v o c a t i o n s . add ("QOSPlugin.simulateFailure")
o p e r a t i o n . s e t I n v o c a t i o n s (p l u g i n I n v o c a t i o n s)

bpe lParam = o p e r a t i o n . g e t P a r a m e t e r (BPELPlugin . BPEL)
bpe lParam . s e t V a l u e ("/path/to/some.bpel")

c o m p l e x S e r v i c e . a d d O p e r a t i o n (run)
remoteHos t . a d d S e r v i c e (c o m p l e x S e r v i c e)

c o m p l e x S e r v i c e . de p l oy ()

A complex testbed can be set up easily by combining
multiple of such services. Interdependencies between them
can be handled by abstract BPEL processes which resolve
abstract partnerLinks pointing to other services at runtime.
Furthermore, a realistic behavior of the testbed can be sim-
ulated by alternating the QoS properties of the individual
services, which in return effects the QoS of the composed
ones.

5.3 Illustrating Example

In [27] Michlmayr et al. present the VReSCO project
which addresses some of the current challenges and issues
of service-oriented computing. In particular, they claim that
the well-known provider-broker-requester triangle of SOA
seems to be broken and today’s SOA applications rely on
exact endpoint addresses instead of finding services dynam-
ically at the broker which is also referred to as the reg-
istry. According to [27], this happens mainly due to the
shortcomings of the currently available Web service reg-
istries, UDDI and ebXML, which are too complicated and
too heavy-weight.

The idea of VReSCO aims at solving this problem by
providing a registry infrastructure which supports SOA de-
velopers with dynamic binding and invocation of services.
In that approach, services are published dynamically at run-
time to the other participants within the network and are
described by meta-data of functional and non-functional at-
tributes, e.g., monitored QoS attributes [30]. Based on this

meta-data, it is possible to search and query for services and
to bind and invoke them dynamically. Moreover, clients can
subscribe to notifications about new services appearing in
the network and as well about changing attributes or inter-
faces of already registered services. In addition, the registry
is coupled to an orchestration engine for providing semi-
automatic service composition.

Since VReSCO was designed to disburden SOA de-
velopers from handling various difficulties of dynamically
changing service environments, it is necessary to test the
system at runtime on a dynamic testbed consisting of real
services. In GENESIS, such a testbed can be created easily
by applying:

• The QOSPlugin for simulating changing non-
functional attributes (performance and dependability)
which will be monitored periodically by VReSCO.

• The BPELPlugin for creating complex services whose
non-functional attributes depend directly on the refer-
enced services.

• A plug-in for registering deployed Web services au-
tomatically at the VReSCO infrastructure. This is a
planned extension for the RegistryPlugin.

• A control mechanism at the front-end, which manip-
ulates the QoS attributes of the services inside the
testbed to simulate temporal unavailability and perfor-
mance variations.

By deploying VReSCO on such a testbed, the developers
could perform various checks to identify potential problems
of the system at runtime and can verify whether VReSCO
reacts correctly to the dynamics of the environment. In
particular, various test cases can be enacted which iden-
tify performance bottlenecks of the system, determine the
overall stability and scalability, and also help to point out
constraints which can only be identified at runtime tests.

The VReSCO example illustrates clearly the typical area
of application for GENESIS, where a realistic environment
of Web services is needed as a testbed for runtime simula-
tions.

6 Implementation Details

For deploying Web services the world of Java offers mul-
tiple facilities, such as application servers (e.g., IBM Web-
Sphere, Sun GlassFish, JBoss), service engines relying on
Servlet containers (e.g., Apache Axis), and standalone so-
lutions, such as JAX-WS [8]. Since we wanted to keep
GENESIS light-weight and avoid any unnecessary depen-
dence on other components, we decided to use JAX-WS 2.0,
especially after Sun Microsystems made it an official part
of Java 6 [32]. JAX-WS 2.0 offers a convenient method to

develop and deploy SOAP-based Web services. Although
it is not as powerful as for instance Apache Axis, it pro-
vides all the functionality we needed for our purposes, such
as support of data types described in XML Schema, auto-
matic WSDL generation, RPC and message-oriented com-
munication, and simple deployment on HTTP-based SOAP
endpoints.

The generation of Java source code is based on the
Apache Velocity [1] template engine. The source code
is created by using default templates for JAX-WS service
classes and replacing placeholders with concrete Java ex-
pressions derived from the Web service descriptions. This
way we kept the generation as flexible as possible, making
even modifications during runtime feasible with minimal ef-
fort.

Regarding the performance of GENESIS, the framework
itself consumes only marginal amounts of CPU cycles or
memory. However, we observed a bottleneck at the back-
end when xjc, javac, and wsgen are being invoked for
compiling Web services. Experiments, carried out on a
Linux-based laptop with 2 GB of RAM and a 2 GHz In-
tel Core 2 Duo CPU, showed that the combined compila-
tion takes at least 3 seconds for simple services. As this
delay is mainly caused by the time necessary to start up the
individual programs, we also observed that the overall com-
pilation time does not increase significantly for more com-
plex services. Furthermore, this procedure can be optimized
by allowing parallel compilation if the back-end hosts are
equipped with multiple CPU cores.

7 Related Work

Testing of Service Oriented Architectures requires in
general support of two kinds: (a) tools for executing the test
cases, including runtime-based tests as well as formal ones,
and (b) tools supporting the developer in setting up these
test cases. The active execution of testings and simulations
has been addressed in many works of which we discuss the
most relevant ones. Unfortunately, only few solutions exist
for solving the second issue. Here our review of relevant
work is focused more on automatic generation of Web ser-
vices in general.

Formal methods, such as situation calculus [28, 29] and
petri-nets [15, 37], are widely used for verification of ser-
vice compositions. However, with these methods it is only
possible to analyze the composition models at a high-level,
neglecting their runtime behavior.

The High Level Architecture (HLA) [4, 5, 6] is an ar-
chitecture standard for distributed simulations. The idea is
to split a simulation into several sub-simulations which can
exchange data and are being controlled by a centralized run-
time infrastructure. It consists of an interface specification,
an object model, and a set of rules. It is a powerful tool for

controlling simulations, which could be used in combina-
tion with GENESIS in order to have sophisticated control
on a simulation operating on real Web services created on
demand.

DDSOS [35] is a framework based on the principles
of HLA, which provides model-and-run support for dis-
tributed simulation, dynamic model checking and verifica-
tion, multi-agent simulation, etc. Furthermore it contains
an automated scenario code generator, where scenarios de-
scribe the behavior of the simulations. DDSOS translates
the scenarios from PSML to executable code in several
phases by using the idea of code templates which are com-
plemented according to the specified models. This happens
on the levels of a service model, a system model, and an en-
vironment model, whereas the first two are platform inde-
pendent. However, the environment model describes the de-
tails of the destination platform, such as middleware used,
operating system, etc. By binding it to GENESIS it is pos-
sible to generate automatically real Web services environ-
ments for run-time simulation and verification of SOAs.

Puppet [19] is a tool for automatic generation of testbeds
for evaluation of QoS features of Web services. In particular
it aims at Web services which are under development, and
therefore not deployable yet, and wraps them into gener-
ated service skeletons which simulate QoS behavior. As in-
put it expects WSDL and WS-Agreement documents, from
which it generates the interfaces and QoS simulation code.
The functionality of Puppet is only limited to QoS simu-
lation and the parameters cannot be changed during run-
time. In contrast, GENESIS was designed to offer an ex-
tensible functionality to the developers, allowing to set up
customized testbeds.

Much relevant work has been done in the area of Model
Driven Development (MDD) of Web services. In [16] an
approach for semi-automatic generation of Web service ar-
tifacts is presented. These artifacts include workflow def-
initions as BPEL, Web service interfaces as WSDL, and
security constraints in WS-Policy. A similar approach is
described in [17], where service templates and executable
specifications are generated for simplifying the develop-
ment of Web services. In [38] a framework is presented,
which uses UML (Unified Modeling Language) specifica-
tions for Enterprise Distributed Object Computing (EDOC),
which are translated into Web service skeletons and, op-
tionally, BPEL processes. GENESIS is based on the same
principles, but allows to manipulate the model on the fly
and to adapt a back-end of real Web services automati-
cally to it. However, it makes sense to combine the listed
MDD approaches with GENESIS to simplify the specifica-
tion of BPEL-based interdependencies inside the testbeds.
Furthermore, model-driven methods are also being used to
generate executable test cases from abstract and platform-
independent test data models [20, 24].

8 Conclusion and Future Work

Designing and testing of distributed complex service-
oriented systems is composed of a set of challenges which
need to be addressed in essentially all complex systems. In
this paper we presented GENESIS, a software framework
for solving some crucial challenges in the development and
testing of complex service-oriented systems. Our approach
and implementation support automatic generation and steer-
ing of testbeds of complex Web services, by empower-
ing developers to (a) specify functional and non-functional
properties of Web services, to (b) generate the services au-
tomatically on remote hosts, to (c) enhance the functionality
of the framework with plug-ins, and, to (d) control and steer
the behavior of the testbed during runtime.

One powerful mechanism of GENESIS includes the
plug-ins. We have implemented some to demonstrate its
usefulness and plan to extend the number of them in fu-
ture versions with the goal to allow a more complex ar-
rangement of the plug-ins instead of the current linear se-
quence. Furthermore, we are investigating the utilization of
Model-driven development (MDD) for generating input for
our BPEL plug-in. We plan to release GENESIS under an
open source license.

References

[1] Apache Velocity. http://velocity.apache.org.
[2] bexee - BPEL Execution Engine. http://bexee.

sourceforge.net/.
[3] Business Process Execution Language for Web Ser-

vices Version 1.1. http://download.boulder.
ibm.com/ibmdl/pub/software/dw/specs/
ws-bpel/ws-bpel.pdf.

[4] IEEE 1516-2000: High Level Architecture - Framework and
Rules.

[5] IEEE 1516.1-2000: High Level Architecture - Federate In-
terface Specification.

[6] IEEE 1516.2-2000: High Level Architecture - Object Model
Template (OMT) Specification.

[7] Jakarta BSF - Bean Scripting Framework. http://
jakarta.apache.org/bsf/.

[8] Java API for XML Web Services (JAX-WS). https://
jax-ws.dev.java.net/.

[9] Jython - Python in Java. http://www.jython.org.
[10] SOAP specifications at W3C. http://www.w3.org/

TR/soap/.
[11] Universal Description Discovery and Integration.

http://www.oasis-open.org/committees/
uddi-spec/doc/tcspecs.htm.

[12] Web Services Activity at W3C. http://www.w3.org/
2002/ws/.

[13] Web Services Choreography Description Language
Version 1.0. http://www.w3.org/TR/2004/
WD-ws-cdl-10-20041217/.

[14] XML Schema. http://www.w3.org/XML/Schema.

[15] N. R. Adam, V. Atluri, and W. kuang Huang. Modeling and
analysis of workflows using petri nets. J. Intell. Inf. Syst.,
10(2):131–158, 1998.

[16] R. Anzböck and S. Dustdar. Semi-automatic generation of
web services and bpel processes - a model-driven approach.
In W. M. P. van der Aalst, B. Benatallah, F. Casati, and
F. Curbera, editors, Business Process Management, volume
3649, pages 64–79, 2005.

[17] K. Baı̈na, B. Benatallah, F. Casati, and F. Toumani. Model-
driven web service development. In A. Persson and J. Stirna,
editors, CAiSE, volume 3084 of Lecture Notes in Computer
Science, pages 290–306. Springer, 2004.

[18] M. D. Barros, J. Shiau, C. Shang, K. Gidewall, H. Shi, and
J. Forsmann. Web services wind tunnel: On performance
testing large-scale stateful web services. In DSN, pages 612–
617. IEEE Computer Society, 2007.

[19] A. Bertolino, G. D. Angelis, and A. Polini. Automatic gener-
ation of test-beds for pre-deployment qos evaluation of web
services. In V. Cortellessa, S. Uchitel, and D. Yankelevich,
editors, WOSP, pages 137–140. ACM, 2007.

[20] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M.
Lott, G. C. Patton, and B. M. Horowitz. Model-based testing
in practice. In ICSE, pages 285–294, 1999.

[21] H. El-Rewini and W. Halang. The engineering of com-
plex distributed computer systems. IEEE Concurrency,
05(4):30–31, 1997.

[22] M. Ellims, J. Bridges, and D. C. Ince. Unit testing in prac-
tice. In ISSRE, pages 3–13. IEEE Computer Society, 2004.

[23] W. E. Howden. Functional program testing. IEEE Trans.
Software Eng., 6(2):162–169, 1980.

[24] A. Z. Javed, P. A. Strooper, and G. N. Watson. Automated
generation of test cases using model-driven architecture. In
AST’07, page 3, Washington, DC, USA, 2007. IEEE Com-
puter Society.

[25] P. C. Jorgensen and C. Erickson. Object-oriented integration
testing. Commun. ACM, 37(9):30–38, 1994.

[26] E. Martin, S. Basu, and T. Xie. Websob: A tool for robust-
ness testing of web services. In ICSE Companion, pages
65–66. IEEE Computer Society, 2007.

[27] A. Michlmayr, F. Rosenberg, C. Platzer, M. Treiber, and
S. Dustdar. Towards recovering the broken soa trian-
gle - a software engineering perspective. In IW-SOSWE,
Dubrovnik, Croatia. ACM Press, 2007.

[28] S. Narayanan and S. A. McIlraith. Simulation, verifica-
tion and automated composition of web services. In WWW,
pages 77–88. ACM Press, 2002.

[29] S. Narayanan and S. A. McIlraith. Analysis and simulation
of web services. Computer Networks, 42(5):675–693, 2003.

[30] F. Rosenberg, C. Platzer, and S. Dustdar. Bootstrapping per-
formance and dependability attributes of web services. In
ICWS, pages 205–212. IEEE Computer Society, 2006.

[31] A. D. Stoyenko. Engineering complex computer systems:
A challenge for computer types everywhere - part 1: Let’s
agree on what these systems are. IEEE Computer, 28(9):85–
86, 1995.

[32] Sun Developer Network. Introducing JAX-WS
2.0 With the Java SE 6 Platform, September
2006. http://java.sun.com/developer/
technicalArticles/J2SE/jax_ws_2/.

[33] H. Tran, U. Zdun, and S. Dustdar. View-based and model-
driven approach for reducing the development complexity in
process-driven soa. In BPSC, Leipzig, Germany, 2007.

[34] W.-T. Tsai, Y. Chen, Z. Cao, X. Bai, H. Huang, and R. A.
Paul. Testing web services using progressive group test-
ing. In C.-H. Chi and K.-Y. Lam, editors, AWCC, volume
3309 of Lecture Notes in Computer Science, pages 314–322.
Springer, 2004.

[35] W.-T. Tsai, C. Fan, Y. Chen, and R. A. Paul. Ddsos: A dy-
namic distributed service-oriented simulation framework1.
In Annual Simulation Symposium, pages 160–167. IEEE
Computer Society, 2006.

[36] W.-T. Tsai, R. A. Paul, W. Song, and Z. Cao. Coyote: An
xml-based framework for web services testing. In HASE,
pages 173–176. IEEE Computer Society, 2002.

[37] W. M. P. van der Aalst. Challenges in business process
management: Verification of business processing using petri
nets. Bulletin of the EATCS, 80:174–199, 2003.

[38] X. Yu, J. Hu, Y. Zhang, T. Zhang, L. Wang, J. Zhao, and
X. Li. A model driven development framework for enter-
prise web services. In EDOC, pages 75–84. IEEE Computer
Society, 2006.

[39] U. Zdun, C. Hentrich, and S. Dustdar. Modeling process-
driven and service-oriented architectures using patterns and
pattern primitives. TWEB, 1(3), 2007.

[40] X. Zhou, W.-T. Tsai, X. Wei, Y. Chen, and B. Xiao. Pi4soa:
A policy infrastructure for verification and control of service
collaboration. In ICEBE, pages 307–314. IEEE Computer
Society, 2006.

