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Abstract 
 

The increasing complexity of software systems 
requires a continuous revisions process in order to 
correct errors or to add new functionalities. However, 
the nature of some systems makes unfeasible their 
stopping to integrate changes. Dynamic evolution of 
types is a feature that provides support for changing 
completely at runtime the types that a system is 
composed of. Thus, a system is able to integrate new 
types, or to modify/remove existing ones, while it is 
running. In software architecture, these types are 
component specifications, and its instantiations, 
component instances. This paper presents a reflective 
approach for providing dynamic evolution of 
component types and instances in a decentralized way. 
Each type can be evolved separately from others, and 
each one of its instances evolves asynchronously, only 
after finishing their running transactions. The 
approach is reflective since it dynamically provides 
editable specifications of the type to evolve, and 
reflects changes on both types and instances while they 
are running. 

 
 
1. Introduction 
 

Nowadays, software systems are more and more 
complex. This entails that such systems must 
frequently undergo subsequent revisions in order to 
correct errors or to add new unforeseen functionalities. 
However, the intrinsic nature of some systems makes 
unfeasible their stopping to integrate changes. 
Examples of such systems are those that undergo 
critical missions and run continuously and 
uninterruptedly: they cannot be stopped to be evolved. 
It is while using (and maintaining) such kind of 
systems when the need for dynamic evolution emerges. 

Software architecture  [28] [29] describes complex 
systems in terms of architectural elements (components 
and connectors) and their interrelations (attachments). 
There are some proposals for the description and 
specification of software architectures that, with the 
aim of providing more flexibility to the systems, 
provide support for dynamic evolution up to a point 
 [3]. Dynamic evolution can be of two kinds, depending 
on what is changed: the architecture configuration, or 
the types that compose this architecture. The first kind 
of evolution, called dynamic reconfiguration (also 
called structural dynamism  [11]), enables a software 
architecture to change its configuration (i.e. structure) 
at runtime, by creating or destroying architectural 
element instances (i.e. components and connectors) 
and its links dynamically. The second kind of 
evolution, called dynamic evolution of architectural 
types (also called architectural dynamism  [11]), allows 
either a software architecture or an architectural 
element to change completely its type (i.e. its 
specification) at runtime. This kind of dynamism 
supports the introduction of new architectural element 
types and connections, the removal of existing element 
types, or the modification of the way that the different 
types interact. That is, it supports changing both the 
composition and behaviour of the software architecture 
while it is running. 

Our work supports the latter degree of dynamism: 
the dynamic evolution of architectural types. The 
dynamic evolution of an architectural type (e.g. a 
component) does not only involve the change of its 
specification, but also the migration or evolution of all 
its running instances to the structure defined by the 
new specification. This paper describes how the 
internal structure of architectural types is evolved. The 
evolution support is provided to each component type 
in an independent way: each component type can be 
evolved independently from the others. Moreover, to 
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reduce system disruption, each one of its instances 
evolves asynchronously, after the successful 
finalization of its running transactions. This approach 
is presented from a platform-independent view, by 
describing the different concerns of the dynamic 
evolution process and how they interrelate which each 
other. With the aim of illustrating our proposal, we 
describe how it has been applied for a concrete 
Architecture Description Language (ADL) –PRISMA 
 [24] [25]-, although it can be easily applied to any other 
ADL. This paper describes in detail the dynamic 
evolution infrastructure outlined in previous works  [8]. 
We advance in the definition of the reification 
mechanisms and in the reflection process.  

This paper is structured as follows. The PRISMA 
model where the approach has been applied is briefly 
introduced in section 2. In section 3, our approach to 
support dynamic evolution of types is presented in 
detail. Related works are discussed in section 4. 
Finally, conclusions and further works are presented. 

 
2. PRISMA 
 

PRISMA  [24] [25] is a symmetrical aspect-oriented 
model  [15] because it does not consider functionality 
as a kernel entity that is different to aspects, and it does 
not constrain aspects to specify only non-functional 
requirements. In PRISMA, functionality is also 
specified as an aspect. As a result, PRISMA provides a 
homogeneous treatment for functional and non-
functional requirements. Aspects have been introduced 
in the PRISMA model as a new concept of software 
architectures rather than simulating the aspect using 
other existing architectural terms (components, 
connectors, views, etc). In PRISMA, aspects are first-
order citizens of software architectures and represent a 
specific behaviour of a concern (safety, coordination, 
etc) that crosscuts the software architecture. The same 
aspect can be imported by each one of the architectural 
elements (components and connectors) that need to 
take into account the behaviour of the concern that this 
aspect defines. As a result, an architectural element is 
defined by a set of aspects that describe it from 
different concerns of the architecture.  

PRISMA has three kinds of architectural elements: 
simple (components and connectors) and composite 
(systems). Each architectural element encapsulates its 
functionality as a black box and publishes a set of 
services that they offer to other architectural elements. 
However, the internal view of these architectural 
elements differs among simple and composite ones.  

On the one hand, the internal view of simple 
architectural elements is an invasive composition of 

aspects, which can be shown as a prism (see Figure 1, 
left). Each side of the prism is an aspect that the 
architectural element imports. An aspect defines the 
state and behaviour of a specific concern (e.g. 
functionality, coordination, distribution, persistence, 
etc). The state of an aspect at any given moment is 
determined by the value of its attributes. The 
behaviour of an aspect is defined by the semantics of 
the services the aspect provides. More details about the 
semantics can be found on  [25]. Aspects are 
synchronised among them by means of weavings. A 
weaving indicates that the execution of an aspect 
service can trigger the execution of services in other 
aspects. Thus, the behaviour of a simple architectural 
element emerges from the set of aspects it is invasively 
composed of.  

 

 
Figure 1. Internal views of PRISMA architectural elements 

The difference between a component and a 
connector is that a component captures the 
functionality of software systems, whereas a connector 
acts as a coordinator among other architectural 
elements. As such, components have a functional 
aspect, whereas connectors have a coordination aspect.  

On the other hand, the internal view of composite 
architectural elements includes a set of architectural 
elements (components, connectors and other systems) 
and the connections among them (see Figure 1, right). 
There are two kinds of connections: attachments and 
bindings. An attachment establishes a connection 
between a component and a connector. A binding 
establishes a connection between a complex 
component (the system) and one of the architectural 
elements that it contains. 

 
3. Dynamic Evolution of Component Types 

 
Thus, two kinds of architectural types can be 

evolved in PRISMA: simple and composite 
architectural types. The aim of this work is to provide, 
for each architectural type of the software system, the 
ability to support the dynamic change of both its 
specification (i.e. its type) and its running instances in 
an autonomous way. Thus, each architectural type will 
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be able to evolve independently of other types (i.e. 
without the need of a centralized evolution manager), 
in order to allow the building of heterogeneous, 
distributed and autonomous software systems. In order 
to do this, each architectural type must be provided 
with an infrastructure to support its evolution at 
runtime. In our approach, this infrastructure is 
integrated in each architectural type, and distributed 
among each one of its instances. There are two main 
reasons to distribute the evolution infrastructure among 
the instances. These reasons are related to the fact that, 
like the type, each instance must be capable of evolve 
autonomously with respect to the other instances. The 
first reason is that each architectural instance (i.e. 
component instance, connector instance or system 
instance) is the only one which can determine when it 
is ready to evolve. At runtime, each instance has a 
different state and a different set of running 
transactions from the other instances of the same 
architectural type. That is, the evolution instant will be 
different for each instance. The second reason is the 
support for an incremental evolution approach: each 
instance is decomposed in the structural parts it is 
composed of, and by a set of atomic evolution 
operations, the instance structure is changed. Since 
these structural parts are only accessible inside the 
context of the instance they belong to, its modification 
will only be possible if it is performed by means of 
evolution mechanisms provided by the instance. 

The evolution infrastructure is distributed in the 
following way. On the one hand, an architectural type 
has mechanisms tailored to: (1) provide (or generate) 
an editable specification of itself; (2) update its internal 
specification with the desired changes (i.e. the code in 
disk), in order to allow the creation of new instances 
according to the new specification; and (3) supervise 
the migration (or evolution) process of each one of its 
instances. On the other hand, each instance provides a 
set of mechanisms to: (4) reach a quiescent state  [18], 
in order to finish running transactions consistently; (5) 
modify its structure dynamically (in memory), 
according to the changes provided by the type, and (6) 
if possible, migrate the old state to the new structure 
introduced by the new type specification. State 
migration will only be possible when the replaced part 
provides a function to transform the state of the 
previous version to the new one. 

The set of runtime changes allowed are those that 
can be applied to the specification of a PRISMA 
architectural element (see Figure 2). For instance, a 
simple architectural element can be evolved by adding, 
replacing, or removing aspects, ports and weavings. 
We have not addressed the evolution at smaller 
granularity levels (i.e. aspect methods and attributes) 

because the balance between the flexibility obtained 
and the performance costs introduced is negative. In 
our approach, aspect behaviour (i.e. methods and 
attributes) is modified offline. Then, the aspect is 
dynamically weaved to a simple architectural type. In 
addition, we have not covered how the evolution 
impacts on the interactions with the adjacent 
architectural elements, since this is an issue that has 
been already addressed by other authors. For instance, 
Cámara  [7] addresses the adaptation of connections 
among architectural elements by means of the dynamic 
generation of adaptors that act as mediators among the 
existing instances and the replaced (or evolved) ones. 

 
Component ImageProcessingCard 
   Functional Aspect import ImgProcessingCardCtrl; 
   Presentation Aspect import ImageProcessingCardGUI; 
   Ports 
      VideoInputPort : I_VideoServices, 
                 Played_Role ImgProcessingCardCtrl.VIDEOCARD; 
      ImageOutputPort : I_ImageProcessingServices, 
                 Played_Role ImgProcessingCardCtrl.IMAGEANALYZER; 
   End_Ports    
   Weavings 
  ImageProcessingCardGUI.showImage(image) 
                         after 
  ImgProcessingCardCtrl.newProcessedImage(image);  
   End_Weavings  
   new() { 
      ImgProcessingCardCtrl.begin(); 
   }  
   destroy() { 
      ImgProcessingCardCtrl.end(); 
   } 
End_Component ImageProcessingCard; 

Figure 2. ImageProcessingCard component specification 

 
3.1. Type-level Evolution 
 

In order to illustrate our approach we use the 
component ImageProcessingCard described in Figure 
2. This component is weaved with two aspects: a 
functional aspect and a presentation aspect. The 
functional aspect: (i) receives images through the 
VideoInputPort component port, (ii) processes the 
images, and (iii) outputs the images through the 
ImageOutputPort port. The presentation aspect is 
synchronised (by means of a weaving) with the 
functional aspect to show each image that it is being 
processed. 

Our approach is characterised by providing each 
architectural type (e.g. a component type) with a real 
presence in the software system. This presence is 
provided by means of an entity, MC, that represents an 
architectural type, C, and which is executed together 
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the rest of instances of such type: C1, C2, C3,... Using 
the example described above (the architectural type 
ImageProcessingCard), we will have M ImageProcessingCard 
This entity, MC, can be viewed from two different 
viewpoints. On the one hand, MC behaves as a class 
(i.e. an instance factory), since it: (i) contains a type 
specification, (ii) creates instances of such type, and 
(3) maintains the population of instances of such type. 
On the other hand, MC behaves as an object, since it 
has a state and a set of services which change this 
state. The state of MC is an editable description of the 
type that it represents (C), and the services MC 
provides are actually evolution services: they change 
the editable description of the type. According to the 
concepts of computational reflection  [19], the entity 
MC is actually a meta-instance (or meta-component): it 
contains a reification of the type it belongs to (that is, 
an editable description), and this reification is causally 
connected to the type. All the changes performed on 
this reification will be reflected on the type and its 
respective instances. 

The internal structure of such meta-instance is 
composed of four modules or functional areas: (1) 
Builder, responsible of the creation and destruction of 
instances of the architectural type; (2) 
TypeDescription, which encapsulates the reification of 
the architectural type and the population of instances; 
(3) TypeEvolution, which provides the evolution 
services; and (4) EvolutionMonitoring, which 
supervises the instance migration process from the old 
type specification to the new one. Meta-instances have 
been integrated into PRISMA by using the same 
concepts of the PRISMA model: a meta-instance is a 
simple PRISMA architectural element composed of a 
set of aspects. Such aspects are each one of the 
functional areas described above, since each functional 
area identifies a different concern of the evolution 
process and is shared among the meta-instances that 
provide type evolution mechanisms. By shared we 
refer to the fact that the specification of each aspect is 
common for all the meta-instances, and they only 
differ in the state that they acquire when they are 
instantiated in a particular meta-instance. The only 
aspect which is completely different for each meta-
instance is the Builder aspect, since it defines the 
instantiation process of an architectural type (see 
Figure 3). The relationships among aspects are defined 
by means of weavings, although we are not going to 
describe them here due to space limitations. We 
describe below each one of these aspects in detail. 

(1) The Builder aspect provides services to create 
and destroy instances of the type represented by the 
meta-instance. Its services are published through a port 
of the meta-instance. These services are blocked when 

an evolution process starts and until the evolution 
process finishes. This is due to the fact that the 
creation and destruction services can be also modified 
by the evolution process, and new instantiations must 
be made according to the new type specification.  

 
void BuildComponent(string name, IComponent comp, object[] params)  
{ 
        comp.AddAspect(new ImageProcessingCardController()); 
        comp.AddAspect(new ImageProcessingCardGUI()); 
        comp.AddWeaving("ImageProcessingCardGUI",  
 "showImage", "image",  WeavingType.AFTER,  
 "ImageProcessingCardController",  
 "newProcessedImage","image"); 
        comp.AddPort("ImageOutputPort", "I_ImageProcessingServices",  

"IMAGEANALYZER"); 
comp.AddPort("VideoInputPort", "I_VideoServices", "VIDEOCARD"); 

} 

Figure 3. Fragment of the automatically generated Builder 
aspect for the ImageProcessingCard component 

(2) The TypeDescription aspect contains the state 
of the meta-instance: the population of instances and 
the type description (i.e. the specification containing 
both the structure and behaviour of the type). On the 
one hand, population is updated whenever a new 
instance is created and/or destroyed, by adding or 
removing respectively a reference to the instance. On 
the other hand, the type description describes the 
structural parts the architectural type is composed of 
and their interrelations. For instance, in the case of 
simple PRISMA components, this data structure stores: 
the aspect types a component consists of, the set of 
weavings (i.e. relations) among these aspects, and the 
set of ports to provide/require services from outside the 
component (see Figure 4). This aspect encodes the 
relations among platform-independent concepts (i.e. 
the PRISMA metamodel) and the technology 
dependent concepts (i.e. the implementation of the 
aspect-oriented component model in .NET  [27]). Thus, 
this aspect provides also the code-generation patterns 
which must be used to regenerate the type. 
 
typeSpec = ComponentSpec { 
      Type : ImageProcessingCard; 
      ArchitecturalElementType : Component; 
      Aspects :  {  ImageProcessingCardController, 

       ImageProcessingCardGUI  }; 
      Weavings : {  
            (“ImageProcessingCardGUI”, ”showImage”, WeavingType.AFTER,  
             "ImageProcessingCardController", "newProcessedImage”)  }; 
      Ports : { ("ImageOutputPort", "I_ImageProcessingServices",  
               "IMAGEANALYZER"), 
                    ("VideoInputPort", "I_VideoServices", "VIDEOCARD")  }; 
} 

Figure 4. Specification maintained by the TypeDescription 
aspect of the ImageProcessingCard meta-instance 
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(3) The TypeEvolution aspect provides services to 
dynamically evolve the architectural type. It only 
provides two services to carry out the evolution 
process: reify, which returns an object <Type>Spec, 
and reflect, which requires as input parameter an 
object <Type>Spec. <Type>Spec is an object whose 
state is the editable specification of the type 
represented by the meta-instance. However, this 
specification (i.e. its state) can only be modified by 
means of a set of evolution services this object 
provides, in order to allow only consistent 
modifications. <Type>Spec is a generic way of naming 
the type of the object, since it will depend of what kind 
of type the meta-instance represents. This is because 
the editable specification and the services to change 
this specification that this object provides are different 
for each represented type. <Type> here is the meta-
type of the type the meta-instance represents. For 
instance, in PRISMA there are three kind of 
architectural types (i.e. meta-types): simple 
(Components and Connectors), and composite 
(Systems). Each meta-type is specified differently and 
has different evolution services (see  [26]). The 
previously introduced meta-instance MC, which 
represents a simple PRISMA component type C, 
returns a ComponentSpec object as a result of the 
execution of the Reify service. Thus, the 
ComponentSpec object has an editable specification 
which consists of aspects, weavings and ports; it 
provides the evolution services defined in the PRISMA 
metamodel to change simple components: addAspect, 
addPort, addWeaving, removeAspect, removePort, 
removeWeaving, etc.  

The actor of the evolution process –which can be 
either an actor from outside the software system (a 
human), or an actor from inside (another architectural 
element)- will evolve an existing component type this 
way (see Figure 5): (1) the actor obtains an editable 
specification of the architectural type (i.e. a 
<Type>Spec object) by means of the reify service, (2) 
the editable specification is modified by means of the 
evolution services the <Type>Spec object provides, 
and (3) the actor returns such object through the reflect 
service, which starts the dynamic evolution process 
over the component type and its instances. 

The TypeEvolution aspect coordinates the evolution 
process. The reify service builds and returns the object 
<Type>Spec from the type specification that is stored 
in the TypeDescription aspect. However, the evolution 
process does not start until the reflect service is called. 
The evolution process consists of several stages, which 
are performed in a distributed way. The evolution 
process starts in the TypeEvolution aspect, is 

propagated to each one of the component instances, 
and is supervised by the EvolutionMonitoring aspect.  

The evolution tasks performed by the 
TypeEvolution aspect are the following. First, the 
Builder aspect is blocked, in order to avoid the 
creation/destruction of instances while the type is 
being updated. This is performed by blocking the port 
of the meta-instance that exports the services from the 
Builder aspect. Second, the type specification 
contained in the TypeDescription aspect is updated, by 
using the information contained in the object 
<Type>Spec provided to the reflect service. Third, the 
Builder aspect is completely regenerated according to 
the type specification of the TypeDescription aspect. 
The data structures contained in the TypeDescription 
aspect are used in code generation patterns to 
dynamically produce new source code. This source 
code is dynamically compiled (by using .NET 
CodeDom) to create a new Builder aspect, which is 
dynamically instantiated and weaved to the meta-
instance. Thus, since the new Builder aspect can create 
instances of the new type, it is unblocked and the 
creation of instances is allowed. Next, for each 
instance (whose reference is stored in the 
TypeDescription aspect), the service called 
reflectToInstance is called. This service requests each 
instance to start the evolution process of its structure. 
Finally, the control is transferred to the 
EvolutionMonitoring aspect, which will supervise the 
instance-level evolution process. Meanwhile, the 
TypeEvolution aspect is available for accepting new 
evolution requests. 

 

Figure 5. Black-box view of the dynamic evolution process 

(4) The EvolutionMonitoring aspect supervises 
whether the instances evolve after a certain time or not. 
Otherwise, this aspect will take corrective measures, 
according to previously defined instance migration 
policies. We support three policies: (i) only new 
instances must be created according to the new type, 
(ii) all running instances must be evolved to the new 
type, and (iii) only a subset of instances is not evolved 

 Evolution
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to the new type. These policies allow specifying the 
available time that instances will have to evolve, and 
the action to perform in case an instance does not 
evolve in the provided timeout: (i) to force evolution 
and lose the current execution state, (ii) to extend the 
timeout k times, and (iii) to cancel the evolution of this 
instance. 

Next, it is described how the evolution process is 
performed at the instance-level, for each one of the 
instances. 
 
3.2. Instance-level Evolution 
 

Most of the approaches that address the dynamic 
type evolution perform the evolution of instances by 
means of state migration  [30]: an instance of the new 
type is created and then the state of the old instance is 
transferred to the new one. In order to do that, the new 
type must provide functions to transform the data 
structures from the old type to the data structures of the 
new type. However, this requires that the meta-
instance (or the type) drives the entire evolution 
process of its instances.  

This can be optimized if the specification of the 
type being evolved is known: the type can be 
decomposed in a set of smaller entities and its 
interrelations. Then, only the entities (or parts) that are 
going to be evolved (i.e. changed) are isolated, by 
means of the temporal stopping of its relations with 
other entities. For instance, PRISMA simple 

components are decomposed into a set of aspects, the 
weavings among them, and a set of ports to interact 
with other components. The evolution process consists 
in providing each instance with mechanisms to: (i) 
isolate its structural parts (i.e. the entities and relations 
that compose the type); (ii) replace these parts; and (iii) 
reassembly again these parts to the instance. The 
advantage of such instance decomposition, as opposite 
to instance migration, is remarkably when the types 
evolved are composed of concurrent entities which are 
highly independent among them, such as software 
architecture specifications (i.e. composite components) 
and aspect-oriented components (i.e. PRISMA simple 
components). 

The mechanisms to evolve instances are provided 
by three modules or functional areas: 
InstanceEvolutionPlanning, EvolutionSensor, and 
EvolutionEffector. Since these modules identify 
different concerns of the instance evolution process, 
they have also been encapsulated into aspects, which 
are described below. 

(1) The EvolutionSensor aspect provides services 
to obtain the references (i.e. memory pointers) to each 
one of the structural parts that the instance consists of. 
In addition, this aspect provides services to monitorise 
the status of each structural part. The status describes 
the execution state of structural parts, in order to know 
when a structural part is ready to be evolved: it has no 
pending transactions that can change its internal 
attributes, i.e. it is quiescent  [18] or tranquil  [31]. 

Figure 6. White-box view of the dynamic evolution process
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(2) The EvolutionEffector aspect provides the 
services that actually perform the modification of the 
instance structure, in terms of the instance meta-type. 
For instance, the provided services in simple PRISMA 
components are: addAspect, replaceAspect, 
removeAspect, addPort, removePort, addWeaving, etc. 
These services are the same that are provided by the 
ComponentSpec object. However, the main difference 
is that the EvolutionEffector aspect applies changes to 
memory structures (i.e. executing code), while the 
ComponentSpec object updates only a type 
specification (i.e. data). In addition, the 
EvolutionEffector aspect provides the services to stop 
and restart each one of the structural parts, that is, a set 
of services to drive each part to a quiescent state or to 
abandon it, respectively. These services in PRISMA 
are: StartAspect, StartPort, StopAspect, StopPort, etc.  

The main challenges faced with the evolution of 
instances are how to manage the running processes that 
are concurrently executing, and how to decompose the 
instance structure. On the one hand, the management 
of running threads has been managed by the 
development of an executing model that allows the 
asynchronous execution of services. Thus, when a stop 
is requested, all the incoming service requests are 
queued and postponed. The instance will be ready to 
evolve when the services that are being processed 
finish their computations. On the other hand, the 
decomposition of the instance structure has been 
performed by means of dynamic linking strategies. The 
reference to each structural part is available to the 
evolution mechanisms. When a structural part has been 
stopped, it can be safely removed or replaced from 
memory by unlinking it from other structural parts and 
by linking the new part to the other structural parts. 
However, the EvolutionEffector aspect does not take 
into account neither the dependencies among the 
structural parts when applying changes, nor if they are 
ready to be evolved. It performs changes on the 
instance structure. If the instance has not been safely 
stopped before, then it loses its state.  

(4) A planning mechanism is needed to safely stop 
the dependent parts and to decide when it is safe to 
execute the evolution actions. This is carried out by the 
aspect InstanceEvolutionPlanning, which coordinates 
the evolution process at instance-level. This aspect 
receives from the meta-instance (see Figure 6) the set 
of evolution changes to apply in the instance structure. 
These changes are provided by means of the 
<Type>Spec object. Internally, this object stores the 
set of changes performed to the type specification as a 
set of differences with respect to the original type 
specification. Thus, the type evolution process is 
performed as an incremental evolution process, by 

means of atomic operations that modify the original 
instance structure, either by introducing new elements 
or removing existing ones. Each evolution operation 
implies that the structural part that is going to be 
modified reaches previously a quiescent state (that is, it 
must finish first its running transactions in a consistent 
way). However, since the technical details of how the 
quiescent status is achieved are out the scope of this 
paper, this is not described here. The reader can refer 
to an abstract description in  [18]. In order to carry out 
this process, the InstanceEvolutionPlanning 
coordinates the different services provided by both the 
EvolutionSensor and EvolutionEffector aspects. The 
services of the former aspect are used to obtain the 
references and the status of the structural parts to stop, 
while the services of the latter are used to apply the 
changes in an incremental way.  
 
3.3. Dynamic Type Evolution as a Crosscutting 
Concern  
 

The dynamic evolution of types is a concern that 
should be taken into account to the design of evolvable 
systems  [21]. Aspect-Oriented Software Development 
(AOSD  [17]) proposes the separation of the 
crosscutting concerns of software systems into separate 
entities called aspects. Aspects can help in separating 
the evolution logic from the business logic.  

A concern can be represented by several aspects, 
like our approach does, where each aspect provides 
one part of the type evolution concern. Some aspects 
provide platform-independent functionality, whereas 
other aspects provide platform-dependent 
functionality. This avoids that changes (i.e. 
maintenance operations) on the platform-dependent 
evolution mechanisms could have an impact on the 
platform-independent evolution functionality, and vice 
versa. On the one hand, InstanceEvolutionPlanning, 
TypeEvolution and EvolutionMonitoring are platform-
independent aspects: they describe the evolution 
process in terms of the metamodel used (PRISMA) and 
coordinate the actions to perform at a high abstraction 
level. On the other hand, Builder, TypeDescription, 
EvolutionSensor and EvolutionEffector are those 
aspects that bridge the platform-independent concepts 
(PRISMA) and the platform-dependent concepts (the 
implementation of the component model in a specific 
technology). The services provided by these latter 
aspects depends on the PRISMA metamodel, but its 
implementation is developed in the technology 
PRISMA architectures are executed (currently .NET 
 [27]). Thus, this separation of aspects make easier the 
implementation of PRISMA in other platform: the 
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changes to apply in the evolution model are localised 
in the latter four aspects, while the rest of aspects only 
use concepts that are platform-independent.  

On the other hand, another advantage of aspect 
oriented models is that one aspect can be weaved to 
more than one architectural element. In the case of the 
dynamic evolution concern, all the PRISMA 
architectural types that require dynamic type evolution 
will import this set of aspects, thus improving reuse 
and maintenance of the evolution code. 
 
4. Discussion 
 

Several works have addressed the dynamic 
evolution of software systems, as stated in  [4] and 
 [20]. PROSE  [23] provides a low-level approach for 
software evolution by performing reversible changes to 
running Java applications. It works at the method level 
by replacing the old code with the new version of the 
code, by means of a modification of the Java Virtual 
Machine (JVM). Wang  [32] inherits the default Java 
Class loader to support the dynamic evolution of 
(simple) Java components. It blocks the execution of 
new service requests and waits until the current service 
finishes its execution. Then, the old state is transferred 
to the new component by using the reflection 
mechanisms provided by Java. The work of Ayed  [1] 
also uses the transference of the old state to replace the 
old component. It describes a policy-driven system to 
dynamically adapt CORBA component-based 
applications. It extends both the execution and 
deployment model of CORBA Component Model by 
introducing new entities and adaptation interfaces in 
the containers of components. This approach is similar 
to the Chisel framework described in  [16]. Chisel is 
also a policy-driven context-aware system, but it has a 
smaller granularity: it is used to add non-functional 
behavior to Java classes. These works perform simple 
state transfers; complex ones have been well addressed 
by Vandewoude in  [30].  

These works are interesting, but all of them 
perform the evolution process in a centralized way: the 
proposed infrastructures (that is, the middlewares) 
extend the execution model (e.g. Java) with evolution 
mechanisms in order to support the evolution of all the 
component types, even though there are component 
types that do not need to evolve. For this reason, 
centralized approaches are not suitable, since: (i) they 
do not scale for large systems; (ii) the overhead 
introduced by evolution mechanisms is not needed by 
all component types (particularly those that are not 
evolvable), and (iii) they are only acceptable for 
homogeneous systems (all the elements of the system 

are implemented in the same technology). In our 
approach, type evolution is provided independently for 
each type of the system: a type can be provided with a 
meta-instance, thus providing dynamic evolution 
features, or not. Maintainability is provided by the 
aspects, since all the types that use the same 
technology (our approach) will import the same 
aspects, which are defined only once in the code. 
Scalability is supported because each architectural type 
is provided with its own evolution mechanisms. 

In the area of software architecture, there some 
works that address runtime adaptability  [3], although 
most of them only address dynamic reconfiguration. 
This is due to the fact that a lot of the authors have not 
established the distinction between dynamic 
reconfiguration and dynamic type evolution, as it is 
described in this work. In the literature, dynamic type 
evolution is used for evolving simple architectural 
elements (components). Dynamic reconfiguration is 
used for evolving the topology of a software 
architecture. Most of ADLs that provides support for 
architectural dynamism, such as PiLaR  [11], Plastik  [2] 
(based on OpenCOM,  [10]) or SOFA  [5], do not 
describe how to effectively support such dynamism, 
since they are focused only in the description of such 
dynamism. Our work follows an hybrid approach: the 
changes to be performed are described at a high 
abstraction level (in terms of the ADL chosen, 
PRISMA), and the different mechanisms that make 
possible the dynamic evolution have been identified 
and made available to the architecture, so that the 
architectural elements can interact with such 
mechanisms (i.e. a component can use services from 
the meta-instance in order to evolve another 
component type). The usage of reflection in our work 
is similar to the PiLaR ADL, where each architectural 
element can access its editable specification.  
SAFRAN  [13] is an extension of the FRACTAL 
component model  [6] which introduces adaptation 
aspects to decouple reconfiguration from the functional 
concerns. Dynamic type evolution is performed by 
means of component replacements. 

Most of the works presented support component 
evolution by means of complete component 
replacements and state transference mechanisms. The 
main disadvantage is that it requires to rewire the 
connections from old components to the new one, so 
adjacent components are affected by the replacement. 
Since our approach performs an internal evolution, the 
adjacent components are unaware of the evolution 
process (except when evolving also public interfaces).  

The works of Dashofy  [12] and Garlan  [14] 
describe the required infrastructure for describing self-
adaptable system, by using models that describe the 
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valid architecture of the system. However, the main 
disadvantage is that all the evolution mechanisms are 
centralized, under the assumption that all the 
subsystems must be reconfigurable and accessible. 
Morrison et al.  [22] describes evolvable systems as 
structured in two functional processes: a Producer, 
which provides the system behaviour (i.e. an 
architecture), and an Evolver, which is able to evolve 
this behaviour (i.e. to change the architecture). The 
Evolver process decides when to evolve the Producer 
process taking into account the feedback received both 
from the Producer or the environment. This approach 
is closely related to ours, as it provides localised 
change to each complex component instance and it 
separates specifically functionality from evolution. In 
contrast, we have separated the evolution concern by 
using aspects, in order to benefit the reuse and easy 
maintenance they provide. 
 
5. Conclusions and further works 
 

This paper has described a novel approach for 
supporting dynamic evolution of types, being applied 
to the field of software architectures, and in particular 
to the PRISMA approach. This approach describes an 
infrastructure to provide each architectural type (either 
simple or composite) with the ability to be evolved at 
runtime in an independent way, without the need of a 
centralized entity in charge of evolving the overall 
system. In this way, the types built can be integrated in 
heterogeneous and distributed systems. Moreover, 
encapsulation is preserved as well: an architectural 
type is a black box, and as such, its evolution can only 
be performed by the internal mechanisms provided by 
this box (the type), which are those which know the 
internal structure of the type and how to change such 
structure. From an external point of view, an evolvable 
type provides reflective capabilities to obtain its 
reification and a set of evolution services in order to 
modify its specification in a consistent way. From an 
internal point of view, the type evolution process is 
divided into different concerns, which are distributed 
among the type reification and its running instances. 
These concerns have been encapsulated as aspects, in 
order to improve reuse and maintenance. The aspects 
from the type level are in charge of evolving the 
specification of the type and the instance 
creation/destruction process. On the other hand, the 
aspects from the instance level are in charge of 
evolving the internal structure of each instance. 
Another contribution of this work is that the evolution 
at the instance level is performed by means of the 
decomposition of the internal instance structure and by 

means of an incremental development process, by 
adding/removing the entities or part that have been 
added/removed from the type specification. 

Nowadays, these concepts are being implemented 
in the PRISMANET middleware  [27], which supports 
the execution of PRISMA software architectures and 
its dynamic reconfiguration  [9]. Once the 
implementation finishes, a study will be carried out in 
order to evaluate the response times of the evolution 
process, in order to compare with other approaches. 
Another work to perform in the near future is the 
definition of constraints for the evolution process of 
types: for instance, to limit which parts of the types can 
be evolved or not.  
 
Acknowledgements. This work is funded by the Spanish 
Department of Science and Technology under the National 
Program for R+I+D META project TIN2006-15175-C05-01, 
by the Universidad Politécnica de Valencia under the project 
“Quality-Driven Model Transformations”, and by the 
Comunidad de Madrid and the Rey Juan Carlos University 
under the IASOMM project URJC-CM-2007-CET-1555.  

 
6. References 

 
[1] D. Ayed, Y. Berbers. Dynamic Adaptation of CORBA 

Component-Based Applications. In proc. of ACM 
Symposium on Applied Computing (SAC’07). Seoul, 
Korea, March 2007. 

[2] T. Batista, A. Joolia, G. Coulson. Managing Dynamic 
Reconfiguration in Component-Based Systems. In proc 
of 2nd European Workshop on Software Architectures 
(EWSA'05). LNCS, vol. 3527, pp. 1-17. Springer, 2005. 

[3] J.S. Bradbury, J.R. Cordy, J. Dingel, M. Wermelinger. 
A Survey of Self-Management in Dynamic Software 
Architecture Specifications. In proc. of 1st ACM 
SIGSOFT Workshop on Self-Managed Systems 
(WOSS’04). Newport Beach, California, 2004. 

[4] J. Buckley, T. Mens, M. Zenger, A. Rashid, G. Kniesel. 
Towards a taxonomy of software change. Software 
Maintenance and Evolution, 17(5). Wiley, 2005. 

[5] T. Bures, P. Hnetynka, F. Plasil. SOFA 2.0: Balancing 
Advanced Features in a Hierarchical Component Model. 
In 4th Int. Conference on Software Engineering 
Research, Management and Applications (SERA'06), pp. 
40-48. Seattle, Washington, USA, 2006. 

[6] E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, J.B. 
Stefani. An open component model and its support in 
java. In proc. of the 7th Int. Symposium on Component-
Based Software Engineering (CBSE’04). Vol. 3054 of 
LNCS., Edinburgh, Scotland, Springer-Verlag, 2004.  

[7] J. Cámara, C. Canal, J. Cubo and J.M. Murillo. An 
Aspect-Oriented Adaptation Framework for Dynamic 
Component Evolution. Electron. Notes Theor. Comput. 
Sci. 189, pp. 21-34. Elsevier, 2007. 

[8] C. Costa, J. Pérez, J.A. Carsí. Dynamic Adaptation of 
Aspect-Oriented Components. 10th Int. ACM SIGSOFT 

309

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on May 25,2010 at 12:49:10 UTC from IEEE Xplore.  Restrictions apply. 



Symp. on Component-Based Software Engineering 
(CBSE'07). LNCS, vol. 4608. Springer, 2007. 

[9] C. Costa, N. Ali, J. Pérez, J.A. Carsí, I. Ramos. 
Dynamic Reconfiguration of Software Architectures 
through Aspects. In First European Conference on 
Software Architecture (ECSA'07). LNCS, vol. 4758. 
Springer, 2007. 

[10] G. Coulson, G.S. Blair, P. Grace et al. OpenCOM v2: A 
Component Model for Building Systems Software. In 
proc. of IASTED Software Engineering and 
Applications. Cambridge (MA), USA, 2004. 

[11] C.E. Cuesta, P.d.l. Fuente, M. Barrio-Solárzano. 
Dynamic Coordination Architecture through the use of 
Reflection. In proc. 2001 ACM Symposium on Applied 
Computing. Las Vegas, Nevada, United States, 2001. 

[12] E.M. Dashofy, A. van der Hoek, R.N. Taylor. Towards 
Architecture-Based Self-Healing Systems. In proc. of 
First Workshop on Self-Healing Systems (WOSS'02). 
Charleston, South Carolina, 2002. 

[13] P. David, T. Ledoux. An Aspect-Oriented Approach for 
Developing Self-Adaptive Fractal Components. In 5th 
Symp. on Software Composition (SC’06). Vienna, 
Austria, 2006. 

[14] D. Garlan, S. Cheng, S. Huang, et al. Rainbow: 
Architecture-Based Self-Adaptation with Reusable 
Infrastructure. Computer, 37:46-54. IEEE, 2004. 

[15] W.H. Harrison, H.L. Ossher, P.L. Tarr. Asymmetrically 
vs. Symmetrically Organized Paradigms for Software 
Composition. Technical Report RC22685 (W0212-147). 
Thomas J. Watson Research Center, IBM, 2002. 

[16] J. Keeney, V. Cahill. Chisel: A Policy-Driven, Context-
Aware, Dynamic Adaptation Framework. In: 4th IEEE 
International Workshop on Policies for Distributed 
Systems and Networks, p.3, June 04-06, 2003 

[17] G. Kiczales, J. Lamping, A. Mendhekar, et al. Aspect-
Oriented Programming. In 11th European Conf. on 
Object-Oriented Programming (ECOOP'97). Lecture 
Notes on Computer Science, Vol. 1241. Springer, 1997. 

[18] J. Kramer and J. Magee. The Evolving Philosophers 
Problem: Dynamic Change Management. IEEE 
Transactions on Software Engineering, 16(11):1293-
1306, 1990. 

[19] P. Maes. Concepts and Experiments in Computational 
Reflection. In: SIGPLAN Not., Vol. 22 (12), pp. 147-
155. ACM Press, New York, NY, USA, 1987. 

[20] P.K. McKinley, S.M. Sadjadi, E.P. Kasten and B.H.C 
Cheng. Composing Adaptive Software. Computer, 
37(7):56-64. IEEE, 2004. 

[21] T. Mens, and M. Wermelinger. Separation of concerns 
for software evolution. J. of Software Maintenance and 
Evolution, 14(5):311-315. Wiley, 2002. 

[22] R. Morrison, D. Balasubramaniam, G. Kirby et al. A 
Framework for Supporting Dynamic Systems Co-
Evolution. Autom. Software. Eng, 14(3):261-292. 
Springer, 2007. 

[23] A. Nicoara, G. Alonso, T. Roscoe. Controlled, 
Systematic, and Efficient Code Replacement for 
Running Java Programs. In ACM SIGOPS Operating 
Systems Review, Vol.42 (4). May 2008. 

[24] J. Pérez, N. Ali, J.A. Carsí, I. Ramos et al. Integrating 
aspects in software architectures: PRISMA applied to 
robotic tele-operated systems. Information & Software 
Technology, 50(9-10):969-990. Elsevier, 2008. 

[25] J. Pérez, N. Ali, J.A. Carsí, I. Ramos. Designing 
Software Architectures with an Aspect-Oriented 
Architecture Description Language. In proc. of 9th Int. 
Symp. on Component-Based Software Engineering 
(CBSE06). LNCS, Vol. 4063. Springer, 2006. 

[26] J. Pérez, N. Ali, J.A. Carsí, I. Ramos. Dynamic 
Evolution in Aspect-Oriented Architectural Models. In 
2nd European Workshop on Software Architecture 
(EWSA'05). LNCS, vol. 3527. Springer, 2005. 

[27] J. Pérez, N. Ali, C. Costa, J.A. Carsí, I. Ramos. 
Executing Aspect-Oriented Component-Based Software 
Architectures on .NET Technology. In proc. of 3rd 
International Conference on .NET Technologies, pp. 97-
108. Pilsen, Czech Republic, June 2005. 

[28] D.E. Perry and A.L. Wolf. Foundations for the Study of 
Software Architecture. In ACM SIGSOFT Software 
Engineering Notes, 17(4):40-52, 1992. 

[29] M. Shaw and D. Garlan. Software Architecture: 
Perspectives on an Emerging Discipline. Prentice-Hall, 
NJ, USA, 1996. 

[30] Y. Vandewoude and Y. Berbers. Component state 
mapping for runtime evolution. In Proc. of Int. Conf. on 
Programming Languages and Compilers.  Las Vegas, 
Nevada, USA, 2005. 

[31] Y. Vandewoude, P. Ebraert, et al. Tranquillity: A low 
Disruptive Alternative to Quiescence for Ensuring Safe 
Dynamic Updates. IEEE Transactions on Software 
Engineering, 33(12):856-868, 2007.  

[32] Q. Wang, J. Shen, X. Wang, H. Mei. A Component-
Based Approach to Online Software Evolution. Journal 
of Software Maintenance and Evolution: Research and 
Practice, Vol.18(3), pp.181-205, May 2006. 

 

310

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on May 25,2010 at 12:49:10 UTC from IEEE Xplore.  Restrictions apply. 


