
A Framework for Software Engineering Experimental Replications

Manoel G. Mendonça1, José C. Maldonado2, Maria C.F. de Oliveira2, Jeffrey Carver3, Sandra
C.P.F. Fabbri4, Forrest Shull5, Guilherme H. Travassos6, Erika Nina Höhn2, Victor R. Basili5,7ª

1Salvador University, 2University of São Paulo at São Carlos, 3Mississippi State
University, 4Federal University of São Carlos, 5Fraunhofer Center Maryland,

6Federal University of Rio de Janeiro, 7University of Maryland at College Park

mgmn@unifacs.br, {jcmaldon, cristina, hohn}@icmc.usp.br, carver@cse.msstate.edu,
sfabbri@dc.ufscar.br, fshull@fc-md.umd.edu, ght@cos.ufrj.br, basili@cs.umd.edu

Abstract

Experimental replications are very important to the
advancement of empirical software engineering.
Replications are one of the key mechanisms to confirm
previous experimental findings. They are also used to
transfer experimental knowledge, to train people, and
to expand a base of experimental evidence.
Unfortunately, experimental replications are difficult
endeavors. It is not easy to transfer experimental
know-how and experimental findings. Based on our
experience, this paper discusses this problem and
proposes a Framework for Improving the Replication
of Experiments (FIRE). The FIRE addresses knowledge
sharing issues both at the intra-group (internal
replications) and inter-group (external replications)
levels. It encourages coordination of replications in
order to facilitate knowledge transfer for lower cost,
higher quality replications and more generalizable
results.

1. Introduction

Empirical research is fundamental to the evolution
of software engineering as a discipline, but according
to Kitchenham et al. the current state of empirical
research in software engineering (i.e. case studies,
surveys, and formal experiments) is less than ideal
[22]. Surveys of the software engineering literature
show that the majority of the papers contain little or no
empirical validation [27,28,30,31]. This lack of
empirical work is more disturbing considering that it is
difficult to build a usable body of knowledge from
individual studies. The results of an isolated
experiment are not likely to be directly applicable to

every practitioner due to differences in system
domains, subject profiles and cultural environments
[18]. Replications must be conducted to ensure more
robust evidence sets that can support generally
applicable conclusions [5]. These replications can be
conducted by the same research group (i.e. internal
replications) or by different researchers, in different
contexts (i.e. external replications).

External replications can be classified according to
whether they were run independent of or coordinated
with, the original experimenters. Each produces
different kinds of knowledge. In this paper we argue
that coordinated external replications facilitate the
building of knowledge, the evolution of experimental
artifacts, and the analysis of results across the
replicated studies in a way that independent external
replications do not. Coordinated research helps ensure
the compatibility of a set of controlled experiments to
allow for the production and integration of a significant
body of results.

The problem of conducting effective, coordinated
replications has been addressed by the Readers Project
- a collaborative research effort, sponsored by the
Brazilian (CNPq) and American (NSF) national
research foundations. The Readers Project used reading
techniques (techniques used for defect detection during
software document reviews) to experimentally develop,
validate, and package an infrastructure to support
effective replications [24]. This focus on reviews and
the underlying analysis techniques (i.e. the reading
techniques) is important because most software
artifacts require continual understanding, review, and
modification. A large body of studies has demonstrated
that reading techniques are effective for improving
individual review practices in different domains and

types of inspection, e.g. natural language requirements
[3], requirements in formal notation [20], high-level
designs [14], code [13,15], and user interfaces [32].

Based on our experience in the Readers Project this

paper discusses the problem of experimental
replications and proposes a framework for improving
the replication of SE experiments (FIRE) The FIRE
addresses knowledge sharing issues both at the intra-
group (internal replications) and inter-group (external
replications) levels. It encourages coordination of
replications in order to facilitate knowledge transfer for
lower cost, higher quality replications and more
generalizable results.

2. Experimental Replications in Software
Engineering

Empirical software engineering research should be
broader than simply conducting single, isolated studies.
It should focus on consolidating a body of knowledge
about the costs and benefits of techniques that will
enhance the understanding of software development
processes, and establish novel software development
models. Drawing conclusions from single studies in
software engineering is inherently dangerous because
sample sizes are often small relative to medical or
social science studies and there are a large number of
possible intervening factors in human subjects
experiments, some controllable, some completely
uncontrollable.

Miller states that the use of replications is the
standard approach to understand and eliminate
intervening factors by changing some of these factors
to see if the original result is stable [19]. A series of
replicated experiments with small to medium sample
sizes help safeguard against:

• Low statistical power
• Unknown interactions of other variables with

the treatment variable
• Flaws in the design, process and artifacts of

the study
The term replication is central to this work, so, it is

important to discuss its varied definitions. In
experimental software engineering, which uses human
subjects, exact replications are not feasible [9]. Hence,
it is more correct to describe replication attempts as
partial replications [19]. Therefore, a “good”
replication can be defined in two ways:

1. The experimenter minimizes the variation
between the replication and the original

2. The experimenter consciously changes a small
number of factors to either improve the study or

increase the external validity of the whole set of
studies.

Since portions of the artifacts, experimental design,
and protocols are tested during each replication, the
experiment is improved over time. It is therefore
imperative to run multiple, replicated studies with two
goals:

1. Gathering additional data to increase
confidence in the original results (i.e., show that the
original result holds across multiple environments and
subjects)

2. Addressing deeper research questions, for
example by controlling for different factors or using
different metrics.

Within this context, there are two types of
replications, internal and external. An internal
replication is conducted by the same set of researchers
who conducted the original experiment, while an
external replication is conducted by different
researchers. Brooks et al. provide an excellent
discussion about replications in a software engineering
environment, highlighting the need for external
replications to provide a strong scientific foundation
[8].

Important progress can be achieved by using
guidelines and packages to support replications, as
shown in prior research [7,16,29]. Although these
efforts made significant contributions to establishing
guidelines for replications, none explicitly addressed
methods of sharing knowledge to allow for cooperation
between research groups. This type of cooperation is
necessary to ease the building of knowledge, evolution
of experimental artifacts, and drawing conclusions
across all studies.

Basili et al. provided one of the first guidelines for
experimental software engineering replications,
focusing on establishing reporting guidelines. The
guidelines categorize the experimental process into
four steps: Definition; Planning, Operations, and
Interpretation [7]. Lott and Rombach also expanded on
this four-phase structure by providing greater detail and
direction [16]. Kitchenham et al. provide a more
general and abstract set of guidelines to encourage
critical assessment of existing studies. They cover a
broader spectrum of software engineering studies, from
observational studies to controlled experiments [12].
Wohlin et al. and Juristo and Moreno provide in depth
guidelines for performing and reporting controlled
experiments [10,29]. Brooks et al., provide guidelines
to improve experimental ‘recipes’, the use of
alternative data analysis techniques, and packaging
experiments for replication [8].

Although guidelines such as these are an essential
component in promoting good practices, they are not
sufficient for ensuring reproducibility [19]. Some
experimenters provide ‘replication packages’ or ‘lab
packages’ to increase reproducibility of their work [4,
11] and the construction of families of experiments [5].
These packages include the experimental design and
artifacts (forms, documents, and code) necessary to run
an experiment.

The problem with most lab packages is that much
information that needs to be made explicit remains
tacit. Even when both the original experimenters and
the replicators are experienced experimentalists, there
are still many potential sources of variation and
implicit assumptions made about the experimental
context. Acquiring the necessary information about an
experiment to guard against unintended sources of
variation between replications is quite difficult, due in
part to the tacit knowledge problem. Tacit knowledge
is important information that is known only by the
experimenter and is difficult to make explicit (that is,
written down), for a variety of reasons [24,26].

3. The Perspective Based Reading
Experiments

In this section, we illustrate our experience with a
family of replicated studies that compare the use of a
particular inspection technique, Perspective-Based
Reading (PBR) to a more standard approach.

Typical techniques used by participants to find
defects during an inspection include ad-hoc defect
detection (where the detection process is unspecified
and driven largely by the interests and experience of
the inspector) and checklist based reading (in which
each inspector focuses on a list of the quality aspects or
defect types). PBR, in contrast, provides a more
procedural approach. A PBR inspector is assumes the
perspective of one of the stakeholders of the
requirements document and creates an abstraction of
the requirements relevant to that stakeholder. During
the abstraction process, the inspector considers a set of
questions, based on the important defect types, to help
them locate defects. The set of perspectives used were
a software designer (D), a tester (T), and an end-user
(U). Each perspective helps the inspector ensure that
the requirements document contains the appropriate
information for the stakeholder to do his or her job. For
example, the Tester perspective helps the inspector to
uncover defects that would make the final product
difficult to test [23].

Figure 1. Studies used to illustrate the FIRE

The remainder of this section discusses the

replications of this study. The first studies occurred in
the American research group, where three studies were
executed (the original study and two intra-group
replications). Next, the Brazilian research group
executed three external replications. As the replications
are discussed, any evolution of the study (e.g.
experimental design, subjects, or types of analyses) is
highlighted. In addition, specific results are discussed
that illustrate the growth knowledge through the
replication. Throughout the rest of the paper the studies
are numbered in the order in which they occurred
(Original, followed by Rep1-Rep5). The location of
each study is indicated with “US” for American studies
and “BR” for Brazilian studies. Figure 3 presents an
overview of the studies discussed in this paper.

3.1. The Internal Studies

Inspired by the successful application of code reading
for software defect detection [2], researchers at the
University of Maryland began investigating techniques
for defect detection in requirements documents. At this
point no existing experiments or lab packages were
available, so knowledge was abstracted from a review
of the literature on inspections and other related
studies. Although planning the original experiment is
not the same as planning a replication, no experiment
starts completely from scratch – there is always explicit
knowledge from general literature and other sources.

3.1.1. The original study. The study goal was to
compare the effectiveness (number of defects found per
subject) of PBR to the effectiveness of another
approach termed the comparison technique. In this
case, the comparison technique was the standard
inspection method used by NASA software developers,
an informal approach.
The experimental design is shown in Table 1.
Eighteen subjects were obtained through publishing a
call for volunteers at NASA’s Goddard Space Flight
Center. (Volunteers were offered free training in the
inspection techniques as part of their participation in

American Studies

Rep4
Rep5

2000 20011994 1995 1996 1997

Rep1 Rep2Original

Brazilian Studies

Internal Replications External Replications

Rep3

American Studies

Rep4
Rep5

2000 20011994 1995 1996 1997

Rep1 Rep2Original

Brazilian Studies

Internal Replications External Replications

Rep3

the study.) On the first day, subjects performed an
inspection using the NASA approach. On the second
day, each subject was trained on one of the three PBR
perspectives (6 subjects per perspective) and then
performed an inspection using that perspective.

Four requirements documents were used in this
experiment, two from generic domains: an Automated
Teller Machine (ATM) and a Parking Garage (PG);
and two from a NASA-specific domain: NASA A and
NASA B. The subjects used one generic and one
NASA document during inspection 1 and switched
documents for inspection 2. To prevent the order of the
documents from influencing the results, half of the
subjects used NASA-A and ATM first followed by
NASA-B and PG and the other half reversed the order.
The study was designed so that the core of the study,
the generic documents, could be replicated in a non-
NASA environment. Replicating the study without the
NASA documents was certainly a different design. But,
without requisite domain knowledge, non-NASA
inspectors would not be able to understand the NASA-
specific documents. Therefore, in the replications
reported in this paper, we focus only on the generic
documents.

During the execution of the study, two sets of metrics
were collected. First the subjects were given a survey
to collect their background knowledge and experience.
The second set of metrics measure the defects found by
subjects. The average effectiveness of inspectors using
PBR was compared to the average effectiveness of
inspectors using the comparison technique (the
standard NASA method). Also, random groups of
either three ad-hoc subjects or three PBR subjects (one
from each perspective) were created and the average
effectiveness of these teams was compared. A short
post-study questionnaire was administered to collect

qualitative feedback about usefulness and difficulties
encountered in using the techniques.

Because this was the first study, analysis covered the
results from this study only and did not involve
integration of the new results into an existing body of
knowledge. A first attempt at packaging the
experiment was made. At this point, the researchers
did not fully understand what information needed to be
in a laboratory package. This initial package did little
more than document what had occurred. The
researchers had not yet realized the difficulties with
tacit knowledge, so little effort was spent in
externalization of tacit knowledge.

The results of this study showed promising
indications about the effectiveness of PBR: At both the
individual and team level, inspectors using PBR tended
to detect 20% more defects than inspectors using the
comparison technique. However, due to the small
number of subjects the difference was only statistically
significant at the team level.

3.1.2. The first American replication (Rep_1). This
replication had the same goal as the original
experiment. This study was used to gather more data in
the hopes of being able to make a more definitive
statement about PBR’s relative effectiveness. Based on
the experiences from the original experiment, some
modifications were made in designing the experiment
and adapting the artifacts:

1) Update of experimental artifacts. Small changes
were made to the experimental artifacts (the
requirements documents) to remove some minor
sources of confusion that did not impact the
experimental goals.

2) Update of design: The experimental venue was
moved from NASA’s Goddard Space Flight
Center to the University of Maryland, to avoid

Table 1. Experimental d esign

 Group 1 – 9 Subjects Group 2 – 9 Subjects

Training (ABC video) Training (ABC video)
NASA A NASA B First

Day
ATM PG

Usual
Technique

Designer
3 Subjects

Tester
3 Subjects

User
3 Subjects

Designer
3 Subjects

Tester
3 Subjects

User
3 Subjects

Training on PBR technique
Training (ABC video) Training (ABC video)

PG ATM

Second
Day

NASA B NASA A

PBR

Technique

work-related distractions that might affect the
results of the inspection.

3) Modifications to data analysis: The master list of
defects was refined to include defects that were
present in the documents in addition to those that
the experimenters had seeded. Moreover, the
description of some defects was clarified to aid in
the analysis phase. After these changes, the data
from the Original Study were re-analyzed for
consistency.

Specific results. The results showed a statistically
significant improvement of about 30% at both the
individual and team level when using PBR. The
subjects also provided qualitative data about their
experiences with PBR. The most experienced
developers, in particular, seemed to have difficulty
giving up their usual practices to apply a new technique
under a time limit. The distribution of experience
among subjects in this study was not sufficient to test
this hypothesis, but it was flagged for additional study.

Integrated results. Since the direction and magnitude
of the effects observed were consistent with those of
the Original Study, the results of Rep_1 provided
additional confidence in the effectiveness of PBR.

A major contribution of Rep_1 was the lab package.
Between the original study and this replication, one of
the original experimenters was replaced by a new
researcher. Realizing how much effort was required for
understanding the Original Study, this researcher
developed the lab package to minimize this effort in the
future. A complete description of the results of the
Original Study and Rep_1 have been published in [3].

3.1.3. The second American replication (Rep_2).
The second replication was the basis for a Ph.D.
dissertation [22]. Its goal was to extend the results of
the original study, and investigate a new question that
arose in Rep_1. Specifically, did the relative
effectiveness of the techniques vary for subjects with
different levels of experience? In order to address this
new question and better understand the extent of the
applicability of the results, the subject population was
changed. Rather than consisting entirely of NASA
software engineers, subjects were drawn from students
in a graduate-level software engineering course at the
University of Maryland. Subjects thus ranged in
experience from industry professionals returning for
advanced degrees to researchers with no software
development experience outside the classroom. A
second change was that instead of using the standard
NASA approach as the comparison method, the
subjects used an ad hoc approach. The remainder of the

design of the experiment remained unchanged. The
artifacts and defect lists were again slightly updated
based on the results from the previous studies.

The analysis was conducted largely the same as in the
previous studies, except that a new independent
variable (subject experience in their PBR role) was
tested for correlation with effectiveness. This variable
was measured on a three level ordinal scale (no
industrial experience, industrial experience on one or
two projects, and industrial experience on more than
two industrial projects).

Specific results. The results showed that only medium
experience subjects benefited from using PBR. The
experimental team hypothesized that the cause may be
that very inexperienced subjects did not have enough
background in the given perspective to apply it
effectively, while highly experienced subjects had
likely developed their own procedures and were more
comfortable and more effective using them.

Integrated results. Comparison of the results of
Rep_2 to those from the previous studies showed some
consistency. For example, the improvement by the
subjects with a small amount of industrial experience,
was comparable to that seen in past studies, lending
additional support to the observation that PBR is useful
for this type of inspector.

3.2. The External Studies

In the late nineties, supported by NSF and CNPq,
Brazilian and American researchers established a
collaborative research effort to studies effort software
defect detection techniques. The effort was named the
Reader´s Project. The first step of the project was to
plan studies and coordinate initiatives. It was
established that the overall goal of this project was to
replicate experiments in different environments to gain
a better understanding of their variations. A major
focus was to investigate cultural issues that arise during
replications in different environments. As part of this
coordination, external replications of the PBR
Experiment were conducted in São Paulo, Brazil.

In order to do that, the replicating researchers (the
Brazilians) needed to understand the experiment and
lab package. Obtaining the laboratory package and the
associated artifacts was a key issue for these
replications. Even though a lab package had been
produced during the earlier studies, assembling a
complete and consistent set of materials was not easy.
Between 1997 and 2000, the lab package had been
used by other external replications. It contained

artifacts that had evolved without proper version
control and configuration, making the identification of
compatible and consistent artifacts complicated.

By interacting with original experimenters the
replicating researchers were able to obtain a consistent
lab package, but later experience showed it was not
entirely complete from the replicator´s viewpoint.

3.2.1. The Brazilian pilot study (Rep_3). The first
step for the Brazilian researchers was to set
experimental goals. The goals of Rep_3 were
foremost to replicate the Original Study plus examine
the effect of cultural differences. A change was made to
the experimental design - the comparison inspection
technique was a checklist instead of ad hoc or the
informal NASA method. An ad-hoc inspection relies
heavily on the background knowledge of the
inspectors; therefore comparing the use of ad-hoc by
inexperienced subjects to PBR would unfairly benefit
PBR. So, a standard industry practice, a checklist, was
used to provide a more fair comparison. In addition to
those experimental goals, this pilot study had the goal
of allowing the BR team to master the experimental
procedure. Specifically, the BR team wanted to ensure
experimental process conformity with the Original
Study, including the activities, timing, and artifacts.
Additionally, a minor modification was made to the
original study design to collect a new metric: defect
occurrences, which measures the degree of overlap
among defects found by different subjects.

As the original experimenters were not present for the
replications, this first study had to address experimental
issues that were not explicit in the experimental
package. Adaptation of artifacts for this pilot study
focused on the BR replicators capturing and
externalizing (i.e. documenting) the tacit knowledge
about the experimental procedures, their timing, and
their input and output artifacts. The six subjects were
selected from Ph.D. students working in the software
engineering area, with 3 using the checklist and 3 using
PBR (1 per perspective).

Because Rep_3 was a pilot study, we did not report the
specific results comparing PBR to the checklist. Rather
the main result of the study was that the BR team was
now confident enough in their understanding of the
study to proceed with a full replication, Rep_4.

3.2.2. The First Brazilian Replication (Rep_4). The
first complete external replication was conducted at the
University of São Paulo at São Carlos (USP). The
experimental goals and experimental design were the
same as for Rep_3. Two small additions were made to

the data collection forms. First, the background survey
was augmented to characterize English experience
because the subjects spoke Portuguese as their native
language. Second, new questions were added to the
post-study feedback questionnaire to gauge the
subjects’ understanding of the PG and ATM domains
and their process conformance. In addition, a live
feedback session was held at the conclusion of the
study, where researchers presented the subjects with an
overview of the experimental results and the defects
found in the artifacts. The subjects were then asked to
discuss whether they agreed with the defects identified
by the researcher and describe how well they followed
the process.

The subjects were 18 volunteer undergraduate students
(i.e. no course credit was given for participating in the
study) from the Software Engineering course at USP.
Subjects were randomly distributed among the
experimental groups ensuring that expertise in software
development and English reading ability were
balanced.

Specific results. The results from the data analysis
show that for the ATM, the subjects using the PBR
technique found a higher percentage of the defects than
the subjects using Checklist, while the opposite was
true for the PG. In attempting to understand why the
results differed for the two artifacts, efficiency (number
of defects found/hour) and defect occurrences were
examined. The subjects using PBR were more efficient
for both documents and found more defect occurrences
for the ATM only. Regardless of which metric was
used, there was little difference between the techniques
for the PG.

Integrated results. The results of Rep_4 partially
supported the results of the American studies. PBR
performed better than the comparison technique on the
ATM document, a result consistent with previous PBR
experiments [3]. Conversely, it performed worse than
the comparison technique on the PG document (for the
effectiveness and occurrences metrics), which conflicts
both with the ATM results in this replication and the
PG results in previous studies. Individual efficiency
using PBR was also better for both documents, but was
not measured in the original study.

There are two potential explanations for the
inconsistency between the results from the Original
Study and these results for the PG document: 1) the
change of the comparison technique from the
NASA/ad-hoc to checklist, 2) the native language of the
subjects was different than the language of the
experimental materials.

The last step in Rep_4 was to evolve the experimental
package. One issue that arose during the data analysis
process was the difficulty of determining whether
reported defects were true defects or false positives.
The BR team determined that a list of frequently
reported false positives should be part of the lab
package to ease analysis in future studies. Second, the
list of true defects was modified to include new defects
found during Rep_4. These modifications were made
through interaction with the original experimenters to
ensure a shared understanding.

After Rep_4, a second BR replication, Rep_5, was
planned. Moving from the Rep_4 to Rep_5 was
considerably simpler than moving from the original lab
packages to Rep_4 because the experiment was already
understood and adapted by the BR team.

3.2.3. The Second Brazilian Replication (Rep_5).
The second BR replication occurred at the Federal
University of São Carlos. To maintain uniformity, no
changes were made to the experimental goals from
Rep_4. While the goals of Rep_5 did not change, the
experimental design was slightly modified, based on
the feedback from Rep_4: the checklist training and the
checklist application were done on subsequent days, a
week later the PBR training and PBR application were
done on subsequent days. The total training time in
each replication was the same; only it was spread out
over a longer time period. These minor procedural
changes are a possible source of variation in the results,
but, in both studies, each technique was still applied
within one day of its training.

Another difference between Rep_4 and Rep_5 was the
subjects. Rep_5 used 18 undergraduate students from a
Software Engineering course at the Federal University
of São Carlos with slightly different motivation than
those who participated in Rep_4. Only 1/3 of the
subjects in Rep_5 were volunteers, the other 2/3 were
given course credit for participation in the study.
Subjects were distributed among the experimental
groups to balance expertise in software development
and English reading ability.

Specific results. The results from the data
analysis show that the subjects using the PBR
technique found a higher percentage of defects and
were more efficient than the subjects using the
Checklist for both the ATM and PG (neither result was
statistically significant). For the occurrences metric,
subjects using PBR performed better on both
documents (no statistical tests were run). A complete
description of Rep_4 and Rep_5 and their data analysis
has been published in [17].

Integrated results. Because the subject populations
and the experimental procedures for Rep_4 and Rep_5
were similar, the data from the two studies were pooled
and reanalyzed. This analysis showed that the subjects
using PBR were both more effective and efficient on
both ATM and PG (the ATM effectiveness and
efficiency were significant). These results are
consistent with the results from the American studies.

Contrary to the subject feedback from Rep_4, who
suggested the experiment should not run on
consecutive days, subjects in Rep_5 stated that they
would rather have the experiment run on consecutive
days. This discrepancy shows that subjects sometimes
give conflicting feedback.

The last step in Rep_5 was to evolve the experimental
package, based on Rep_5:

1) Update of experimental artifacts. The questions
on the post-study feedback questionnaire were
organized topically.
2) Modification to training. This study was spread
out over a one-week period. However, the subjects
stated they would prefer the study to run in
consecutive days. In the lab package, this issue
remains open for replicators to decide.
3) Modification to data analysis. The need for a
standard data spreadsheet format was identified to
minimize difficulties of integrating results with
those from previous studies.

Figure 2. The FIRE

4. A Framework for Improving the
Replication of Experiments (FIRE)

Based on our experiences on the Reader´s Project, we
proposed a Framework for Improving the Replication
of Experiments (FIRE). The FIRE is inspired by the

execute
experiment

analyze and
integrate data

create / evolve
package and
store experience

set experiment
goals

design experiment,
identify subjects,
and obtain / adapt
artifacts

share
knowledge

standardize
packages

plan and
coordinate
initiatives

IC: Internal cycle
– intra-group

learning

EC: External cycle
– inter-group

learning

understand
experiments
and lab
packages

Create / evolve
knowledge
repositories

execute
experiment

analyze and
integrate data

create / evolve
package and
store experience

set experiment
goals

design experiment,
identify subjects,
and obtain / adapt
artifacts

share
knowledge

standardize
packages

plan and
coordinate
initiatives

IC: Internal cycle
– intra-group

learning

EC: External cycle
– inter-group

learning

understand
experiments
and lab
packages

Create / evolve
knowledge
repositories

Quality Improvement Paradigm (QIP) [1]. As seen in
Figure 2, the FIRE contains two cycles. In the internal
(experiment execution and intra-group learning) cycle
(IC), experimenters focus on independently and
successfully planning, executing, learning and
packaging the experiment within their own context. In
the external (inter-group learning) cycle (EC),
experimenters are concerned with collaborative
package standardization, experimental knowledge
evolution, and knowledge sharing.

The FIRE recognizes that an experiment demands
precise execution and any deviations from planning are
closely monitored; an experiment is usually aborted if
it deviates too much from planning. So, the internal
cycle of FIRE focuses on the implementation of a
single experiment. The FIRE External Cycle (inter-
group learning) involves learning across groups.
However, the emphasis on the FIRE external cycle is
on inter-group learning, where groups are located in
different organizations, geographically distributed and
culturally diverse. Sharing experimental knowledge
among research groups is the very nature of software
engineering experimentation as the basis for
experimental repeatability, process uniformity, and
knowledge base growth.

The goal of the inter-group learning cycle is to build a
broad body of explicit knowledge from carefully
planned replications executed by different research
groups. Based on the Reader´s experience, the key
activities of this cycle are: (1) plan and coordinate
experimental activities among the research groups to
increase experimental knowledge; (2) understand lab
packages and results from other research groups (the
effort required depends largely on the amount of
coordination among the groups); execute the intra-
group learning cycle (independently conduct
replications and evolve the lab package by tailoring the
experimental design and artifacts); (3) share and
consolidate new knowledge with other groups; (4)
standardize packages; (5) evolve the body of
knowledge. The input to the IC is the explicit results
and procedures from various replications. The output
of the IC is evolved knowledge that can be used as the
basis for a new replication.
While the inter- and intra-group cycles are well
understood in isolation, difficulties arise at the
interfaces between these cycles. Experimenters often
cannot anticipate all the design details and rationale
that will be most relevant to replicators, so making the
right information explicit in the inter-group cycle is
difficult. Similarly, it is difficult for replicators
themselves to determine the most relevant context

variables for to allow for meaningful comparison of
results.

As an example of the difficulties at the cycle interfaces,
a researcher who spent a sabbatical with an
experimental group associated with the University of
Maryland replicated an inspection study in his native
country. In spite of his exposure to the research group,
and the availability of a laboratory package, this
experimenter still faced problems when adopting the
experiment to subjects with different cultures,
languages, and backgrounds. One example of this was
that a time limit was used for the inspection which may
have been appropriate for the original subjects who
were working in their native tongue, but which seemed
too constrained given that the subjects in the
replication were less familiar with the problem domain
and were working in a language with which they felt
less comfortable. An unanticipated result of this
seemingly minor change was that the subjects found
themselves unable to complete much of the task in the
time allowed. The subjects reported feeling frustrated
and de-motivated with the procedures they were using
and quite possibly performed them less effectively as a
result. In short, although the researcher who conducted
the replication had tacit knowledge that most
replicators would not possess, the results from his
replication were not comparable to those from the
original study: The results in the two contexts were
quite different, due primarily to the way the experiment
was run, and not due to an intrinsic property of the
inspection techniques themselves.

For this reason the key step in the FIRE cycle
interfaces is knowledge sharing. In the Reader´s
Project, the groups involved listed the following
initiatives as key factor for the project success:

1) Frequent interaction among groups through e-mail
and phone calls;
2) Execution of pilot studies, and;
3) Regular presential workshops to synchronize
initiatives and to discuss the experiments and its
artifacts. Eight workshops were held during the four
years of the project. In the case of the PBR
experiments this led to:

a. A more precise description of the experimental
process;
b. Modification of the background questionnaire
to include language issues;
c. New defects detected; and
d. Identification of difficulties in handling the
false positives defects in data analysis.

The difficulties with combining and analyzing data
from different experiments were also discussed. Much
attention was given to the subjective measures
collected in the background and post-study feedback
questionnaires, resulting in two new research topics for
future studies: (1) There are several potential variables
in the subject profile (e.g. experience with technique,
language expertise) that need to be measured more
accurately; and, (2) The elapsed time that for each
defect report may provide interesting insight into the
use of the different inspection approaches.

After these issues were discussed the process of
package standardization occurred by evolving the
original lab package to include the modifications
introduced during the BR replications that were agreed
upon by both teams: (1) An updated defect list; (2) A
false positive list; (3) The identification of a process
for updating the false positive and defect lists; (4) An
evolved description of the experimental process was
adopted; (5) The pilot study was included in the
standard experimental design; (6) The background
questionnaire was modified to produce a standard
questionnaire for all experiments conducted in the
Readers’ project; and (7) A defect report time field was
added to the defect report form.

The last step of FIRE is to assemble all the
information from the original experiment and the
replications into a body of knowledge. In the case of
the Readers, the US researchers had already identified
the need for a common repository of experimental
knowledge [6], and begun working to aggregate the
knowledge from the PBR experiments into this
repository.

5. Conclusion

This article presents our experiences in executing
experimental replications in software engineering. It
argues that knowledge sharing is a key issue in
executing replication and building a body of knowledge
in software engineering. If replications focus only on
acquiring a lab package and following the steps in the
intra-group learning cycle, they run the risk of
becoming isolated studies that are hard to integrate into
a larger body of knowledge. Our experiences indicate
that replicators can profit from: (1) Coordinate
initiatives; (2) Master the explicit and tacit knowledge
associated with the lab packages; (3) Set the goals and
scope of their replications; (4) Carefully and
independently execute the replications; (5) Analyze the
data and compare with previous data; (6) Share
findings with the original experimenters; and (7) Work

with the original experimenters to evolve and
standardize related lab packages.

We are not arguing against the need for independent
replications, as they are at the very heart of science and
useful to confirm and expand results. Independent
replicators are less susceptible to bias from the original
experimenters because they bring a fresh perspective,
which may lead to new results. Conversely,
coordinated replications ease knowledge building, the
artifact evolution, and the cross-study analysis. The
seven steps of the FIRE are geared toward these three
issues. It assumes that researchers are collaborating
closely using a variety of communication mechanisms,
e.g., small, intense workshops. Such mechanisms are
necessary because the socialization of knowledge at the
inter-group level is more difficult than at the intra-
group level. When a researcher becomes disconnected
and unable to coordinate research efforts, he, and the
community as a whole, partially lose the ability to
harmonize and consolidate results.

Also, running experiments in isolation from a
community is very difficult. There is a recognized need
for collaboration, local support, and a culture of
experimentation. This realization motivated the
creation of the International Software Engineering
Research Network (ISERN)1. Its founding members
had been early collaborators that felt the need for a
support community once they left the group.

Once again we stress that close collaboration does not
imply that replicators should not be critical of the
original experiment, evolve it, or improve and produce
new experimental artifacts. In fact, there is an
advantage to multiple groups reviewing an
experimental design. The FIRE is spit into two cycles
specifically to allow replicators to act independently
during the execution of the replication to reduce bias
from contact with the original experimenters.

6. References

[1] Basili, V. "Quantitative Evaluation of Software
Engineering Methodology". In Proceedings of 1st Pan Pacific
Computer Conference. Melbourne, Australia. 1985 p. 379-
398
[2] Basili, V. and Selby, R., Comparing the Effectiveness of
Software Testing strategies. IEEE TSE, 1987. 13(12): p.
1278-1296.
[3] Basili, V., Green, S., Laitenberger, O., Shull, F.,
Sorumgaard, S., and Zelkowitz, M., The Empirical
Investigation of Perspective Based Reading. Empirical

1 http://www.iese.fhg.de/ISERN

Software Engineering - An International Journal, 1996. 1(2):
p. 133-164.
[4] Basili, V., Evolving and Packaging Reading
Technologies. Journal of Systems and Software, 1997. 38(1):
p. 3-12.
[5] Basili, V., Shull, F., and Lanubile, F., Building
Knowledge through Families of Experiments. IEEE TSE,
1999. 25(4): p. 456-473.
[6] Basili, V., Tesoriero, R., Costa, P., Lindvall, M., Rus, I.,
Shull, F., and Zelkowitz, M. "Building and Experience Base
for Software Engineering: A report on the first CeBASE
eWorkshop". In Proceedings of PROFES (Product Focused
Software Process Improvement). 2001 p. 110-125
[7] Basili, V.R., Selby, R.W., and Hutchens, D.H.,
Experimentation in software engineering. IEEE TSE, 1986.
SE-12(7): p. 733-743.
 [8] Brooks, A., Roper, M., Wood, M., Daly, J., and Miller, J.
Replication of Software Engineering Experiments. Empirical
Foundations of Computer Science Technical Report, EfoCS-
51-2003. Department of Computer and Information Sciences,
University of Strathclyde: 2003.
[9] Brooks, R., Studying Programmer Behaviour
Experimentally: The Problems of Proper Methodology.
Communications of the ACM, 1980. 23(4): p. 207-213.
 [10] Juristo, N. and Moreno, A., Basics of Software
Engineering Experimentation. 2001: Kluwer Academic Press.
[11] Kamsties, E. and Lott, C. An Empirical Evaluation of
Three Defect-Detection Techniques. International Software
Engineering (ISERN) Technical Reports, ISERN-95-02.
1995.
 [12] Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones,
P.W., Hoaglin, D.C., El Emam, K., and Rosenberg, J.,
Preliminary guidelines for empirical research in software
engineering. IEEE TSE, 2002. 28(8): p. 721-734.
[13] Laitenberger, O. and DeBaud, J.-M., Perspective-Based
Reading of Code Documents at Robert Bosch GmbH.
Information and Software Technology, 1997. 39(11): p. 781-
791.
[14] Laitenberger, O., Atkinson, C., Schlich, M., and El
Emam, K., An Experimental Comparison of Reading
Techniques for Defect Detection in UML Design Documents.
Journal of Systems and Software, 2000. 53(2): p. 183-204.
[15] Laitenberger, O., El Emam, K., and Harbich, T.G., An
internally replicated quasi-experimental comparison of
checklist and perspective based reading of code documents.
IEEE TSE, 2001. 27(5): p. 387-421.
[16] Lott, C. and Rombach, D., Repeatable Software
Engineering Experiments for Comparing Defect-detection
Techniques. Empirical Software Engineering, 1997. 1(3): p.
241-277.
[17] Maldonado, J., Carver, J., Shull, F., Fabbri, S., Doria, E.,
Martimiano, L., Mendonca, M., and Basili, V., Perspective-
Based Reading: A Replicated Experiment Focused on
Individual Reviewer Effectiveness. Empirical Software
Engineering, 2006. 11(1): p. 119-142.
[18] Miller, J., Applying meta-analytical procedures to
software engineering experiments. Journal of Systems and
Software, 2000. 54(1): p. 29-39.
[19] Miller, J., Replicating Software Engineering
Experiments: A Poisoned Chalice or the Holy Grail.

Information and Software Technology, 2005. 47(4): p. 233-
244.
 [20] Porter, A.A., Votta, L.G., Jr., and Basili, V.R.,
Comparing detection methods for software requirements
inspections: a replicated experiment. IEEE TSE, 1995. 21(6):
p. 563-575.
[21] Regnell, B., Runeson, P., and Thelin, T., Are the
perspectives really different? Further experimentation on
scenario-based reading of requirements. Empirical Software
Engineering, 2000. 5(4): p. 331-356.
[22] Shull, F., Developing Techniques for Using Software
Documents: A Series of Empirical Studies, Ph.D. Thesis,
Department of Computer Science, University of Maryland,
College Park, 1998
[23] Shull, F., Rus, I., and Basili, V., Perspective-Based
Reading: Techniques for Improving Requirements
Inspections. IEEE Computer, 2000. 33(7): p. 73-79.
 [24] Shull, F., Basili, V., Carver, J., Maldonado, J.,
Travassos, G., Mendonca, M., and Fabbri, S. "Replicating
Software Engineering Experiments: Addressing the Tacit
Knowledge Problem". In Proceedings of ISESE'02. Nara,
Japan. Oct. 3-4, 2002, 2002 p. 7-16
[25] Shull, F., Carver, J., Travassos, G., Maldonado, J.,
Conradi, R., and Basili, V., Replicated Studies: Building a
Body of Knowledge about Software Reading Techniques, in
Lecture Notes on Empirical Software Engineering, N. Juristo
and A. Moreno, Editors. 2003, World Scientific.
[26] Shull, F., Mendonca, M., Basili, V., Carver, J.,
Maldonado, J., Fabbri, S., Travassos, G., and Ferreira, M.,
Knowledge-sharing Issues in Experimental Software
Engineering. Empirical Software Engineering - An
International Journal, 2004. 9(1): p. 111-137.
 [27] Sjoeberg, D.I.K., Hannay, J.E., Hansen, O., Kampenes,
V.B., Karahasanovic, A., Liborg, N.K., and Rekdal, A.C., A
survey of controlled experiments in software engineering.
IEEE TSE, 2005. 31(9): p. 733-753.
[28] Tichy, W.F., Should computer scientists experiment
more? IEEE Computer, 1998. 31(5): p. 32-40.
[29] Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C.,
Regnell, B., and Wesslen, A., Experimentation in Software
Engineering: An Introduction. 2000: Kluwer Academic
Publishers.
 [30] Zelkowitz, M.V. and Wallace, D.R., Experimental
models for validating technology. IEEE Computer, 1998.
31(5): p. 23-31.
[31] Zendler, A., A Preliminary Software Engineering Theory
as Investigated by Published Experiments. Empirical
Software Engineering, 2001. 4(1): p. 43-70.
[32] Zhang, Z., Basili, V., and Shneiderman, B., Perspective-
based Usability Inspection: An Empirical Validation of
Efficacy. Empirical Software Engineering - An International
Journal, 1999. 4(1): p. 43-70.

