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Abstract—In the field of distributed computing, there are agreed that the proper use of model checking gives more
many round-based algorithms to solve fundamental problems, confidence in the correctness of computer-based systems.
such as leader election and distributed consensus. Due to the|, the |ast several decades. it has been used successfully

nature of these algorithms, round numbers are unbounded and . ti t . | tial circuit desiansl an
can increase infinitely during executions of the algorithms. This N Practice to verify complex sequential circui 9

can lead to the state space explosion problem when verifying COMmunication protocols.
correctness of these algorithms using model checking. In the field of distributed computing, for asynchronous

In this paper, we present a general idea of investigating the anonymous networks there exist no deterministic solutions
bounded distance of round numbers in round-based algorithms. 4 any fundamental problems, including leader electiod a
We can manage to transform their state spaces into finite by distributed consensus. Additional techniques such asorand
maintaining such relations in a proper way, and thus make > ) ) - .
automatic verification of these algorithms possible. We apply this ization, failure detector are introduced to circumventsthe
idea to several algorithms and present their verification results problems. An apparent characteristic of these solutiorikes
in the model checker Spin. involvement of round numbers. Due to the nature of these
algorithms, the round numbers are unbounded and can irmcreas
infinitely during executions of the algorithms. This giveserto

Today computer-based systems, e.g., telecommunicatibe state space explosion problem of model checking and thus
systems, banking systems, airline reservation systerg$;- himakes the direct use of model checking to verify correctness
way and air traffic control systems are widely used in ounydaibf these algorithms infeasible. However, instead of having
life. Most of these systems are critically dependent onrtheain explicit representation of round numbers, by investgat
underlying distributed algorithms to achieve specific goatheir relations in the studied algorithms and maintaininghs
such as distributed agreement and fault tolerance. Clearlyrelations in a proper way, we can manage to transform their
is important for the algorithms to run correctly and effitclgn state spaces into finite and make automatic verificationasfeh
Failures of these systems can be potentially disastrous, abgorithms possible. In this paper, we aim to model check
cause the loss of a huge amount of money or even human livesveral round-based distributed algorithms based ondbs. i
However, since the settings in which these algorithms dpera The rest of the paper is structured as follows: In Section I,
are complicated, design of such algorithms is error-promge present our main verification idea to circumvent the state
and can be an extremely difficult and complex task. Usuallypace explosion problem when model checking round-based
specifications of correctness arguments of these algositime  distributed algorithms in depth. We apply our approach to
given at an informal level. It is insufficient to convince althe probabilistic Itai-Rodeh algorithm [3], [4] and its one
the readers and provide high degree of confidence of theiriation, which is newly introduced in this paper, for lead
correctness under all circumstances. If one wants to vétdy election in Section I, a probabilistic consensus aldorit
correctness of some proofs, she/he has to prove substargi@posed by Bracha and Toueg [5] and a rotating coordinator
parts or entire sub-results, for which only informal argmtse algorithm with failure detector [6, pp. 154] in Section IV,
were given. This has been observed in a recent paper fébpectively. Their verification results in Spin [7] are sua
on formal reasoning about the correctness of a distributeded in Section V. In the end, we briefly discuss related work
consensus algorithm [2]. in Section VI and conclude this paper with future research

Model checking is an automatic technique for verifyinglirections in Section VII.
finite state concurrent systems. It verifies a desired ptgper
over a given system through athaustive exploration of all
the states reachable by the system. Due to the finiteness of thThe presence of round numbers in most round-based dis-
state space, the search always terminates. Techniquesasudhibuted algorithms causes the state space explosiongmbl
symbolic representation, symmetry reduction and abstract which makes it impossible to verify them directly using
have been developed to deal with tiate explosion problem model checking. To have an automatic verification of these
and enhance the scalability of model checking. It is widelglgorithms, we need to transform their state space intcefinit

I. INTRODUCTION

II. OUR APPROACH



that is to have a finite representation of round numbers. (Far The algorithms

some algorithms, we also need to have a finite representatiofy an anonymous network, processes do not carry an
for message channels. This typically follows when we havejgentity. Angluin [8] show that there does not exist a ter-

finite representation for round numbers.) Meanwhile, wedneeninating algorithm for electing a leader in an asynchronous
to keep all possible behaviors of the original algorithm Wanonymous network. The Itai-Rodeh algorithm [3], [4] is the

can achieve this goal by the following steps: first probabilistic solution for leader election in anonymso

STEP 1: We need to investigate and find relations of roungnidirectional rings. In this algorithm, each process ctsla
numbers. That is to find the inherent bounded distance E#dom identity from a finite set and sends out a message
round numbers of the involved processes in the algorithnf&TYing its identity. Ahop counter is included in each
Such a bounded distance implies that only a finite numb&€ssage, which helps processes to recognize its own message
of round numbers are needed during the executions of s checking whether the hop counter equals the ring s)ze
algorithms, even though the round numbers are unbound@gbit is also included for each message to indicate whether

This provides the theoretical foundation for us to have adiniSOme other processes with the same identity exist. The bit is
representation of unbounded round numbers. dirtied when it passes a process that is not its originator bu

has the same identity. When some process receives its own
STEP 2: We need to represent unbounded round numbgffessage, it either becomes the leader (if the bit is clean), o
by keeping their (relative) relations. Based on the firspsteselects a new identity and starts the next election rourtthéif
we can use modulus (of the found distance) to model roupg s dirty). In next election round, only processes thairsi
numbers. Moreover, as all algorithms with unbounded roune |argest identity araective. All other processes have been

numbers involve comparisons of round numbers, we also ne@gde passive by the receipt of a message with an identity
to keep their relations. In our transformation, we usuallyéh |arger than their own.

to trace the latest round number (by a global variable) to

indicate their relative ordér. Algorithm 1 The Itai-Rodeh algorithm
STEP 3: We need to make sure that our transformatiorls Initially, all processes are active, and each process
still capture all possible behaviors in the original algfoms. randomly selects its identityd; € {1,...,k} and sends the

Usually, by representing unbounded round numbers in a finfi£ssageidi, 1,1, true).

way, some conflicts of round numbers may arise, especiallyUpon receipt of a messag@d, round, hop, bit), a pas-
in asynchronous networks where messages may stay forsife process; (state; = passive) passes on the message,
arbitrary long time. These messages in previous rounds negctreasing the countehop by one; an active process;

to be marked as special at an appropriate time, so that thgyte; = active) behaves according to the following steps:
would be recognized by the involved processes in a same Way. if jo; = n and bit = true, thenp; becomes the leader

as in the algorithm’s original specification. (state] = leader);

Once we have done these steps properly, we can modef if hop = n and bit = false, then p; selects a new

these algorithms with bounded round numbers and apply random iden/tityz‘dg € {L,...,k}, moves to the next
model checking for the verification of round-based distiiol round found; = round; + 1), and sends the message
algorithms directly. We illustrate our approach (focusing (id;, round;, 1, true); .
STEP 1) to a number of algorithms. - if (round,id) = (round;,id;) and hop < n, thenp;
passes on the messagd, round, hop + 1, false);
ll. L EADER ELECTION ALGORITHMS - if (round, id) > (round;,id;) (where (round, id) and
) . ] (round;, id;) are compared lexicographically), then
In this section, we consider amsynchronous, anonymous, becomes passivestute; = passive) and passes on the
unidirectional ring consisting ofn processe®, ..., pn- Prq- messagéid, round, hop + 1, bit);
cesses communicate asynchronously by message passing OVerif (round, id) < (round;, id;), thenp; purges the mes-
reliable channels with capacity. sage.

Leader election is the problem of electing a unique leader-n
a network, in the sense that the leader knows that it has bee
elected and the other processes know that they have not bg Dnel behavior excefdir scheduling meaning that in each
elected. We concentrate on model checking of the Itai-Rod inite execution' sequence, every sent message eventually
algorithm [3], [4] as well as a new leader election algorithrgr ’

based i+ We d ive both alaorith i Section Ill rives at its destination. Since the channels raoe-FIFO,
ased on 1. Ve describe both algorithms in Section -4, 44 message, that has been overtaken by other messages in
Then we investigate the relation of round numbers of ea

. . 4 e ring, could in principle result in a situation where nader
algorithm in Section III-B. . A A )
is elected [9]. To avoid this problem, the algorithm proceid
. _ , , o successive rounds, each process and message is supphed wit
Note that this global variable does not play a role in theistidistributed d b hich initiall di d
algorithm, it is only used in our transformed model for the aimaofomatic @ oUNd numboer, which initially starts at one and Is augmente
verification. at each new election round. Thus an old message can be

%he Itai-Rodeh algorithm makes no assumptions about



recognized and ignored. Due to the use of round numbers, tre. Similar to the Itai-Rodeh algorithm, we find that the
Itai-Rodeh algorithm has an infinite state space. Algorithm distance of round numbers of active processes in Algorithm 2
describes the algorithm in details. Each procgssaintains is bounded by» — 1. It is because active processes may enter
three parameters: its identity;, its current statetate; (which next round as soon as possible, and the ring is of siZé/e
ranges over active or passive or leader) and its currentdrouormulate the results as Theorems 1 and 2.

numberround;. The messages are of this fornid,(round, Theorem 1. The distance of round numbers of active pro-

hop, bit). ; . .
Fokkink and Pang [9] present two variations of the ltaicso N Algorithm 1 is at most 1.

Rodeh algorithm with-IFO channels, in which round numbersTheorem 2. The distance of round numbers of active pro-
are not needed any more. Their second algorithm is basedoesses in Algorithm 2 is at most n — 1.

the observation that when some procgssletects an identity
clash, which means it receives a message with its own igentit
and hop count smaller than, it is not necessary fop; to In this section, we consider aasynchronous, fully con-

wait for its own message. Insteagl, can immediately select nected network consisting of. processesg;, ..., p,. The com-

a new random identity and start a new election round. Simmunication between processes asynchronous by message
larly, we apply this idea to the original Itai-Rodeh algbnt passing over reliable channels. A process ngash during

and develop a new leader election algorithm for anonymotise executions.

unidirectional rings. The algorithm (see Algorithm 2) make Consensus is the problem to, despite of the occurrences of
the same assumptions as the Itai-Rodeh algorithm, but onfagures, get all correct processes in a system to uniformly

IV. CONSENSUS ALGORITHMS

all the occurrences of dirty bit. decide on some value. Initially, each process has an initial
value 0 or 1 and must eventually decide on some value

Algorithm 2 The Itai-Rodeh algorithm without dirty bit satisfying the following propertiestermination — all correct

o Initially, all processes are active, and each procgss processes must eventually decide some valgesement — the

randomly selects its identityd; € {1,...,k} and sends the decision of each correct process must be identidalidity —

messagdid;, 1,1). the value that has been decided must have been proposed by

some process. To verify consensus algorithms, all the three
ri)roperties need to be checked. However, validity is usually
ﬂvially satisfied for most consensus algorithms [10].téasl

e Upon receipt of a messadéd, round, hop), a passive pro-
cessp; (state; = passive) passes on the message, increasi

the counteriop by one; an active process (_Statei = active) o checking whether the other two properties (agreement and
behgves according to the following steps: termination) hold, we focus on the property tresentually

- if hop = n, thenp; becomes the leadestic; = leader);  some process decides. This is based on the fact that this

- if (round, id) = (round;,id;), then p; selects a new property usually implies the correctness of agreement and

random iden/tityz’dg € {1,...,k}, moves to the next {ermination. By focusing on this property which guaranties
rqu/nd (mwfdi = round; + 1), and sends the messagorrectness of the algorithm, we can reduce all the betgvior
(id;, round;, 1); after some process has decided in our built models of this

- if (round,id) > (round;,id;) (where (round,id) and algorithm.
(round;, id;) are com!aared lexicographically), then  The impossibility result [11], namely no asynchronous,
becomes passivesite; = passive) and passes on thegeterministic, 1-crash-robust consensus algorithm exisas

messageid, round, hop + 1); led to weaker formulations and stronger models in order to
- if (round, id) < (round;, id;), thenp; purges the mes- sojve the consensus problem. The former technique includes
sage. the introduction of randomization techniques, the prolistlu

consensus algorithm proposed by Bracha and Toueg in [5] is of
o ) this kind. The latter includes the involvement of synchrang
B. Finding relations of round numbers (unreliable) failure detector [12], [2], one example is tating
In the ltai-Rodeh algorithm, round numbers are used twordinator algorithm with the failure detectes [6, pp.514].
distinguish the processes as well as their messages in difre maximal number of faulty processes that can be handled
ferent election rounds. Processes who have lost the efectity an algorithm is called theesilience of the algorithm, and
in previous election rounds have become passive and oigydenoted byt.
forward received messages. According to the algorithm, anFor aforementioned two algorithms, we apply our approach
active process can enter into the next election round if ag8ection Il) to deal with the problem with unbounded round
only if its own message has visited all the other processesmbers (and unbounded message channels), which causes
(hop = n) and comes back with a dirtied bibi¢ = false), state space explosion in model checking.
which ensures that only those processes with the same farges )
identity (and round number) remain active. Intuitivelyjsth A A crash-robust consensus algorithm
implies that during the executions of the Itai-Rodeh aliyoni, Bracha and Toueg propose a probabilistic consensus al-
the distance of round numbers (of active processes) is at mgsrithm [5] and prove that under the assumption faifr



scheduling their algorithm terminates with probability. An  Algorithm 3 A crash-robust consensus algorithm

upper bound on the resiliende < n/2 is also given. The var value, 1 (0,1) init z,
algorithm operates inounds. In each round:, correct process round, : integer init 0
p;, which has not decided (i.ey, = b), sends a message to weight, integer init 1
all processes (including itself) and awaits the receipt of ¢ msgs[0,1]  :integer init 0
messages of the same round. The message inclydeslue, witness [0,1] : integer init 0

its current roundk, as well as a weight. Theveight is the

number of votes received for the vote in the previous round While y, = b do

(1 in the first round). The message with a weight bigger than ~ (*Reset counts¥)

n/2 for some vote is called witness. If p; receives a witness witness [0], witness[1], msgs[0], msgs[1] := 0,0,0,0;
in roundk, thenp; changes its vote to the witness’s; otherwise ~ Shout(vote, round,, value,, weighty);

p; chooses the vote that is the majority of the received votes. While msgs,[0] +msgsp[1] <n —t do

A decision is made whep; receives more thahwitnesses in receive(vote, r, v, w);
some round, and in order to make other processes degide, if 7 > round, then
still needs to send witness for the next two rounds. Algamith send(vote, r, v, w) to p
taken from [6, pp.455] describes the details. else ifr = round, then
As operating in the asynchronous network model, pro- msgsp[v] 1= msgsylv] + 1;
cesses may receive messages with different rounds and need i w= n/2 then )
to process these messages in the appropriate round. In the witnessp[v] := witnessy[v] + 1
algorithm, the messages from previous rounds are ignored end if
and from future rounds are buffered in message channels. else_
Moreover, different processes may take different subséts o sk!p
all the messages of a same round into account. end 'T
end while

As there are non-terminating paths (the algorithm is ermsure
to terminate with probability 1), round numbers can inceeas
infinitely. Different from the Itai-Rodeh algorithm, we azot
find the inherent bounded distance of round numbers for
the algorithm. Instead, we focus on the cases where only
one process is allowed to crash. Considering related works
of verifying consensus algorithms that only small cases are

(*Choose new value: vote and weight in next round*)
if witness,[0] > 0 then
value, :==0
else if witness,[1] > 0 then
value, =1
else ifmsgs,[0] > msgs,[1] then

lue, =0

possible (typically only 3 or 4 nodes) to be verified [10], we eég er
believe that model checking these 1-crashed cases is still a value. — 1:
P ’

interesting study. end if

For 1-crashed cases of the algorithm, each correct process weight, := msgs,value,)
needs:—1 messages in each round to proceed. If some correct (*Decide if more thant witnesses*)

processp; lags in some round;, then from round-; + 1 on, if witness,[value,] >t then
all other correct processes have to collect all votes exitept y, = value,

one fromp; to proceed. At the end of round+ 1, they would end if

choose the same vote (sayand enter round; + 2. In round round, := round, + 1

r; + 2, if p; does not catch up, they would receive the same  (*Help other processes decide*)
n — 1 number of votes and start round; + 3 with sending end while

out witness. Then in round + 3, some process would decide. shout (vote, round,, value,,n — t)
Thus, the distance of correct processes is at mioshe other  shout (vote, round, + 1, value,,n — t)
source for state space explosion in consensus algorithms—is

unbounded message channels. Since each process sends out

messages in each round, the size of message channels are also

bounded byn+3(n—1) = 4n—3 (due to the bounded distance

of round numbers).

) ] The property that eventually some process decides im-
Theorem 3. Before some process decides, the distance of pjies agreement and termination is captured by the follgwin
round numbers of correct processes for the 1-crash cases of  |emma [6, Lemma 14.21].

Algorithm 3 is at most 3.

Proposition 1. The size of message channels necessary for Lemma 1. For Algorithm 3, if a process decides then all
each correct process in the 1-crash cases of Algorithm 3 is correct processes decide for the same value, and at most two
4n — 3. rounds later.



B. A rotating coordinator algorithm only one process is allowed to crash. In our discussion, we
In this section, we look at a rotating coordinator consens@§sume that each outcome evaluated by the current coamdinat

algorithm with a failure detectorS and ¢ < n/3 [6, IS always received by itself in that round.

pp.514]. The> S satisfies two propertie§trong Completeness ~ Similarly, if some correct process lags in roundr;, then

— eventually all crashed processes are detectedEaentually when all correct processes exceptplay the coordinator in

weak accuracy — there exists a time after which some correome round; which is fromr; + 1 to r; +n, they have to

process is never suspected. collect all their votes and would have chosen the same value.
This algorithm operates in rounds and is based on tA&en if p; does not catch up, when anyone of these correct

rotating coordinator paradigm [2]. In rounid all processes Processes plays coordinator again from roupd- » + 1 to

know that the coordinatap,. is the one with process number’+2n, it would receive the unanimous-1 values and decide.

k |, +1 and send the messages including their valugs (Correspondingly, with bounded round numbers, the sizeef th

and round ) to the coordinatop,. The coordinatop, waits Message channels are also bounded.

until n — ¢ messages are received. Then, the coordingtor Theorem 4. Before some process decides, the distance of
evaluates the outcome of this rouhdccording to the majority o,nd numbers of correct processes for the 1-crash cases of
of received values and broadcasts the outcome. The OUtCO,QPﬁ‘orithm 4 is at most 2n.

consists of the chosen value)(of this round, the round

number as well as a bitff used to indicate unanimousnes&roposition 2. The size of the message channels necessary

of the received votes. A procegs which has sent its value for €ach correct process in the 1-crash cases of Algorithm 4

to p. waits either to receive the outcome from the coordinaté$ 21 — 1.

or to suspect 'the coordinator. In the first casecollects the ¢ property that eventually some process decides implies
outcome of thls_ round and proceeds to the next rour_1d_. 'n_tQSreement and termination is described in Lemma 2.

second casep; just moves to the next round. A decision is

taken whenp, receives an outcome from unanimous vote€mma 2. In l-crash cases of Algorithm 4, if a process

The process continues its activity after a decision until afiecides then all correct processes decide for the same value,
correct processes decide. Algorithm 4 taken from [6, pd.51@1d at most 2n rounds later.

describes the details. V. MODEL CHECKING RESULTS IN SPIN

Algorithm 4 A rotating coordinator consensus algorithm We present verification results of the four algorithms in the
x; = input; model checker Spin [7] (with the options “weak fairness”,
r:=0; “use partial order reduction” and “use compression”) based

the relations of round numbers we have found in Sections Il
and IV. Tables I-IV mainly contain information about size of
the models (number of states and transitions) and mentoey/ti
) consumption. Experiments are performed either on a compute
(*Phase 1: all processes send value to coordinator*) with a CPU of 2.26 GHz and 2Gb main memory (for cases
send(value, z;,r) to I; with memory consumptior< 2G) or on a powerful machine
(*Phase 2: coordinator evaluates outcome) (of a cluster) with CPU of 3.4 GHz and 32Gb main memory
if i = c then _ (for cases with memory consumption greater than 2G). Due to
wait until n — ¢ messagegvalue, v;,r) are received; gnace |imitation, details about our models in Spin are laft o

Z = (rgqjority of )received values; and can be found in an extended version of the paper [13].
= (V) 1v; =v);

while true do
(*Start new round and compute coordinator*)
ri=r+1;c:=r|, +1;

(*range over received messages*) A. Verifying the leader election algorithms
fgr_?ll Jj do send{outcome d, v,r) t0 p; Based on the identified distances of round numbers (Theo-
end i

rems 1 and 2), we are able to have a finite representation of
round numbers for both algorithms in Section .
In our Spin models, instead of increasing round number

(*Phase 3: evaluate the round*)
if collect (outcome d,v,r) from p. then

L 1= by one each time when entering next election round, an
if d th_en active process proceeds with changing its round number by
de_Clde(V) round = (round + 1) |2 for Algorithm 1 andround =
end if (round + 1) |, for Algorithm 2, respectively. Furthermore,
end if we need to maintain the relations of round numbers to track
end while

which round is the latest election round. In our Spin models,
we use a global variable to indicate the latest electiondolin
Due to the fact that properties ofS only hold eventually, adjusts its value by monitoring the round numbers of allvacti
round numbers in this algorithm can increase infinitely.i&im processes. Moreover, due to the fact that the communication
to the algorithm in Section IV-A, we focus on the cases wheahannels arenon-FIFO, even though some processes have




become passive their messages may still stay in the channlsmake sure that processes may take different subset of
Therefore, when we transform the algorithm using boundedessages into account, we model that each process randomly
round numbers we need to recognize the delayed messagesha®ses: — t messages from the channels. For Algorithm 4,
well. For this purpose, we use a dedicated procedure to mavk model the failure detectarS by two global variables to
these messages algl at the end of each election round (wherindicate when it has beconstrongly complete and/orweakly

all active processes have entered into next election rounadcurate. These two variables will be used by processes when
The desirable property of leader election is specified as #ey suspect another process to be crashed.

LTL formula in the form of - 0Cp = <O¢". The formula The property “eventually some process decides” for Algo-
says that if the situation where more than one active presessithm 3 is specified in a similar way as for the leader election
have the same (largest) identity (capturegpyoes not appear algorithms, where we have to rule out the possibility for the
infinitely ofter? then an unique leader (captured dywill be situation where no “progress” is made towards a decision to
eventually elected. In Tables | and I, the first three colamrappear infinitely often. While for Algorithm 4, it is an LTL
give the number of processes)( the number of identities formula “>0 ¢", the predicateg captures that some process
(m), and the size of the message channeg)s ( has decided. In Table IIl the algorithm takes any initialutgp

to the processes, while due to the complexity of Algorithm 4
we need to fix the inputs for the processes (we only take the
isomorphically distinct cases).

TABLE |
VERIFICATION RESULTS OFALGORITHM 1

[n m s ] #states #trans[ mem.(Mb)  time(s) | TABLE Il
2 2 2 23108 2.3*10F 26 0.06 VERIFICATION RESULTS OFALGORITHM 3
3 2 3]|6310 1.3*10 42.3 37.4
i g i Sg:ig ‘1“51:18; 10127%11 8173710 [ n [ #states  #trans] mem.(Mb) time(s)]
: : = . 3 [ 11100 7.9*10° 9.6 2.0
4 | 3.4%10° 4.1*107 174.1 113
5| 1.8*10° 5.5*10° 1,413.3 1,600
TABLE Il
VERIFICATION RESULTS OFALGORITHM 2
TABLE IV
- VERIFICATION RESULTS OFALGORITHM 4
[n m s [ #states #trans] mem.(Mb)  time(s) ]
2 2 2] 14710° 1.7*10% 5.2 0.04 _ _
3 2 3| 53410 1.5%107 48.0 42.9 [ n inputs [ #states #trans| mem.(Mb) time(s)]
3 3 3|207M0 @ 6.4%107 1725 180 4 1000 [ 4.010° 1.6*10° 329.8 516
4 2 4 277108 1.1*1010 20,567.1 51,600 4 0100 | 7.1¥10° 3.6*107 21.3 31
4 0010 | 2.2¥10°  1.1*10° 73.9 98.2
4 0001 | 5.2x10° 2.8*10° 249.0 242
. . 4 1100 | 6.1*10°7 2.6*10° 7,909.6 12,800
B. Verifying the consensus algorithms 4 1010 | 524107  2.9%10° 73081 11,000
With theoretical results in Section IV, we are able to 4 1001 | 6.0*10" 2.6*10° | 7,839.9 11,900

have finite representations of unbounded round numbers (and

message channels) for Algorithms 3 and 4. VI. RELATED WORK
In our Spin models, instead of increasing round number L f the Itai-Rodeh algorithm are pr db

by one each time when entering next election round, ealghTW0 variations of the ltai-Rodeh algo are proposed by

process proceeds with changing its round numberdayd = Ffé((l;lnlaand lljanéj [ti] f(f)ir?nonym?_ug,tumtdltrectlonal r:jngsrw:)t
(round+1) |4 for Algorithm 3 andround = (round-+1) |3 channels. Both of them are finite-state as round numbers

for Algorithm 4, respectively. Since both algorithms ogera are omitted. They hf”‘VG model che:-cked their algorithms with
in rounds, in each round all processes either broadcast el .tc;_ ¥ profc;lssis'lg F;RLSNIL Ff”tlﬁimof:ﬁl':ﬁgg:ksh sev:lral_
votes or send their votes to the coordinator. Each process\éﬁ{'a '(1)25 o I g_ alt-h 0 s agt]orl gm l\;\" ith ctt_ann S|
Algorithm 3 or the coordinator in Algorithm 4 proceeds wit pin [14], including the above two [ ], by either putting pp
those messages of the same round number as its own. T 2 nds. on round numbers or havmg.rc_)und numbers modulo
in our Spin model we simply define the message chann ixed mteger to mgke state spaces finite. He ha}s managed to
dedicated to a fixed number of different rounds, they ak eck algorithms with up to seven processes. Since channels
shared by all processes. Each process sends messages t rf:hg,lFS’ roundtnu'mbers are f;\ctuallly n?r': ngeg ed [?]'. I:.erjtce,
corresponding channels according to its current round @um artag) 0€s noblglve ?] way g lsor\]/e Ki N Th eren | n '_?r']e
and proceeds the messages in the corresponding channel olgafe sptzlace pr_c:j e?"n V‘é en dmo ed_c tec mgf esedagﬁ;;) ms.
same round. Implementing channels in this way simplifies t (# erently, we iden ify boun 'S On distance of round nunsoer
models and gives rise to smaller state spaces. For Algoﬁthmo active processes and use it to achieve a finite repregamtat
of round numbers.

’Note that the Itai-Rodeh algorithm is a Las Vegas algoriterminating The_ papers on c;omblnlng model CheCI.(mg and other proof

with probability 1.0. techniques for verifying consensus algorithms and on model
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spaces of the algorithms under verification into finite, dndbt
automatic verification of these algorithms is made possibvke
have tested our idea on the Itai-Rodeh algorithm and a newly Proof: We apply induction to prove this theorem. We use
proposed algorithm for leader election and two (differgpes  § to represent the maximal distance between any two round
of) algorithms for distributed consensus. Their model &iv&r numbers of active processe$,= max{|r; — r;|},Vi,j €
results in Spin look quite promising. {1,...,n} and processeg;,p; are active.

In future, we want to look at other distributed algorithmg \g,s: prior to the first arrival of a message, all the processes

including recently developed algorithms for mobile ad hetn 5r6 aetive and in the same round. Thus the theorem trivially
works, as we strongly believe that model checking is a ctucig, s

automatic technique to guarantee correctness of comgticat

systems and algorithms. Another research direction is Itﬁ'IDdUCE'OfN STER By induction, we assume that the theoremh
combine the presented verification idea with other appraaslcﬂ“0 S before some message arrives at some process. That

dealing with state space explosion to make verification bt 0 <= 1 SO far. When a message arrives at a passive
distributed algorithms more scalable. process, it's simply forwarded. Assume a messagewith

parametersid, round, hop, bit) arrives at an active process

3Consensus can be formulated as a local property, while ittisheocase Pi With id_emity id; and round numpem“ndi- According to
for leader election. the algorithm, there are the following cases.
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Case 1. hop = n and bit = true. Then p; becomes the r; = r,4.. For the first subcase, after increases its round
leader, and no process changes its round number. The distamember fromr; to r; + 1, r; + 1 is maximally equal ta-,,,4.
remains unchanged. 0 is still n — 1. For the second subcase,jif increases its
Case 2: hop = n andbit = false. In this situationp; would round number by one, then the distance would exceed!.
increase its round number. There are two cases: 0 or However, the second subcase never occurs. We prove it by
§ = 1. For the first case, all the active processes have tRgntradiction. If this subcase exists, it means hatith round
same round number,. After p; increases its round number,”i = "mas Nas just received a message with the same round
5 = 1. In the second case, the set of round numbers of actiidmber and identity. Adop < n, this message is from some
processes before receives the message has two possibiliti€dher process. Thus there must exist some other active ggoce
ri,ri+1 0r r;,r; — 1. For the first subcase, when increases P; With the same round; = r,,,,. Suppose active proceps

its round number te; + 1, the theorem still holds. We look atS in the minimal round,;,,. Thenp;. has never received some
the second subcase. Whenrpceives its own message againy'e€ssage with larger round number thap;,, otherwise it

it means its message with have visited all the processes andVould be made passive. Then the next progedsllowing the
made all active processes with round number smaller thandirection of the ring fronp;. can only have received messages
passive. Thus at this moment there exists no active prageséh round numbers no larger than,;,.. Thus, the process,

with round number; — 1. It implies that the second subcasdS €ither passive or active and maximally in roung;, + 1.
never occurs. According to the same reason, the followingth processes

are maximally in round-,,;, + w if active. The ring size is

n. Thusw is maximally n — 1. Therefore, only ther( — 1)-

%h process has the possibility in roungd,;,, + n — 1 (that is
rmaz)- That contradicts with the subcase that another process
Case 4: (round, id) > (round;,id;). Thenp; would become jth r, . exists. Therefore, the second case never occurs.

passive and be eliminated from the set of round numbers&gIse 2 (round,id) > (rounds, id;). Thenp; would become

zgtr'r\]/: r%rgr?;ssisskizl Oéoﬂetgitﬁl(;w?ogre?sizsssgfehiivreoHr%asswe and be eliminated from the set of round numbers of
% o P ctive processes. The theorem still holds.

r; and the others in round eitheyr+ 1 or r; — 1. For all these

cases, when an active process withbecomes passive, theCase 3. (round,id) < (round;,id;). Thenp; simply purges
theorem still holds. the message. The theorem still holds. ]

Case 3: hop < N and (round, id) = (round;, id;). Thenp;
just dirties thebit and passes on the message. The distanc
remains unchanged.

Case5: if (round, id) < (round;,id;). Thenp; simply purges Proof of Theroem 3

the message. The distanégemains unchanged. u Proof: We prove it by showing that (1) if the distance of

round numbers is more than 3, then some process must have

. ] } decided, and (2) there exists a scenario that the distange is
Proof: We apply induction to prove this theorem. We Usg;ithout any process deciding.

0 to represent the maximal distance of round numbers of actie;e £ of (1). Let v . be two diff t acti ith
processes. It's defined as in the proof of Theorem 1. roof of (1). Let p;, p; be two di erent active processes wi

] ] ) round numberg andk+(3+d), respectivelyd > 1). We need
BAsis: Prior to the first arrival of a message, all the processgs prove that in this situation some process must have decide
?(rjdzf:twe and in the same round. Thus the theorem t”V'aZ%e situation implies thap; has come through round+ 1,

+ 2 and k + 3 without the engagement g@f. As for 1-crash

INDUCTION STEPR By induction, we assume that the theorengases;: — 1 messages are needed to proceed. It implies that
holds before some message arrives at some process. That; iBave received all the messages in these rounds from all the
0 <= n—1 so far. When a message arrives at a passive procqgaacesses except for,. It means that all the other processes
it's simply forwarded. Assume a messagewith parameters are at least in round + 3 and have come through the rounds
(id, round, hop) arrives at an active procegs with identity %+ 1 andk + 2 by receiving the set of messages from all the
id; and round numberound;. If hop = n, thenp; becomes processes excepf. Because they have received the same set
the leader and its round number remains unchanged. Suppolsmessages, at the end of rouhd 1 all the processes except
hop < n, we consider the the following cases according tfor p; must have chosen the same vote. At roéngd2, all the
Algorithm 2. processes could have only received the samel vote, thus

Case 1: (round,id) = (round;,id;). Thenp; would increase fchey must have chosen'the vote with weight 1. Therefore,

its round number. By inductior, is either smaller tham —1 in round & + 3, p; receivedn — 1 same votes with weight
or equal ton — 1. If it is smaller thann — 1, then with some 7 — 1, all of which are witnesses. According to the algorithm,
active process increases its round number by éris,either 2; Must have decided in this round.

still smaller thann — 1 or equal ton — 1. Thus, the theorem Proof of (2). We give a scenario that the distance of round
holds. If§ is equal ton—1, then there must exist two differentnumbers is 3 and no process decides. pgtp; be two
active processes in theund r,,., andr,,;, respectively, and different processes and all processes are in rdund is an
T'maz — Tmin = N — 1. There are two subcases: < r,,., and even integer and = 2t. s processes have the valuécluding

Proof of Theorem 2



p; and the others have. So in roundk all processes are Proof of Lemma 2

able to choosd or 0 with weight s according to the set of Proof: Suppose some processdecides value at round
messages receiveg; stays in round: after sending its vote ;. Then according to the algorithm; receives the outcome
to all processes. At the end of rourid s processes choosefrom the coordinatorp, of this round with bitd set to 1.
value 0 and the others — 1 choosel, all with weights. In" other correct processes can either receive the outcome from
roundk + 1, all these processes except fgrreceive all these p. and decide in this round or suspectand enter next round.
messages withn weight And they all choos® with weights. And from roundk + 1 to k + n, each process will play the
and have no witness. In rourid+ 2, all the processes receivecoordinator once. When those processes that have not decided
the samen — 1 messages with the same valo@nd weight g far play the coordinator, they may either receiVe— ¢
s. As no witness appears in this round, they all enter roufgessages with the same valuend decide or set its value to
k+3. ® 4 (According to Lemma 3, it can receive at masinessages
PROOE OFTHEOREM 4 with different value fromv andn — 2t messages with value

Proof: We will prove it by proving that (1) if the distance CONsidering < n/3, such that—2¢ > ¢). At the end of round

is larger than2n, then some process must have decided afigh " &ll processes have the same valudf there still exist

(2) there exists a scenario that the distancerisiefore some Processes that haven't decided, they will decide valwenen
process decides. playing coordinator next time in round betweker-n+ 1 and

Proof of (1). Let two active processes, p; be in the round k + 2n. Therefore, when some process decides, all the other

k andk + (2n + d) respectively andi > 1. We prove that in correct processes will decide in maximally rounds with the

T . . _same value. [ ]
this situation, some process must have decided. The situati

implies thatp; has come through all the rounds from k td.emma 3. [6, pp.514] If at the beginning of around & > N —t
k+2n without the engagement @f. As only one process may processes have value v, then at least k processes have v at the
crash, according to the algorithm in each round the cootadinaend of that round.
needs to geh — 1 messages to proceed. It implies that all the

coordinators fromk + 1 to k& + 2n must have received the

messages of all the processes exceptpfoin the algorithm,

all the processes take turns to play the coordinator. So from

k+1to k + 2n,p; must have played the coordinator twice.

Suppose; plays the coordinator for the second time in round

rj, thenk+2n > r; > k+n+ 1. Becauser — 1 messages are

needed for the coordinator to proceed,must have received

all the messages except in roundr;, which means all the

other processes are in roung or larger. Then during rounds

k+ 1 to k + n they have all played the coordinator once and

received the same set of messages without the message from

p;. As they run the same local algorithm, then after rokreh

all the other processes excepthave chosen the same value.

Therefore, whemp; played the coordinator for the second time

in roundr; which is betweerk +n+1 andk +2n, it received

n—1 messages with the same value and decided in that round.

So in the roundk + 2n + d, p; must have decided.

Proof of (2). We give a scenario that the distanceisbefore
some process decides. Lgt, p; be two different processes
with the same valué. p; is in the roundk and the coordinator
of this round isp;. n is an even integer. Half of the processes
have value0 and the other half have. p; receivesn/2
messages with the valug and n/2 — 1 messages with.
According to the algorithmp; keeps its value in round.
From roundk +1 to k+ (n—1), each process excepf plays
coordinator once and choosésas it receives at leasi/2
messages with. In roundk+n, p; plays the coordinator again
and changes its value to Thenp; proceeds with suspecting
all the other processes and increasing its round number unti
k+2n in which it plays the coordinator again. At this moment,
we have two different active processes with round nuniber
andk + 2n. [ |



