
HAL Id: inria-00271533
https://inria.hal.science/inria-00271533

Submitted on 9 Apr 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contract-based approach to analyze software
components

Abdelhafid Zitouni, Lionel Seinturier, Mahmoud Boufaida

To cite this version:
Abdelhafid Zitouni, Lionel Seinturier, Mahmoud Boufaida. Contract-based approach to analyze soft-
ware components. Workshop on UML&AADL @ ICECCS’08, 2008, Belfast, United Kingdom. pp.237-
242. �inria-00271533�

https://inria.hal.science/inria-00271533
https://hal.archives-ouvertes.fr

Contract-based approach to analyze software components

A. Zitouni, L.Seinturier M. Boufaida
Laboratory LIRE LIFL-INRIA ADAM Laboratory LIRE

Computer Science Department University of Lille Computer Science Department
Mentouri University of Constantine 59655 Villeneuve d’Ascq Mentouri University of Constantine

Algeria, France Algeria,
ah_zitouni@yahoo.fr Lionel.Seinturier@lifl.fr boufaida@hotmail.com

Abstract

Component-based software development focuses on
building large software systems by integrating existing
software components to reduce cost, risk and time.
However, behavioural and compositional conflicts
among components constitute a crucial barrier to
successful software composition. In this paper, we
present a contract-based approach to analyze and
model the properties of components and their
composition in order to detect and correct composition
errors. With this approach we characterize the
structural, interface and behavioural aspects, and a
specific form of evolution of these components.
Enabling this, we propose the use of the LOTOS
language as an Architecture Description Language
(ADL) for formalising these aspects.

1. Introduction

Component-based approaches have been proposed to
create and deploy software systems assembled from
components. The use of previously developed
components should leads to faster time for complex
software applications. Therefore, component-based
software development is a promising solution to some
of the problems that designers, developers and
integrators face when building their systems [3].
Software patterns are a design paradigm used to solve
problems that arise when developing software within a
particular context. Patterns capture the static and
dynamic structure and collaboration among the
components in a software design. A key promise of the
pattern-based approach is that it may greatly simplify
the construction of software systems, reuse experience
and reduce cost. Design patterns [5] have been
proposed to reify good design practice from conceptual
design building blocks into a composable form.
 Formal specification and verification techniques are
useful for design analysis in that the formal
representations are more precise, expressive, and
unambiguous than the informal ones, such as graphical

and textual notations. Formal notations can be a basis
for verification techniques, such as model checking [2],
which can be used to detect errors.
 A contribution of this paper is to provide a systematic
approach for a software designer to model and analyze
component integration during the design phase, the
early planning stage of the software lifecycle.
The approach includes a process of representing,
instantiating and integrating design patterns which can
seen as a components (called design components), and
analyzing their compositions, which are captured as
contracts. Compositional patterns can be formally
described as connections between process components.
The approach involves the modeling of design
components and their composition, and a framework in
which the design compositions can be analyzed.
Another contribution of this paper is a proposition of a
novel ADL (LOTOS-ADL) that has been designed to
address specification of structural and dynamic
architectures.
The rest of this paper is organised as follows. Section 2
introduces an overview of our approach. In Section 3
we focus on the abstract specification of the
component. Section 4 presents the concepts of
LOTOS-ADL. Section 5 gives an overview of our
environment of validation. Section7 illustrate a case
study. Finally the last section concludes the paper and
gives directions for future work.

2. Overview of the Approach

We present an overview of our approach and outline
the general ideas in our formal models. We separate
the abstract specification from its implementation.

Our main goal is to provide a systematic approach
for a software designer to model and analyze
component integration during the design phase, the
early planning stage of the software lifecycle. The
approach includes a process of representing,
instantiating and integrating design components and
analyzing their compositions, which are captured as
contracts (figure1).

in
ria

-0
02

71
53

3,
 v

er
si

on
 1

 -
9

Ap
r 2

00
8

Author manuscript, published in "Workshop on UML&AADL @ ICECCS’08, Belfast : Royaume-Uni (2008)"

http://hal.inria.fr/inria-00271533/fr/
http://hal.archives-ouvertes.fr

This approach allows design components to be
reused by making the components description available
in a component library. With this approach, the
designer can not only model the design component
precisely, unambiguously and expressively, but also
detect the interactions between components and correct
design errors before implementation. As shown in
figure1, our approach begins by four steps: (The
analysis, the selection, the abstract specification and
the instantiation steps). These steps are describes as
follows:

-Analysis: the purpose of this step is to analyze the
application requirements and to decide on the set of
design patterns that will be used in designing the
system. In [11] we are shown the specification and the
description of the system configuration and its
components must be put into a form amenable for
analysis and design [11].

-Selection: in this step we analyze the
responsibilities and the functionalities of each
component and identify candidate patterns that could
provide a design solution for each component. In
doing so, we consider the design problem that we want
to solve and match it to the solution provided by
general purpose design patterns (expert pattern [4] is a
good candidate for this task) [11].

-Abstract specification: this step (inspired from the
work of Dong and al. [3]) contains a formal model of
design component, called design component contract.
A design component contract includes structural
contract, behavioural contract and interface contract.

-Instantiation: in this step, we create instances of
the selected patterns and identify the relationships
between these instances (This is a role of the Abstract
factory pattern). Finally, we use the pattern instances
and their relationships to construct the composite
component. We use the LOTOS-ADL for this task.
During the design or design refinement phases we
could discover that a selected pattern has limitations or
impacts on other design aspects. In this case, the
designer would revisit this design level to choose
another pattern, replace previous choices, or create a
new pattern dependency or a new uses relationship.

In this article we focus on the abstract specification
of the component and the ADL for describing the
architecture of component-based software, which
provide explicit support for specifying components.
ADLs are important since they can document
component-based architecture early, reason about their
properties, and automate their analysis and system
generation [5].

Figure 1. Overview of our approach

3. Abstract specification of a component

 The abstract specification contains a formal model
of design component, called design component
contract.
 A design component contract includes structural
contract, behavioural contract and interface contract.
Each contract defines the generic information about a
design component. The instantiation operation can be
used to apply a generic contract in a particular
application. The integration operation formally defines
how to compose two or more contracts to form a new
contract.
 The structural properties describe the relations of
the constructs of each design component, such as
connectivity of classes by inheritance or association
relations in object-oriented systems. The behavioural
properties are constraints such as event ordering, and
action sequence of each design component. The
interface contract describes the finite set of input or
output ports attached to a design component and the set
of messages sent to or received by a component.

3.1. Structural contracts

 We define the structural aspect of a design
component contract as follows: The structural aspect of
a design component contract SC is a tuple SC = (C, A,
M, T, Ar, Pc,Pa,), where C is a set of classes in the
design component that define the participants within

in
ria

-0
02

71
53

3,
 v

er
si

on
 1

 -
9

Ap
r 2

00
8

each design component , A is a set of attributes defined
in classes C, M is a set of methods defined in classes
C, T is a set of types that are used to define the
attributes and methods in classes C, and Ar is a set of
access rights that the attributes and methods can have
in a class of C. For example, Ar = {public, protected,
private}, Pc is a set of connection predicates symbols
that capture the relationships between the role each a
design component. For example (Inherit, association,
aggregation,..), and Pa is a set of action predicates
symbols that can perform in a design component For
example (invoke, new, return…)
The structural aspect of a design component can be
formalized using a subset of First Order Logic (FOL),
because the relations between pattern participants can
be easily expressed as predicates [8].
The subset of FOL used to describe the structural
aspect of a design component comprises variable
symbols, connectives (‘ ’), quantifiers (‘ ’), element
(є) and predicate symbols acting upon variable
symbols. The variable symbols represent class, objects,
while the predicate symbols represent permanent
relation [10].
We define two groups of predicates, entities (Table1)
and relationships (Table2).
- Entity predicates define whether a design component
has a specific class (abstract or concrete), what a
method (or attribute) is defined in a class….
- Relationship predicates define the relations between
classes, attributes, and operations and the actions that a
role can perform in a component.

Table 1. Entity predicates

Table 2. Relationship predicates

3.2. Behavioural contracts

 In contrast to the structural aspect of a design
component contract, the behavioural contract describes
the dynamic information, such as the collaboration
among the objects participating in the component and
the creation of new objects. The behavioural contract is

essential because the structural contract only captures
the static information. But components are also
characterized by the interactions among the objects and
operations.
 We have chosen a basic LOTOS [1] (figure 2) for
defining a formal semantic model of behavioural
contracts because it represents a powerful approach to
modeling of behaviour and concurrency. The choice of
LOTOS is motivated by its powerful ability for
describing behaviour and the availability of tools
enabling formal verification and automatic generation
of distributed programs. Our proposal focuses on
formally describing architectures encompassing both
the structural and behavioural viewpoints. We illustrate
our approach with the example of a client server
application

Figure 2. LOTOS operators

3.3. Interface contracts

 We define the interface aspect of a design
component contract as follow: Let a tuple IC = (P,
IP,OP, IM,OM, IMI), where P is a finite set of process
names, IP is a finite set of input ports attached to a
process, OP is a finite set of output ports attached to a
process, IM is a finite set of input messages sent to a
process and OM is a finite set of output messages sent
from a process, IMI is the finite set of input messages
sent from outside the design component to a process.

3.4. Interface contracts

 Consider the structure (class and interaction
diagram) of the observer pattern shown in figure 3
[10]: (The Observer (also called Publisher-Subscriber)
regulates how a change in one object can be reflected
in an unspecified number of dependant objects).

in
ria

-0
02

71
53

3,
 v

er
si

on
 1

 -
9

Ap
r 2

00
8

Figure 3. Observer pattern (class diagram ,interaction

diagram)

The abstract specification of structural contract is done
by:
 (0) Component-name is Observer where:
 (1) ∃ abstract-class(Subject,Observer) є C;

 (2) ∧ ∃ class(ConcreteObserver,ConcreteSubject)} є C;

 (3) ∧ ∃ (attach, detach, getstate, update, notify)є M;

 (4) ∧ ∃ (void, datatyp)}є T;
 (5) ∧ ∃ Inherit { (Observer, ConcreteObserver) ∧
 (Subject, ConcreteSubject) };
 (6) ∧ ∃ Invoke {(Invoke(Subject, attach, observer, append) ∧
 (Subject, detach, observer,remouve) ∧
 (Subject, notify, observer, update)};
 (7) ∧ ∃ Return (concreteSubject, getstate, subjectstate)
 (8) Where ∃ Method {(attach, detach, notify)єSubject

 ∧ (updtate)єObservet
 ∧ (getstate, notify)є ConcreteSubject
 ∧ (updtate)є ConcreteObservet}

The JAVA pseudo-code of this description is done by:
Public interface Observer {
 Public void Update (subject s) ;}
Public interface Subject {
 Public void attach (Observer o) ;
 Public void detach (Observer o);
 Public void notify (); }
Public Class ConcreteSubject implements Subject {
 Public void attach (Observer o){…………} ;
 Public void detach (Observer o) {…………};
 Public void notify () {…………}; }
Public Class ConcreteObserver implements Observer {

Public void Update (subject s) {………………} ; }
 The abstract specification of interface contract is
done by:
 (0) Component-name is Observer where:

 (1) ∃ (aConcreteSubject,aConcreteObserver,
 anotherConcreteObserver) є C
 (2) ∧ ∃ (inOS, inSO,self, input) є IP

 (3) ∧ ∃ (outOS, outSO, output)є OP
 (4) ∧ ∃ (attach, detach, getstate, setstate,update, notify,
 change)є IM
 (5) ∧ ∃ (attach, detach, getstate, setstate,update, notify)є OM

 (6) ∧ ∃ (change)є IMI

The behavioural aspect of a design component is
expressed by the LOTOS specification. This
specification describe the sequences of observable
event:{attach,detach,getstate,setstate,update,notify,cha
nge}exchanged by elements of components:
{ConcreteSubject, ConcreteObserver} by means of a
restricted set of operators (figure 2).

4. Architecture Description Language

 A key aspect of the design of any software system
is its architecture. An architecture description, from a
runtime perspective, should provide a formal
specification of the architecture in terms of
components and connectors and how they are
composed together.
 Enabling specification of dynamic architectures is
a large challenge for an Architecture Description
Language (ADL) [9]. This section describes LOTOS-
ADL, a novel ADL that has been designed to address
specification of structural and dynamic architectures.
 It is a formal language based on temporal ordering
of observational behaviour. While most ADLs focus on
describing software architectures from a structural
viewpoint, LOTOS-ADL focuses on formally
describing architectures encompassing both the
structural and behavioural viewpoints. The LOTOS-
ADL design principles, concepts and notation are
presented. An architecture description specifies
architecture. Architecture can be described according
to different viewpoints. From a runtime perspective,
two viewpoints are frequently used in software
architecture [7], [9]: the structural viewpoint and the
behavioural viewpoint.
The structural viewpoint may be specified in terms of:

 components (units of computation of a system),
 connectors (interconnections among components
for supporting their interactions),
 Configurations of components and connectors.

Thereby, from a structural viewpoint, an architecture

in
ria

-0
02

71
53

3,
 v

er
si

on
 1

 -
9

Ap
r 2

00
8

description should provide a formal specification of the
architecture in terms of components and connectors
and how they are composed together. Further, in the
case of a dynamic or mobile architecture, it must
provide a specification of how its components and
connectors can change or move at runtime. The
behavioural viewpoint may be specified in terms of:

 actions a system executes or participates in,
 relations among actions to specify behaviours,
 behaviours of components and connectors, and how

 they interact.
A large challenge for an Architecture Description
Language (ADL) is the ability to describe static but
also dynamic software architectures from structural
and behavioural viewpoints.
Indeed, for describing dynamic architectures, an ADL
must be able to describe changing structures and
behaviours of components and connectors (including
creation/ deletion/reconfiguration/ moving) at runtime.
The set of concepts that manipulated within our ADL
meta model. (We are defined a meta-model for these
tasks).
 In our meta-model, we are mainly interested in
representing static and dynamic behaviour contract
using static and dynamic contract. A major benefit of
separate static part from the dynamic part is that
reasoning independently from any particular situations.
The static contract of a component is a part that does

5. Validation

 By verification, we mean comparison of a complex
system against a set of properties characterizing the
intended functioning of the system (for instance,
deadlock freedom, mutual exclusion, etc.). Most of the
verification algorithms are based on the labelled
transition systems model, which consists of a set of
states, an initial state, and a transition relation between
states. This model is often generated automatically
from high level descriptions of the system under study,
and then compared against the system properties using
various decision procedures. For the verification of our
approach, we use the FOCOVE (Formal Concurrency
Verification Environment) (available in
www.focove.new.fr) (fig 4)
 The FOCOVE environment is dedicated to the
design and verification for component based
software development. FOCOVE translate a LOTOS
program into a Labelled Transition System (LTS for
short) describing its exhaustive behaviour. This LTS
can be represented either explicitly as a set of states and
transitions or implicitly as a library of C functions
allowing us to execute the program behaviour in a
controlled way.

For the verification of concurrent systems, FOCOVE
allows errors the use interleaving semantics or the
maximality based semantic.

Figure 4.1. The FOCOVE environment

Figure 4. 2. Generation of the label transition systems

6. Case study

 Consider the simple client-server system shown in
Figure5. It consists of one client and one server
interacting via link connector. Such a system is easy to
describe in LOTOS-ADL.

in
ria

-0
02

71
53

3,
 v

er
si

on
 1

 -
9

Ap
r 2

00
8

 A LOTOS-ADL specification describes a system
through a hierarchy of components (process). A
process is an entity able to realise non-observable
actions, and also interact with others process through
externally observable actions.
The LOTOS specification at the top-level is a parallel
composition of the process Client (component client),
the process Server (component server) and the process
connector (connector) (figure 5).

Figure 5. Illustration of the Client-Server specification

 specification Client-Server [invClt,terClt,invSrv,terSrv] :
noexit:=
 library RESULT, SERVICES endlib
 behaviour
 Client [invClt, terClt]
 |[invClt, terClt]|
 connector [invClt, terClt, invSrv, terSrv]
 |[invSrv, terSrv]|
 Server [invSrv, terSrv]
 where
 ………
 ………
 Endprocess

 The connector behaviour is defined through the
temporal ordering of invocation operations in the
connector interface. The connector interface is made
up of four ports: invCtl to invocations from client,
terCtl to returns to client, invSrv to invocations from
server and terSrv to return to server

 process Connector[invClt,terClt,invSrv,terSrv] : noexit: =
 invClt ? s : SERVICE ? op: OPER /* the client passes
the request to connector* /
 invSrv ! s ! op; /* the connector passes the request to the
server*/
 terSrv ! s ? r : RESULT; /*the server passes the reply to
the connector*/
 terClt ! s ! r; /*the connector passes the reply to the
client*/
 Connector [invClt, terClt, invSrv,terSrv]
 Endproc

7. Conclusion
 In this paper, we have introduced a proposition of
formal model of design component based on contract

and a rigorous analysis approach to software design
composition based on automated verification
techniques. Our approach allows us to find errors in
the design composition early in the development
process.
This paper has illustrated how to adopt LOTOS as
ADL to describe the behaviour of software architecture.
This language is mathematically well-defined and
expressive: it allows the description of concurrency,
non-determinism, synchronous and asynchronous
communications. It supports various levels of
abstraction and provides several specification styles.
These positive features encouraged us to adopt LOTOS
as an ADL for describing both component and
connector enables us to check behaviours properties.
Currently, we are investigating to proposing a rules-
based transformation enabling the mapping from
LOTOS specification to JAVA pseudo code.

References

[1] T.Bolognesi, E.Brinksma. Introduction to the ISO
specification language LOTOS . In [Van EIJK89] 23-73
[2] Edmund Clarke, Orna Grumberg, and Doron A. Peled.:
Model Checking. MIT Press, 1999.
[3] Jing Dong.: Design component contracts, Phd thesis.
Computer Science department, university of Waterloo, June
2002.
[4] Dong J, Paulo S C Alencar, Donald D Cowan.:
Automating the analyse of design component contracts, In
software Practice and Experience, 2005.
[5] Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides.: Design Patterns, Elements of Reusable Object-
Oriented Software, 1995, Addison-Wesley Longman.
[6] Darlan Garlan, Robert T. Monroe, and David Wile.:
Acme: Architectural Description of Component-Based
Systems. Foundations of Component-Based Systems,
(Leavens G. and Sitaraman M., eds.) Cambridge University
Press, pages 47–67, 2000.
[7] IEEE recommended Practice for Architectural description
of Software-intensive System, October 2000.
[8]: L. Lamport The temporal logic of actions. ACM Trans.
Programm. Lang. Syst., Vol. 16, No. 3, pp. 872-923.
[9]. F. Oquendo.: PI-ADL: An architecture description
language based on the higher-order typed pi-calculus for
specifying dynamic and mobile software architectures. ACM
Software Engineering Notes, volume29, Number04, May
2004
[10]: Taibi T. and Ngo D.C.L (2001).: Modeling of distributed
objects computing design patterns combination. Journal
AMCS vol 13 N° 2 pp 239-253, 2004
[11] A. Zitouni. : Un framework pour l'utilisation des design
patterns par intégration du langage de spécification LOTOS,
Congré International en Informatique Appliquée CIIA05,
novembre 2005, BBA, Algérie, ISBN: 9947-0-1042-2

in
ria

-0
02

71
53

3,
 v

er
si

on
 1

 -
9

Ap
r 2

00
8

