
A Reflective Approach for Supporting
the Dynamic Evolution of Component Types

Cristóbal Costa-Soria1, David Hervás-Muñoz1, Jennifer Pérez2, José Ángel Carsí1

1ISSI, Dept. of Information Systems and Computation,
Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain

2Escuela Universitaria de Informática,
Technical University of Madrid (UPM), Ctra. Valencia km. 7, 28051 Madrid, Spain

ccosta@dsic.upv.es, dahermuo@fiv.upv.es, jenifer.perez@eui.upm.es, pcarsi@dsic.upv.es

Abstract

The increasing complexity of software systems
requires a continuous revisions process in order to
correct errors or to add new functionalities. However,
the nature of some systems makes unfeasible their
stopping to integrate changes. Dynamic evolution of
types is a feature that provides support for changing
completely at runtime the types that a system is
composed of. Thus, a system is able to integrate new
types, or to modify/remove existing ones, while it is
running. In software architecture, these types are
component specifications, and its instantiations,
component instances. This paper presents a reflective
approach for providing dynamic evolution of
component types and instances in a decentralized way.
Each type can be evolved separately from others, and
each one of its instances evolves asynchronously, only
after finishing their running transactions. The
approach is reflective since it dynamically provides
editable specifications of the type to evolve, and
reflects changes on both types and instances while they
are running.

1. Introduction

Nowadays, software systems are more and more
complex. This entails that such systems must
frequently undergo subsequent revisions in order to
correct errors or to add new unforeseen functionalities.
However, the intrinsic nature of some systems makes
unfeasible their stopping to integrate changes.
Examples of such systems are those that undergo
critical missions and run continuously and
uninterruptedly: they cannot be stopped to be evolved.
It is while using (and maintaining) such kind of
systems when the need for dynamic evolution emerges.

Software architecture [28] [29] describes complex
systems in terms of architectural elements (components
and connectors) and their interrelations (attachments).
There are some proposals for the description and
specification of software architectures that, with the
aim of providing more flexibility to the systems,
provide support for dynamic evolution up to a point
 [3]. Dynamic evolution can be of two kinds, depending
on what is changed: the architecture configuration, or
the types that compose this architecture. The first kind
of evolution, called dynamic reconfiguration (also
called structural dynamism [11]), enables a software
architecture to change its configuration (i.e. structure)
at runtime, by creating or destroying architectural
element instances (i.e. components and connectors)
and its links dynamically. The second kind of
evolution, called dynamic evolution of architectural
types (also called architectural dynamism [11]), allows
either a software architecture or an architectural
element to change completely its type (i.e. its
specification) at runtime. This kind of dynamism
supports the introduction of new architectural element
types and connections, the removal of existing element
types, or the modification of the way that the different
types interact. That is, it supports changing both the
composition and behaviour of the software architecture
while it is running.

Our work supports the latter degree of dynamism:
the dynamic evolution of architectural types. The
dynamic evolution of an architectural type (e.g. a
component) does not only involve the change of its
specification, but also the migration or evolution of all
its running instances to the structure defined by the
new specification. This paper describes how the
internal structure of architectural types is evolved. The
evolution support is provided to each component type
in an independent way: each component type can be
evolved independently from the others. Moreover, to

2009 14th IEEE International Conference on Engineering of Complex Computer Systems

978-0-7695-3702-3/09 $25.00 © 2009 IEEE

DOI 10.1109/ICECCS.2009.35

301

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on May 25,2010 at 12:49:10 UTC from IEEE Xplore. Restrictions apply.

reduce system disruption, each one of its instances
evolves asynchronously, after the successful
finalization of its running transactions. This approach
is presented from a platform-independent view, by
describing the different concerns of the dynamic
evolution process and how they interrelate which each
other. With the aim of illustrating our proposal, we
describe how it has been applied for a concrete
Architecture Description Language (ADL) –PRISMA
 [24] [25]-, although it can be easily applied to any other
ADL. This paper describes in detail the dynamic
evolution infrastructure outlined in previous works [8].
We advance in the definition of the reification
mechanisms and in the reflection process.

This paper is structured as follows. The PRISMA
model where the approach has been applied is briefly
introduced in section 2. In section 3, our approach to
support dynamic evolution of types is presented in
detail. Related works are discussed in section 4.
Finally, conclusions and further works are presented.

2. PRISMA

PRISMA [24] [25] is a symmetrical aspect-oriented
model [15] because it does not consider functionality
as a kernel entity that is different to aspects, and it does
not constrain aspects to specify only non-functional
requirements. In PRISMA, functionality is also
specified as an aspect. As a result, PRISMA provides a
homogeneous treatment for functional and non-
functional requirements. Aspects have been introduced
in the PRISMA model as a new concept of software
architectures rather than simulating the aspect using
other existing architectural terms (components,
connectors, views, etc). In PRISMA, aspects are first-
order citizens of software architectures and represent a
specific behaviour of a concern (safety, coordination,
etc) that crosscuts the software architecture. The same
aspect can be imported by each one of the architectural
elements (components and connectors) that need to
take into account the behaviour of the concern that this
aspect defines. As a result, an architectural element is
defined by a set of aspects that describe it from
different concerns of the architecture.

PRISMA has three kinds of architectural elements:
simple (components and connectors) and composite
(systems). Each architectural element encapsulates its
functionality as a black box and publishes a set of
services that they offer to other architectural elements.
However, the internal view of these architectural
elements differs among simple and composite ones.

On the one hand, the internal view of simple
architectural elements is an invasive composition of

aspects, which can be shown as a prism (see Figure 1,
left). Each side of the prism is an aspect that the
architectural element imports. An aspect defines the
state and behaviour of a specific concern (e.g.
functionality, coordination, distribution, persistence,
etc). The state of an aspect at any given moment is
determined by the value of its attributes. The
behaviour of an aspect is defined by the semantics of
the services the aspect provides. More details about the
semantics can be found on [25]. Aspects are
synchronised among them by means of weavings. A
weaving indicates that the execution of an aspect
service can trigger the execution of services in other
aspects. Thus, the behaviour of a simple architectural
element emerges from the set of aspects it is invasively
composed of.

Figure 1. Internal views of PRISMA architectural elements

The difference between a component and a
connector is that a component captures the
functionality of software systems, whereas a connector
acts as a coordinator among other architectural
elements. As such, components have a functional
aspect, whereas connectors have a coordination aspect.

On the other hand, the internal view of composite
architectural elements includes a set of architectural
elements (components, connectors and other systems)
and the connections among them (see Figure 1, right).
There are two kinds of connections: attachments and
bindings. An attachment establishes a connection
between a component and a connector. A binding
establishes a connection between a complex
component (the system) and one of the architectural
elements that it contains.

3. Dynamic Evolution of Component Types

Thus, two kinds of architectural types can be

evolved in PRISMA: simple and composite
architectural types. The aim of this work is to provide,
for each architectural type of the software system, the
ability to support the dynamic change of both its
specification (i.e. its type) and its running instances in
an autonomous way. Thus, each architectural type will

302

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on May 25,2010 at 12:49:10 UTC from IEEE Xplore. Restrictions apply.

be able to evolve independently of other types (i.e.
without the need of a centralized evolution manager),
in order to allow the building of heterogeneous,
distributed and autonomous software systems. In order
to do this, each architectural type must be provided
with an infrastructure to support its evolution at
runtime. In our approach, this infrastructure is
integrated in each architectural type, and distributed
among each one of its instances. There are two main
reasons to distribute the evolution infrastructure among
the instances. These reasons are related to the fact that,
like the type, each instance must be capable of evolve
autonomously with respect to the other instances. The
first reason is that each architectural instance (i.e.
component instance, connector instance or system
instance) is the only one which can determine when it
is ready to evolve. At runtime, each instance has a
different state and a different set of running
transactions from the other instances of the same
architectural type. That is, the evolution instant will be
different for each instance. The second reason is the
support for an incremental evolution approach: each
instance is decomposed in the structural parts it is
composed of, and by a set of atomic evolution
operations, the instance structure is changed. Since
these structural parts are only accessible inside the
context of the instance they belong to, its modification
will only be possible if it is performed by means of
evolution mechanisms provided by the instance.

The evolution infrastructure is distributed in the
following way. On the one hand, an architectural type
has mechanisms tailored to: (1) provide (or generate)
an editable specification of itself; (2) update its internal
specification with the desired changes (i.e. the code in
disk), in order to allow the creation of new instances
according to the new specification; and (3) supervise
the migration (or evolution) process of each one of its
instances. On the other hand, each instance provides a
set of mechanisms to: (4) reach a quiescent state [18],
in order to finish running transactions consistently; (5)
modify its structure dynamically (in memory),
according to the changes provided by the type, and (6)
if possible, migrate the old state to the new structure
introduced by the new type specification. State
migration will only be possible when the replaced part
provides a function to transform the state of the
previous version to the new one.

The set of runtime changes allowed are those that
can be applied to the specification of a PRISMA
architectural element (see Figure 2). For instance, a
simple architectural element can be evolved by adding,
replacing, or removing aspects, ports and weavings.
We have not addressed the evolution at smaller
granularity levels (i.e. aspect methods and attributes)

because the balance between the flexibility obtained
and the performance costs introduced is negative. In
our approach, aspect behaviour (i.e. methods and
attributes) is modified offline. Then, the aspect is
dynamically weaved to a simple architectural type. In
addition, we have not covered how the evolution
impacts on the interactions with the adjacent
architectural elements, since this is an issue that has
been already addressed by other authors. For instance,
Cámara [7] addresses the adaptation of connections
among architectural elements by means of the dynamic
generation of adaptors that act as mediators among the
existing instances and the replaced (or evolved) ones.

Component ImageProcessingCard
 Functional Aspect import ImgProcessingCardCtrl;
 Presentation Aspect import ImageProcessingCardGUI;
 Ports
 VideoInputPort : I_VideoServices,
 Played_Role ImgProcessingCardCtrl.VIDEOCARD;
 ImageOutputPort : I_ImageProcessingServices,
 Played_Role ImgProcessingCardCtrl.IMAGEANALYZER;
 End_Ports
 Weavings
 ImageProcessingCardGUI.showImage(image)
 after
 ImgProcessingCardCtrl.newProcessedImage(image);
 End_Weavings
 new() {
 ImgProcessingCardCtrl.begin();
 }
 destroy() {
 ImgProcessingCardCtrl.end();
 }
End_Component ImageProcessingCard;

Figure 2. ImageProcessingCard component specification

3.1. Type-level Evolution

In order to illustrate our approach we use the
component ImageProcessingCard described in Figure
2. This component is weaved with two aspects: a
functional aspect and a presentation aspect. The
functional aspect: (i) receives images through the
VideoInputPort component port, (ii) processes the
images, and (iii) outputs the images through the
ImageOutputPort port. The presentation aspect is
synchronised (by means of a weaving) with the
functional aspect to show each image that it is being
processed.

Our approach is characterised by providing each
architectural type (e.g. a component type) with a real
presence in the software system. This presence is
provided by means of an entity, MC, that represents an
architectural type, C, and which is executed together

303

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on May 25,2010 at 12:49:10 UTC from IEEE Xplore. Restrictions apply.

the rest of instances of such type: C1, C2, C3,... Using
the example described above (the architectural type
ImageProcessingCard), we will have M ImageProcessingCard
This entity, MC, can be viewed from two different
viewpoints. On the one hand, MC behaves as a class
(i.e. an instance factory), since it: (i) contains a type
specification, (ii) creates instances of such type, and
(3) maintains the population of instances of such type.
On the other hand, MC behaves as an object, since it
has a state and a set of services which change this
state. The state of MC is an editable description of the
type that it represents (C), and the services MC
provides are actually evolution services: they change
the editable description of the type. According to the
concepts of computational reflection [19], the entity
MC is actually a meta-instance (or meta-component): it
contains a reification of the type it belongs to (that is,
an editable description), and this reification is causally
connected to the type. All the changes performed on
this reification will be reflected on the type and its
respective instances.

The internal structure of such meta-instance is
composed of four modules or functional areas: (1)
Builder, responsible of the creation and destruction of
instances of the architectural type; (2)
TypeDescription, which encapsulates the reification of
the architectural type and the population of instances;
(3) TypeEvolution, which provides the evolution
services; and (4) EvolutionMonitoring, which
supervises the instance migration process from the old
type specification to the new one. Meta-instances have
been integrated into PRISMA by using the same
concepts of the PRISMA model: a meta-instance is a
simple PRISMA architectural element composed of a
set of aspects. Such aspects are each one of the
functional areas described above, since each functional
area identifies a different concern of the evolution
process and is shared among the meta-instances that
provide type evolution mechanisms. By shared we
refer to the fact that the specification of each aspect is
common for all the meta-instances, and they only
differ in the state that they acquire when they are
instantiated in a particular meta-instance. The only
aspect which is completely different for each meta-
instance is the Builder aspect, since it defines the
instantiation process of an architectural type (see
Figure 3). The relationships among aspects are defined
by means of weavings, although we are not going to
describe them here due to space limitations. We
describe below each one of these aspects in detail.

(1) The Builder aspect provides services to create
and destroy instances of the type represented by the
meta-instance. Its services are published through a port
of the meta-instance. These services are blocked when

an evolution process starts and until the evolution
process finishes. This is due to the fact that the
creation and destruction services can be also modified
by the evolution process, and new instantiations must
be made according to the new type specification.

void BuildComponent(string name, IComponent comp, object[] params)
{
 comp.AddAspect(new ImageProcessingCardController());
 comp.AddAspect(new ImageProcessingCardGUI());
 comp.AddWeaving("ImageProcessingCardGUI",
 "showImage", "image", WeavingType.AFTER,
 "ImageProcessingCardController",
 "newProcessedImage","image");
 comp.AddPort("ImageOutputPort", "I_ImageProcessingServices",

"IMAGEANALYZER");
comp.AddPort("VideoInputPort", "I_VideoServices", "VIDEOCARD");

}

Figure 3. Fragment of the automatically generated Builder
aspect for the ImageProcessingCard component

(2) The TypeDescription aspect contains the state
of the meta-instance: the population of instances and
the type description (i.e. the specification containing
both the structure and behaviour of the type). On the
one hand, population is updated whenever a new
instance is created and/or destroyed, by adding or
removing respectively a reference to the instance. On
the other hand, the type description describes the
structural parts the architectural type is composed of
and their interrelations. For instance, in the case of
simple PRISMA components, this data structure stores:
the aspect types a component consists of, the set of
weavings (i.e. relations) among these aspects, and the
set of ports to provide/require services from outside the
component (see Figure 4). This aspect encodes the
relations among platform-independent concepts (i.e.
the PRISMA metamodel) and the technology
dependent concepts (i.e. the implementation of the
aspect-oriented component model in .NET [27]). Thus,
this aspect provides also the code-generation patterns
which must be used to regenerate the type.

typeSpec = ComponentSpec {
 Type : ImageProcessingCard;
 ArchitecturalElementType : Component;
 Aspects : { ImageProcessingCardController,

 ImageProcessingCardGUI };
 Weavings : {
 (“ImageProcessingCardGUI”, ”showImage”, WeavingType.AFTER,
 "ImageProcessingCardController", "newProcessedImage”) };
 Ports : { ("ImageOutputPort", "I_ImageProcessingServices",
 "IMAGEANALYZER"),
 ("VideoInputPort", "I_VideoServices", "VIDEOCARD") };
}

Figure 4. Specification maintained by the TypeDescription
aspect of the ImageProcessingCard meta-instance

304

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on May 25,2010 at 12:49:10 UTC from IEEE Xplore. Restrictions apply.

(3) The TypeEvolution aspect provides services to
dynamically evolve the architectural type. It only
provides two services to carry out the evolution
process: reify, which returns an object <Type>Spec,
and reflect, which requires as input parameter an
object <Type>Spec. <Type>Spec is an object whose
state is the editable specification of the type
represented by the meta-instance. However, this
specification (i.e. its state) can only be modified by
means of a set of evolution services this object
provides, in order to allow only consistent
modifications. <Type>Spec is a generic way of naming
the type of the object, since it will depend of what kind
of type the meta-instance represents. This is because
the editable specification and the services to change
this specification that this object provides are different
for each represented type. <Type> here is the meta-
type of the type the meta-instance represents. For
instance, in PRISMA there are three kind of
architectural types (i.e. meta-types): simple
(Components and Connectors), and composite
(Systems). Each meta-type is specified differently and
has different evolution services (see [26]). The
previously introduced meta-instance MC, which
represents a simple PRISMA component type C,
returns a ComponentSpec object as a result of the
execution of the Reify service. Thus, the
ComponentSpec object has an editable specification
which consists of aspects, weavings and ports; it
provides the evolution services defined in the PRISMA
metamodel to change simple components: addAspect,
addPort, addWeaving, removeAspect, removePort,
removeWeaving, etc.

The actor of the evolution process –which can be
either an actor from outside the software system (a
human), or an actor from inside (another architectural
element)- will evolve an existing component type this
way (see Figure 5): (1) the actor obtains an editable
specification of the architectural type (i.e. a
<Type>Spec object) by means of the reify service, (2)
the editable specification is modified by means of the
evolution services the <Type>Spec object provides,
and (3) the actor returns such object through the reflect
service, which starts the dynamic evolution process
over the component type and its instances.

The TypeEvolution aspect coordinates the evolution
process. The reify service builds and returns the object
<Type>Spec from the type specification that is stored
in the TypeDescription aspect. However, the evolution
process does not start until the reflect service is called.
The evolution process consists of several stages, which
are performed in a distributed way. The evolution
process starts in the TypeEvolution aspect, is

propagated to each one of the component instances,
and is supervised by the EvolutionMonitoring aspect.

The evolution tasks performed by the
TypeEvolution aspect are the following. First, the
Builder aspect is blocked, in order to avoid the
creation/destruction of instances while the type is
being updated. This is performed by blocking the port
of the meta-instance that exports the services from the
Builder aspect. Second, the type specification
contained in the TypeDescription aspect is updated, by
using the information contained in the object
<Type>Spec provided to the reflect service. Third, the
Builder aspect is completely regenerated according to
the type specification of the TypeDescription aspect.
The data structures contained in the TypeDescription
aspect are used in code generation patterns to
dynamically produce new source code. This source
code is dynamically compiled (by using .NET
CodeDom) to create a new Builder aspect, which is
dynamically instantiated and weaved to the meta-
instance. Thus, since the new Builder aspect can create
instances of the new type, it is unblocked and the
creation of instances is allowed. Next, for each
instance (whose reference is stored in the
TypeDescription aspect), the service called
reflectToInstance is called. This service requests each
instance to start the evolution process of its structure.
Finally, the control is transferred to the
EvolutionMonitoring aspect, which will supervise the
instance-level evolution process. Meanwhile, the
TypeEvolution aspect is available for accepting new
evolution requests.

Figure 5. Black-box view of the dynamic evolution process

(4) The EvolutionMonitoring aspect supervises
whether the instances evolve after a certain time or not.
Otherwise, this aspect will take corrective measures,
according to previously defined instance migration
policies. We support three policies: (i) only new
instances must be created according to the new type,
(ii) all running instances must be evolved to the new
type, and (iii) only a subset of instances is not evolved

 Evolution

305

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on May 25,2010 at 12:49:10 UTC from IEEE Xplore. Restrictions apply.

to the new type. These policies allow specifying the
available time that instances will have to evolve, and
the action to perform in case an instance does not
evolve in the provided timeout: (i) to force evolution
and lose the current execution state, (ii) to extend the
timeout k times, and (iii) to cancel the evolution of this
instance.

Next, it is described how the evolution process is
performed at the instance-level, for each one of the
instances.

3.2. Instance-level Evolution

Most of the approaches that address the dynamic
type evolution perform the evolution of instances by
means of state migration [30]: an instance of the new
type is created and then the state of the old instance is
transferred to the new one. In order to do that, the new
type must provide functions to transform the data
structures from the old type to the data structures of the
new type. However, this requires that the meta-
instance (or the type) drives the entire evolution
process of its instances.

This can be optimized if the specification of the
type being evolved is known: the type can be
decomposed in a set of smaller entities and its
interrelations. Then, only the entities (or parts) that are
going to be evolved (i.e. changed) are isolated, by
means of the temporal stopping of its relations with
other entities. For instance, PRISMA simple

components are decomposed into a set of aspects, the
weavings among them, and a set of ports to interact
with other components. The evolution process consists
in providing each instance with mechanisms to: (i)
isolate its structural parts (i.e. the entities and relations
that compose the type); (ii) replace these parts; and (iii)
reassembly again these parts to the instance. The
advantage of such instance decomposition, as opposite
to instance migration, is remarkably when the types
evolved are composed of concurrent entities which are
highly independent among them, such as software
architecture specifications (i.e. composite components)
and aspect-oriented components (i.e. PRISMA simple
components).

The mechanisms to evolve instances are provided
by three modules or functional areas:
InstanceEvolutionPlanning, EvolutionSensor, and
EvolutionEffector. Since these modules identify
different concerns of the instance evolution process,
they have also been encapsulated into aspects, which
are described below.

(1) The EvolutionSensor aspect provides services
to obtain the references (i.e. memory pointers) to each
one of the structural parts that the instance consists of.
In addition, this aspect provides services to monitorise
the status of each structural part. The status describes
the execution state of structural parts, in order to know
when a structural part is ready to be evolved: it has no
pending transactions that can change its internal
attributes, i.e. it is quiescent [18] or tranquil [31].

Figure 6. White-box view of the dynamic evolution process

306

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on May 25,2010 at 12:49:10 UTC from IEEE Xplore. Restrictions apply.

(2) The EvolutionEffector aspect provides the
services that actually perform the modification of the
instance structure, in terms of the instance meta-type.
For instance, the provided services in simple PRISMA
components are: addAspect, replaceAspect,
removeAspect, addPort, removePort, addWeaving, etc.
These services are the same that are provided by the
ComponentSpec object. However, the main difference
is that the EvolutionEffector aspect applies changes to
memory structures (i.e. executing code), while the
ComponentSpec object updates only a type
specification (i.e. data). In addition, the
EvolutionEffector aspect provides the services to stop
and restart each one of the structural parts, that is, a set
of services to drive each part to a quiescent state or to
abandon it, respectively. These services in PRISMA
are: StartAspect, StartPort, StopAspect, StopPort, etc.

The main challenges faced with the evolution of
instances are how to manage the running processes that
are concurrently executing, and how to decompose the
instance structure. On the one hand, the management
of running threads has been managed by the
development of an executing model that allows the
asynchronous execution of services. Thus, when a stop
is requested, all the incoming service requests are
queued and postponed. The instance will be ready to
evolve when the services that are being processed
finish their computations. On the other hand, the
decomposition of the instance structure has been
performed by means of dynamic linking strategies. The
reference to each structural part is available to the
evolution mechanisms. When a structural part has been
stopped, it can be safely removed or replaced from
memory by unlinking it from other structural parts and
by linking the new part to the other structural parts.
However, the EvolutionEffector aspect does not take
into account neither the dependencies among the
structural parts when applying changes, nor if they are
ready to be evolved. It performs changes on the
instance structure. If the instance has not been safely
stopped before, then it loses its state.

(4) A planning mechanism is needed to safely stop
the dependent parts and to decide when it is safe to
execute the evolution actions. This is carried out by the
aspect InstanceEvolutionPlanning, which coordinates
the evolution process at instance-level. This aspect
receives from the meta-instance (see Figure 6) the set
of evolution changes to apply in the instance structure.
These changes are provided by means of the
<Type>Spec object. Internally, this object stores the
set of changes performed to the type specification as a
set of differences with respect to the original type
specification. Thus, the type evolution process is
performed as an incremental evolution process, by

means of atomic operations that modify the original
instance structure, either by introducing new elements
or removing existing ones. Each evolution operation
implies that the structural part that is going to be
modified reaches previously a quiescent state (that is, it
must finish first its running transactions in a consistent
way). However, since the technical details of how the
quiescent status is achieved are out the scope of this
paper, this is not described here. The reader can refer
to an abstract description in [18]. In order to carry out
this process, the InstanceEvolutionPlanning
coordinates the different services provided by both the
EvolutionSensor and EvolutionEffector aspects. The
services of the former aspect are used to obtain the
references and the status of the structural parts to stop,
while the services of the latter are used to apply the
changes in an incremental way.

3.3. Dynamic Type Evolution as a Crosscutting
Concern

The dynamic evolution of types is a concern that
should be taken into account to the design of evolvable
systems [21]. Aspect-Oriented Software Development
(AOSD [17]) proposes the separation of the
crosscutting concerns of software systems into separate
entities called aspects. Aspects can help in separating
the evolution logic from the business logic.

A concern can be represented by several aspects,
like our approach does, where each aspect provides
one part of the type evolution concern. Some aspects
provide platform-independent functionality, whereas
other aspects provide platform-dependent
functionality. This avoids that changes (i.e.
maintenance operations) on the platform-dependent
evolution mechanisms could have an impact on the
platform-independent evolution functionality, and vice
versa. On the one hand, InstanceEvolutionPlanning,
TypeEvolution and EvolutionMonitoring are platform-
independent aspects: they describe the evolution
process in terms of the metamodel used (PRISMA) and
coordinate the actions to perform at a high abstraction
level. On the other hand, Builder, TypeDescription,
EvolutionSensor and EvolutionEffector are those
aspects that bridge the platform-independent concepts
(PRISMA) and the platform-dependent concepts (the
implementation of the component model in a specific
technology). The services provided by these latter
aspects depends on the PRISMA metamodel, but its
implementation is developed in the technology
PRISMA architectures are executed (currently .NET
 [27]). Thus, this separation of aspects make easier the
implementation of PRISMA in other platform: the

307

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on May 25,2010 at 12:49:10 UTC from IEEE Xplore. Restrictions apply.

changes to apply in the evolution model are localised
in the latter four aspects, while the rest of aspects only
use concepts that are platform-independent.

On the other hand, another advantage of aspect
oriented models is that one aspect can be weaved to
more than one architectural element. In the case of the
dynamic evolution concern, all the PRISMA
architectural types that require dynamic type evolution
will import this set of aspects, thus improving reuse
and maintenance of the evolution code.

4. Discussion

Several works have addressed the dynamic
evolution of software systems, as stated in [4] and
 [20]. PROSE [23] provides a low-level approach for
software evolution by performing reversible changes to
running Java applications. It works at the method level
by replacing the old code with the new version of the
code, by means of a modification of the Java Virtual
Machine (JVM). Wang [32] inherits the default Java
Class loader to support the dynamic evolution of
(simple) Java components. It blocks the execution of
new service requests and waits until the current service
finishes its execution. Then, the old state is transferred
to the new component by using the reflection
mechanisms provided by Java. The work of Ayed [1]
also uses the transference of the old state to replace the
old component. It describes a policy-driven system to
dynamically adapt CORBA component-based
applications. It extends both the execution and
deployment model of CORBA Component Model by
introducing new entities and adaptation interfaces in
the containers of components. This approach is similar
to the Chisel framework described in [16]. Chisel is
also a policy-driven context-aware system, but it has a
smaller granularity: it is used to add non-functional
behavior to Java classes. These works perform simple
state transfers; complex ones have been well addressed
by Vandewoude in [30].

These works are interesting, but all of them
perform the evolution process in a centralized way: the
proposed infrastructures (that is, the middlewares)
extend the execution model (e.g. Java) with evolution
mechanisms in order to support the evolution of all the
component types, even though there are component
types that do not need to evolve. For this reason,
centralized approaches are not suitable, since: (i) they
do not scale for large systems; (ii) the overhead
introduced by evolution mechanisms is not needed by
all component types (particularly those that are not
evolvable), and (iii) they are only acceptable for
homogeneous systems (all the elements of the system

are implemented in the same technology). In our
approach, type evolution is provided independently for
each type of the system: a type can be provided with a
meta-instance, thus providing dynamic evolution
features, or not. Maintainability is provided by the
aspects, since all the types that use the same
technology (our approach) will import the same
aspects, which are defined only once in the code.
Scalability is supported because each architectural type
is provided with its own evolution mechanisms.

In the area of software architecture, there some
works that address runtime adaptability [3], although
most of them only address dynamic reconfiguration.
This is due to the fact that a lot of the authors have not
established the distinction between dynamic
reconfiguration and dynamic type evolution, as it is
described in this work. In the literature, dynamic type
evolution is used for evolving simple architectural
elements (components). Dynamic reconfiguration is
used for evolving the topology of a software
architecture. Most of ADLs that provides support for
architectural dynamism, such as PiLaR [11], Plastik [2]
(based on OpenCOM, [10]) or SOFA [5], do not
describe how to effectively support such dynamism,
since they are focused only in the description of such
dynamism. Our work follows an hybrid approach: the
changes to be performed are described at a high
abstraction level (in terms of the ADL chosen,
PRISMA), and the different mechanisms that make
possible the dynamic evolution have been identified
and made available to the architecture, so that the
architectural elements can interact with such
mechanisms (i.e. a component can use services from
the meta-instance in order to evolve another
component type). The usage of reflection in our work
is similar to the PiLaR ADL, where each architectural
element can access its editable specification.
SAFRAN [13] is an extension of the FRACTAL
component model [6] which introduces adaptation
aspects to decouple reconfiguration from the functional
concerns. Dynamic type evolution is performed by
means of component replacements.

Most of the works presented support component
evolution by means of complete component
replacements and state transference mechanisms. The
main disadvantage is that it requires to rewire the
connections from old components to the new one, so
adjacent components are affected by the replacement.
Since our approach performs an internal evolution, the
adjacent components are unaware of the evolution
process (except when evolving also public interfaces).

The works of Dashofy [12] and Garlan [14]
describe the required infrastructure for describing self-
adaptable system, by using models that describe the

308

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on May 25,2010 at 12:49:10 UTC from IEEE Xplore. Restrictions apply.

valid architecture of the system. However, the main
disadvantage is that all the evolution mechanisms are
centralized, under the assumption that all the
subsystems must be reconfigurable and accessible.
Morrison et al. [22] describes evolvable systems as
structured in two functional processes: a Producer,
which provides the system behaviour (i.e. an
architecture), and an Evolver, which is able to evolve
this behaviour (i.e. to change the architecture). The
Evolver process decides when to evolve the Producer
process taking into account the feedback received both
from the Producer or the environment. This approach
is closely related to ours, as it provides localised
change to each complex component instance and it
separates specifically functionality from evolution. In
contrast, we have separated the evolution concern by
using aspects, in order to benefit the reuse and easy
maintenance they provide.

5. Conclusions and further works

This paper has described a novel approach for
supporting dynamic evolution of types, being applied
to the field of software architectures, and in particular
to the PRISMA approach. This approach describes an
infrastructure to provide each architectural type (either
simple or composite) with the ability to be evolved at
runtime in an independent way, without the need of a
centralized entity in charge of evolving the overall
system. In this way, the types built can be integrated in
heterogeneous and distributed systems. Moreover,
encapsulation is preserved as well: an architectural
type is a black box, and as such, its evolution can only
be performed by the internal mechanisms provided by
this box (the type), which are those which know the
internal structure of the type and how to change such
structure. From an external point of view, an evolvable
type provides reflective capabilities to obtain its
reification and a set of evolution services in order to
modify its specification in a consistent way. From an
internal point of view, the type evolution process is
divided into different concerns, which are distributed
among the type reification and its running instances.
These concerns have been encapsulated as aspects, in
order to improve reuse and maintenance. The aspects
from the type level are in charge of evolving the
specification of the type and the instance
creation/destruction process. On the other hand, the
aspects from the instance level are in charge of
evolving the internal structure of each instance.
Another contribution of this work is that the evolution
at the instance level is performed by means of the
decomposition of the internal instance structure and by

means of an incremental development process, by
adding/removing the entities or part that have been
added/removed from the type specification.

Nowadays, these concepts are being implemented
in the PRISMANET middleware [27], which supports
the execution of PRISMA software architectures and
its dynamic reconfiguration [9]. Once the
implementation finishes, a study will be carried out in
order to evaluate the response times of the evolution
process, in order to compare with other approaches.
Another work to perform in the near future is the
definition of constraints for the evolution process of
types: for instance, to limit which parts of the types can
be evolved or not.

Acknowledgements. This work is funded by the Spanish
Department of Science and Technology under the National
Program for R+I+D META project TIN2006-15175-C05-01,
by the Universidad Politécnica de Valencia under the project
“Quality-Driven Model Transformations”, and by the
Comunidad de Madrid and the Rey Juan Carlos University
under the IASOMM project URJC-CM-2007-CET-1555.

6. References

[1] D. Ayed, Y. Berbers. Dynamic Adaptation of CORBA

Component-Based Applications. In proc. of ACM
Symposium on Applied Computing (SAC’07). Seoul,
Korea, March 2007.

[2] T. Batista, A. Joolia, G. Coulson. Managing Dynamic
Reconfiguration in Component-Based Systems. In proc
of 2nd European Workshop on Software Architectures
(EWSA'05). LNCS, vol. 3527, pp. 1-17. Springer, 2005.

[3] J.S. Bradbury, J.R. Cordy, J. Dingel, M. Wermelinger.
A Survey of Self-Management in Dynamic Software
Architecture Specifications. In proc. of 1st ACM
SIGSOFT Workshop on Self-Managed Systems
(WOSS’04). Newport Beach, California, 2004.

[4] J. Buckley, T. Mens, M. Zenger, A. Rashid, G. Kniesel.
Towards a taxonomy of software change. Software
Maintenance and Evolution, 17(5). Wiley, 2005.

[5] T. Bures, P. Hnetynka, F. Plasil. SOFA 2.0: Balancing
Advanced Features in a Hierarchical Component Model.
In 4th Int. Conference on Software Engineering
Research, Management and Applications (SERA'06), pp.
40-48. Seattle, Washington, USA, 2006.

[6] E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, J.B.
Stefani. An open component model and its support in
java. In proc. of the 7th Int. Symposium on Component-
Based Software Engineering (CBSE’04). Vol. 3054 of
LNCS., Edinburgh, Scotland, Springer-Verlag, 2004.

[7] J. Cámara, C. Canal, J. Cubo and J.M. Murillo. An
Aspect-Oriented Adaptation Framework for Dynamic
Component Evolution. Electron. Notes Theor. Comput.
Sci. 189, pp. 21-34. Elsevier, 2007.

[8] C. Costa, J. Pérez, J.A. Carsí. Dynamic Adaptation of
Aspect-Oriented Components. 10th Int. ACM SIGSOFT

309

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on May 25,2010 at 12:49:10 UTC from IEEE Xplore. Restrictions apply.

Symp. on Component-Based Software Engineering
(CBSE'07). LNCS, vol. 4608. Springer, 2007.

[9] C. Costa, N. Ali, J. Pérez, J.A. Carsí, I. Ramos.
Dynamic Reconfiguration of Software Architectures
through Aspects. In First European Conference on
Software Architecture (ECSA'07). LNCS, vol. 4758.
Springer, 2007.

[10] G. Coulson, G.S. Blair, P. Grace et al. OpenCOM v2: A
Component Model for Building Systems Software. In
proc. of IASTED Software Engineering and
Applications. Cambridge (MA), USA, 2004.

[11] C.E. Cuesta, P.d.l. Fuente, M. Barrio-Solárzano.
Dynamic Coordination Architecture through the use of
Reflection. In proc. 2001 ACM Symposium on Applied
Computing. Las Vegas, Nevada, United States, 2001.

[12] E.M. Dashofy, A. van der Hoek, R.N. Taylor. Towards
Architecture-Based Self-Healing Systems. In proc. of
First Workshop on Self-Healing Systems (WOSS'02).
Charleston, South Carolina, 2002.

[13] P. David, T. Ledoux. An Aspect-Oriented Approach for
Developing Self-Adaptive Fractal Components. In 5th
Symp. on Software Composition (SC’06). Vienna,
Austria, 2006.

[14] D. Garlan, S. Cheng, S. Huang, et al. Rainbow:
Architecture-Based Self-Adaptation with Reusable
Infrastructure. Computer, 37:46-54. IEEE, 2004.

[15] W.H. Harrison, H.L. Ossher, P.L. Tarr. Asymmetrically
vs. Symmetrically Organized Paradigms for Software
Composition. Technical Report RC22685 (W0212-147).
Thomas J. Watson Research Center, IBM, 2002.

[16] J. Keeney, V. Cahill. Chisel: A Policy-Driven, Context-
Aware, Dynamic Adaptation Framework. In: 4th IEEE
International Workshop on Policies for Distributed
Systems and Networks, p.3, June 04-06, 2003

[17] G. Kiczales, J. Lamping, A. Mendhekar, et al. Aspect-
Oriented Programming. In 11th European Conf. on
Object-Oriented Programming (ECOOP'97). Lecture
Notes on Computer Science, Vol. 1241. Springer, 1997.

[18] J. Kramer and J. Magee. The Evolving Philosophers
Problem: Dynamic Change Management. IEEE
Transactions on Software Engineering, 16(11):1293-
1306, 1990.

[19] P. Maes. Concepts and Experiments in Computational
Reflection. In: SIGPLAN Not., Vol. 22 (12), pp. 147-
155. ACM Press, New York, NY, USA, 1987.

[20] P.K. McKinley, S.M. Sadjadi, E.P. Kasten and B.H.C
Cheng. Composing Adaptive Software. Computer,
37(7):56-64. IEEE, 2004.

[21] T. Mens, and M. Wermelinger. Separation of concerns
for software evolution. J. of Software Maintenance and
Evolution, 14(5):311-315. Wiley, 2002.

[22] R. Morrison, D. Balasubramaniam, G. Kirby et al. A
Framework for Supporting Dynamic Systems Co-
Evolution. Autom. Software. Eng, 14(3):261-292.
Springer, 2007.

[23] A. Nicoara, G. Alonso, T. Roscoe. Controlled,
Systematic, and Efficient Code Replacement for
Running Java Programs. In ACM SIGOPS Operating
Systems Review, Vol.42 (4). May 2008.

[24] J. Pérez, N. Ali, J.A. Carsí, I. Ramos et al. Integrating
aspects in software architectures: PRISMA applied to
robotic tele-operated systems. Information & Software
Technology, 50(9-10):969-990. Elsevier, 2008.

[25] J. Pérez, N. Ali, J.A. Carsí, I. Ramos. Designing
Software Architectures with an Aspect-Oriented
Architecture Description Language. In proc. of 9th Int.
Symp. on Component-Based Software Engineering
(CBSE06). LNCS, Vol. 4063. Springer, 2006.

[26] J. Pérez, N. Ali, J.A. Carsí, I. Ramos. Dynamic
Evolution in Aspect-Oriented Architectural Models. In
2nd European Workshop on Software Architecture
(EWSA'05). LNCS, vol. 3527. Springer, 2005.

[27] J. Pérez, N. Ali, C. Costa, J.A. Carsí, I. Ramos.
Executing Aspect-Oriented Component-Based Software
Architectures on .NET Technology. In proc. of 3rd
International Conference on .NET Technologies, pp. 97-
108. Pilsen, Czech Republic, June 2005.

[28] D.E. Perry and A.L. Wolf. Foundations for the Study of
Software Architecture. In ACM SIGSOFT Software
Engineering Notes, 17(4):40-52, 1992.

[29] M. Shaw and D. Garlan. Software Architecture:
Perspectives on an Emerging Discipline. Prentice-Hall,
NJ, USA, 1996.

[30] Y. Vandewoude and Y. Berbers. Component state
mapping for runtime evolution. In Proc. of Int. Conf. on
Programming Languages and Compilers. Las Vegas,
Nevada, USA, 2005.

[31] Y. Vandewoude, P. Ebraert, et al. Tranquillity: A low
Disruptive Alternative to Quiescence for Ensuring Safe
Dynamic Updates. IEEE Transactions on Software
Engineering, 33(12):856-868, 2007.

[32] Q. Wang, J. Shen, X. Wang, H. Mei. A Component-
Based Approach to Online Software Evolution. Journal
of Software Maintenance and Evolution: Research and
Practice, Vol.18(3), pp.181-205, May 2006.

310

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on May 25,2010 at 12:49:10 UTC from IEEE Xplore. Restrictions apply.

