
Model Checking Round-Based
Distributed Algorithms

Xin An
Shandong University

School of Computer Science and Technology
Jinan, 250101 China

Jun Pang
University of Luxembourg

Computer Science and Communications
6, rue Richard Coudenhove-Kalergi

L-1359 Luxembourg

Abstract—In the field of distributed computing, there are
many round-based algorithms to solve fundamental problems,
such as leader election and distributed consensus. Due to the
nature of these algorithms, round numbers are unbounded and
can increase infinitely during executions of the algorithms. This
can lead to the state space explosion problem when verifying
correctness of these algorithms using model checking.

In this paper, we present a general idea of investigating the
bounded distance of round numbers in round-based algorithms.
We can manage to transform their state spaces into finite by
maintaining such relations in a proper way, and thus make
automatic verification of these algorithms possible. We apply this
idea to several algorithms and present their verification results
in the model checker Spin.

I. I NTRODUCTION

Today computer-based systems, e.g., telecommunication
systems, banking systems, airline reservation systems, high-
way and air traffic control systems are widely used in our daily
life. Most of these systems are critically dependent on their
underlying distributed algorithms to achieve specific goals
such as distributed agreement and fault tolerance. Clearly, it
is important for the algorithms to run correctly and efficiently.
Failures of these systems can be potentially disastrous, and
cause the loss of a huge amount of money or even human lives.
However, since the settings in which these algorithms operate
are complicated, design of such algorithms is error-prone
and can be an extremely difficult and complex task. Usually,
specifications of correctness arguments of these algorithms are
given at an informal level. It is insufficient to convince all
the readers and provide high degree of confidence of their
correctness under all circumstances. If one wants to verifythe
correctness of some proofs, she/he has to prove substantial
parts or entire sub-results, for which only informal arguments
were given. This has been observed in a recent paper [1]
on formal reasoning about the correctness of a distributed
consensus algorithm [2].

Model checking is an automatic technique for verifying
finite state concurrent systems. It verifies a desired property
over a given system through anexhaustive exploration of all
the states reachable by the system. Due to the finiteness of the
state space, the search always terminates. Techniques suchas
symbolic representation, symmetry reduction and abstraction,
have been developed to deal with thestate explosion problem
and enhance the scalability of model checking. It is widely

agreed that the proper use of model checking gives more
confidence in the correctness of computer-based systems.
In the last several decades, it has been used successfully
in practice to verify complex sequential circuit designs and
communication protocols.

In the field of distributed computing, for asynchronous
anonymous networks there exist no deterministic solutions
for many fundamental problems, including leader election and
distributed consensus. Additional techniques such as random-
ization, failure detector are introduced to circumvent these
problems. An apparent characteristic of these solutions isthe
involvement of round numbers. Due to the nature of these
algorithms, the round numbers are unbounded and can increase
infinitely during executions of the algorithms. This gives rise to
the state space explosion problem of model checking and thus
makes the direct use of model checking to verify correctness
of these algorithms infeasible. However, instead of having
an explicit representation of round numbers, by investigating
their relations in the studied algorithms and maintaining such
relations in a proper way, we can manage to transform their
state spaces into finite and make automatic verification of these
algorithms possible. In this paper, we aim to model check
several round-based distributed algorithms based on this idea.

The rest of the paper is structured as follows: In Section II,
we present our main verification idea to circumvent the state
space explosion problem when model checking round-based
distributed algorithms in depth. We apply our approach to
the probabilistic Itai-Rodeh algorithm [3], [4] and its one
variation, which is newly introduced in this paper, for leader
election in Section III, a probabilistic consensus algorithm
proposed by Bracha and Toueg [5] and a rotating coordinator
algorithm with failure detector [6, pp. 154] in Section IV,
respectively. Their verification results in Spin [7] are summa-
rized in Section V. In the end, we briefly discuss related work
in Section VI and conclude this paper with future research
directions in Section VII.

II. OUR APPROACH

The presence of round numbers in most round-based dis-
tributed algorithms causes the state space explosion problem,
which makes it impossible to verify them directly using
model checking. To have an automatic verification of these
algorithms, we need to transform their state space into finite,

that is to have a finite representation of round numbers. (For
some algorithms, we also need to have a finite representation
for message channels. This typically follows when we have a
finite representation for round numbers.) Meanwhile, we need
to keep all possible behaviors of the original algorithms. We
can achieve this goal by the following steps:

STEP 1: We need to investigate and find relations of round
numbers. That is to find the inherent bounded distance on
round numbers of the involved processes in the algorithms.
Such a bounded distance implies that only a finite number
of round numbers are needed during the executions of such
algorithms, even though the round numbers are unbounded.
This provides the theoretical foundation for us to have a finite
representation of unbounded round numbers.

STEP 2: We need to represent unbounded round numbers
by keeping their (relative) relations. Based on the first step,
we can use modulus (of the found distance) to model round
numbers. Moreover, as all algorithms with unbounded round
numbers involve comparisons of round numbers, we also need
to keep their relations. In our transformation, we usually have
to trace the latest round number (by a global variable) to
indicate their relative order.1

STEP 3: We need to make sure that our transformations
still capture all possible behaviors in the original algorithms.
Usually, by representing unbounded round numbers in a finite
way, some conflicts of round numbers may arise, especially
in asynchronous networks where messages may stay for an
arbitrary long time. These messages in previous rounds need
to be marked as special at an appropriate time, so that they
would be recognized by the involved processes in a same way
as in the algorithm’s original specification.

Once we have done these steps properly, we can model
these algorithms with bounded round numbers and apply
model checking for the verification of round-based distributed
algorithms directly. We illustrate our approach (focusingon
STEP 1) to a number of algorithms.

III. L EADER ELECTION ALGORITHMS

In this section, we consider anasynchronous, anonymous,
unidirectional ring consisting ofn processesp1, . . . , pn. Pro-
cesses communicate asynchronously by message passing over
reliable channels with capacityn.

Leader election is the problem of electing a unique leader in
a network, in the sense that the leader knows that it has been
elected and the other processes know that they have not been
elected. We concentrate on model checking of the Itai-Rodeh
algorithm [3], [4] as well as a new leader election algorithm
based on it. We describe both algorithms in Section III-A.
Then we investigate the relation of round numbers of each
algorithm in Section III-B.

1Note that this global variable does not play a role in the studied distributed
algorithm, it is only used in our transformed model for the aim ofautomatic
verification.

A. The algorithms

In an anonymous network, processes do not carry an
identity. Angluin [8] show that there does not exist a ter-
minating algorithm for electing a leader in an asynchronous
anonymous network. The Itai-Rodeh algorithm [3], [4] is the
first probabilistic solution for leader election in anonymous
unidirectional rings. In this algorithm, each process selects a
random identity from a finite set and sends out a message
carrying its identity. A hop counter is included in each
message, which helps processes to recognize its own messages
(by checking whether the hop counter equals the ring sizen).
A bit is also included for each message to indicate whether
some other processes with the same identity exist. The bit is
dirtied when it passes a process that is not its originator but
has the same identity. When some process receives its own
message, it either becomes the leader (if the bit is clean), or
selects a new identity and starts the next election round (ifthe
bit is dirty). In next election round, only processes that shared
the largest identity areactive. All other processes have been
made passive by the receipt of a message with an identity
larger than their own.

Algorithm 1 The Itai-Rodeh algorithm
• Initially, all processes are active, and each processpi

randomly selects its identityid i ∈ {1, . . . , k} and sends the
message(id i, 1, 1, true).

• Upon receipt of a message(id , round , hop, bit), a pas-
sive processpi (statei = passive) passes on the message,
increasing the counterhop by one; an active processpi

(statei = active) behaves according to the following steps:

- if hop = n and bit = true, thenpi becomes the leader
(state ′

i = leader);
- if hop = n and bit = false, then pi selects a new

random identityid ′

i ∈ {1, . . . , k}, moves to the next
round (round ′

i = round i + 1), and sends the message
(id ′

i, round ′

i, 1, true);
- if (round , id) = (round i, id i) and hop < n, then pi

passes on the message(id , round , hop + 1, false);
- if (round , id) > (round i, id i) (where (round , id) and

(round i, id i) are compared lexicographically), thenpi

becomes passive (state ′

i = passive) and passes on the
message(id , round , hop + 1, bit);

- if (round , id) < (round i, id i), thenpi purges the mes-
sage.

The Itai-Rodeh algorithm makes no assumptions about
channel behavior, exceptfair scheduling meaning that in each
infinite execution sequence, every sent message eventually
arrives at its destination. Since the channels arenon-FIFO,
an old message, that has been overtaken by other messages in
the ring, could in principle result in a situation where no leader
is elected [9]. To avoid this problem, the algorithm proceeds in
successive rounds, each process and message is supplied with
a round number, which initially starts at one and is augmented
at each new election round. Thus an old message can be

recognized and ignored. Due to the use of round numbers, the
Itai-Rodeh algorithm has an infinite state space. Algorithm1
describes the algorithm in details. Each processpi maintains
three parameters: its identityidi, its current statestatei (which
ranges over active or passive or leader) and its current round
numberroundi. The messages are of this form: (id, round,
hop, bit).

Fokkink and Pang [9] present two variations of the Itai-
Rodeh algorithm withFIFO channels, in which round numbers
are not needed any more. Their second algorithm is based on
the observation that when some processpi detects an identity
clash, which means it receives a message with its own identity
and hop count smaller thann, it is not necessary forpi to
wait for its own message. Instead,pi can immediately select
a new random identity and start a new election round. Simi-
larly, we apply this idea to the original Itai-Rodeh algorithm
and develop a new leader election algorithm for anonymous
unidirectional rings. The algorithm (see Algorithm 2) makes
the same assumptions as the Itai-Rodeh algorithm, but omits
all the occurrences of dirty bit.

Algorithm 2 The Itai-Rodeh algorithm without dirty bit
• Initially, all processes are active, and each processpi

randomly selects its identityidi ∈ {1, . . . , k} and sends the
message(idi, 1, 1).

• Upon receipt of a message(id, round, hop), a passive pro-
cesspi (statei = passive) passes on the message, increasing
the counterhop by one; an active processpi (statei = active)
behaves according to the following steps:

- if hop = n, thenpi becomes the leader (state ′

i = leader);
- if (round , id) = (round i, id i), then pi selects a new

random identityid ′

i ∈ {1, . . . , k}, moves to the next
round (round ′

i = round i + 1), and sends the message
(id ′

i, round ′

i, 1);
- if (round , id) > (round i, id i) (where (round , id) and

(round i, id i) are compared lexicographically), thenpi

becomes passive (state ′

i = passive) and passes on the
message(id , round , hop + 1);

- if (round , id) < (round i, id i), thenpi purges the mes-
sage.

B. Finding relations of round numbers

In the Itai-Rodeh algorithm, round numbers are used to
distinguish the processes as well as their messages in dif-
ferent election rounds. Processes who have lost the election
in previous election rounds have become passive and only
forward received messages. According to the algorithm, an
active process can enter into the next election round if and
only if its own message has visited all the other processes
(hop = n) and comes back with a dirtied bit (bit = false),
which ensures that only those processes with the same largest
identity (and round number) remain active. Intuitively, this
implies that during the executions of the Itai-Rodeh algorithm,
the distance of round numbers (of active processes) is at most

one. Similar to the Itai-Rodeh algorithm, we find that the
distance of round numbers of active processes in Algorithm 2
is bounded byn− 1. It is because active processes may enter
next round as soon as possible, and the ring is of sizen. We
formulate the results as Theorems 1 and 2.

Theorem 1. The distance of round numbers of active pro-
cesses in Algorithm 1 is at most 1.

Theorem 2. The distance of round numbers of active pro-
cesses in Algorithm 2 is at most n − 1.

IV. CONSENSUS ALGORITHMS

In this section, we consider anasynchronous, fully con-
nected network consisting ofn processesp1, . . . , pn. The com-
munication between processes isasynchronous by message
passing over reliable channels. A process maycrash during
the executions.

Consensus is the problem to, despite of the occurrences of
failures, get all correct processes in a system to uniformly
decide on some value. Initially, each process has an initial
value 0 or 1 and must eventually decide on some value
satisfying the following properties:Termination – all correct
processes must eventually decide some value;Agreement – the
decision of each correct process must be identical;Validity –
the value that has been decided must have been proposed by
some process. To verify consensus algorithms, all the three
properties need to be checked. However, validity is usually
trivially satisfied for most consensus algorithms [10]. Instead
of checking whether the other two properties (agreement and
termination) hold, we focus on the property thateventually
some process decides. This is based on the fact that this
property usually implies the correctness of agreement and
termination. By focusing on this property which guaranteesthe
correctness of the algorithm, we can reduce all the behaviors
after some process has decided in our built models of this
algorithm.

The impossibility result [11], namely no asynchronous,
deterministic, 1-crash-robust consensus algorithm exists, has
led to weaker formulations and stronger models in order to
solve the consensus problem. The former technique includes
the introduction of randomization techniques, the probabilistic
consensus algorithm proposed by Bracha and Toueg in [5] is of
this kind. The latter includes the involvement of synchronyand
(unreliable) failure detector [12], [2], one example is a rotating
coordinator algorithm with the failure detector⋄S [6, pp.514].
The maximal number of faulty processes that can be handled
by an algorithm is called theresilience of the algorithm, and
is denoted byt.

For aforementioned two algorithms, we apply our approach
(Section II) to deal with the problem with unbounded round
numbers (and unbounded message channels), which causes
state space explosion in model checking.

A. A crash-robust consensus algorithm

Bracha and Toueg propose a probabilistic consensus al-
gorithm [5] and prove that under the assumption offair

scheduling their algorithm terminates with probability1. An
upper bound on the resiliencet < n/2 is also given. The
algorithm operates inrounds. In each roundk, correct process
pi, which has not decided (i.e.,yp = b), sends a message to
all processes (including itself) and awaits the receipt ofn− t
messages of the same round. The message includespi’s value,
its current roundk, as well as a weight. Theweight is the
number of votes received for the vote in the previous round
(1 in the first round). The message with a weight bigger than
n/2 for some vote is called awitness. If pi receives a witness
in roundk, thenpi changes its vote to the witness’s; otherwise
pi chooses the vote that is the majority of the received votes.
A decision is made whenpi receives more thant witnesses in
some round, and in order to make other processes decide,pi

still needs to send witness for the next two rounds. Algorithm 3
taken from [6, pp.455] describes the details.

As operating in the asynchronous network model, pro-
cesses may receive messages with different rounds and need
to process these messages in the appropriate round. In the
algorithm, the messages from previous rounds are ignored
and from future rounds are buffered in message channels.
Moreover, different processes may take different subsets of
all the messages of a same round into account.

As there are non-terminating paths (the algorithm is ensured
to terminate with probability 1), round numbers can increase
infinitely. Different from the Itai-Rodeh algorithm, we cannot
find the inherent bounded distance of round numbers for
the algorithm. Instead, we focus on the cases where only
one process is allowed to crash. Considering related works
of verifying consensus algorithms that only small cases are
possible (typically only 3 or 4 nodes) to be verified [10], we
believe that model checking these 1-crashed cases is still an
interesting study.

For 1-crashed cases of the algorithm, each correct process
needsn−1 messages in each round to proceed. If some correct
processpi lags in some roundri, then from roundri + 1 on,
all other correct processes have to collect all votes exceptthe
one frompi to proceed. At the end of roundri+1, they would
choose the same vote (sayv) and enter roundri +2. In round
ri + 2, if pi does not catch up, they would receive the same
n − 1 number of votesv and start roundri + 3 with sending
out witness. Then in roundri +3, some process would decide.
Thus, the distance of correct processes is at most3. The other
source for state space explosion in consensus algorithms is
unbounded message channels. Since each process sends out
messages in each round, the size of message channels are also
bounded byn+3(n−1) = 4n−3 (due to the bounded distance
of round numbers).

Theorem 3. Before some process decides, the distance of
round numbers of correct processes for the 1-crash cases of
Algorithm 3 is at most 3.

Proposition 1. The size of message channels necessary for
each correct process in the 1-crash cases of Algorithm 3 is
4n − 3.

Algorithm 3 A crash-robust consensus algorithm

var valuep : (0, 1) init xp

roundp : integer init 0
weightp : integer init 1
msgsp[0, 1] : integer init 0
witnessp[0, 1] : integer init 0

while yp = b do
(*Reset counts*)
witnessp[0], witnessp[1], msgsp[0], msgsp[1] := 0, 0, 0, 0;
shout〈vote, roundp, valuep, weightp〉;
while msgsp[0] + msgsp[1] < n − t do

receive〈vote, r, v, w〉;
if r > roundp then

send〈vote, r, v, w〉 to p
else if r = roundp then

msgsp[v] := msgsp[v] + 1;
if w > n/2 then

witnessp[v] := witnessp[v] + 1
end if

else
skip

end if
end while
(*Choose new value: vote and weight in next round*)
if witnessp[0] > 0 then

valuep := 0
else if witnessp[1] > 0 then

valuep := 1
else if msgsp[0] > msgsp[1] then

valuep = 0
else

valuep = 1;
end if
weightp := msgsp[valuep]
(*Decide if more thant witnesses*)
if witnessp[valuep] > t then

yp := valuep

end if
roundp := roundp + 1
(*Help other processes decide*)

end while
shout〈vote, roundp, valuep, n − t〉
shout〈vote, roundp + 1, valuep, n − t〉

The property that eventually some process decides im-
plies agreement and termination is captured by the following
lemma [6, Lemma 14.21].

Lemma 1. For Algorithm 3, if a process decides then all
correct processes decide for the same value, and at most two
rounds later.

B. A rotating coordinator algorithm

In this section, we look at a rotating coordinator consensus
algorithm with a failure detector⋄S and t < n/3 [6,
pp.514]. The⋄S satisfies two properties:Strong Completeness
– eventually all crashed processes are detected andEventually
weak accuracy – there exists a time after which some correct
process is never suspected.

This algorithm operates in rounds and is based on the
rotating coordinator paradigm [2]. In roundk, all processes
know that the coordinatorpc is the one with process number
k |n +1 and send the messages including their values (x)
and round (r) to the coordinatorpc. The coordinatorpc waits
until n − t messages are received. Then, the coordinatorpc

evaluates the outcome of this roundk according to the majority
of received values and broadcasts the outcome. The outcome
consists of the chosen value (v) of this round, the round
number as well as a bit (d) used to indicate unanimousness
of the received votes. A processpi which has sent its value
to pc waits either to receive the outcome from the coordinator
or to suspect the coordinator. In the first case,pi collects the
outcome of this round and proceeds to the next round. In the
second case,pi just moves to the next round. A decision is
taken whenpi receives an outcome from unanimous votes.
The process continues its activity after a decision until all
correct processes decide. Algorithm 4 taken from [6, pp.514]
describes the details.

Algorithm 4 A rotating coordinator consensus algorithm
xi := input;
r := 0;

while true do
(*Start new round and compute coordinator*)
r := r + 1; c := r |n +1;
(*Phase 1: all processes send value to coordinator*)
send〈value, xi, r〉 to Pc;
(*Phase 2: coordinator evaluates outcome*)
if i = c then

wait until n − t messages〈value, vj , r〉 are received;
v := majority of received values;
d := (∀j : vj = v);
(*range over received messages*)
forall j do send〈outcome, d, v, r〉 to pj

end if
(*Phase 3: evaluate the round*)
if collect 〈outcome, d, v, r〉 from pc then

xi := v;
if d then

decide(v)
end if

end if
end while

Due to the fact that properties of⋄S only hold eventually,
round numbers in this algorithm can increase infinitely. Similar
to the algorithm in Section IV-A, we focus on the cases where

only one process is allowed to crash. In our discussion, we
assume that each outcome evaluated by the current coordinator
is always received by itself in that round.

Similarly, if some correct processpi lags in roundri, then
when all correct processes exceptpi play the coordinator in
some roundrj which is from ri + 1 to ri + n, they have to
collect all their votes and would have chosen the same value.
Then if pi does not catch up, when anyone of these correct
processes plays coordinator again from roundri + n + 1 to
r+2n, it would receive the unanimousn−1 values and decide.
Correspondingly, with bounded round numbers, the size of the
message channels are also bounded.

Theorem 4. Before some process decides, the distance of
round numbers of correct processes for the 1-crash cases of
Algorithm 4 is at most 2n.

Proposition 2. The size of the message channels necessary
for each correct process in the 1-crash cases of Algorithm 4
is 2n − 1.

The property that eventually some process decides implies
agreement and termination is described in Lemma 2.

Lemma 2. In 1-crash cases of Algorithm 4, if a process
decides then all correct processes decide for the same value,
and at most 2n rounds later.

V. M ODEL CHECKING RESULTS IN SPIN

We present verification results of the four algorithms in the
model checker Spin [7] (with the options “weak fairness”,
“use partial order reduction” and “use compression”) basedon
the relations of round numbers we have found in Sections III
and IV. Tables I-IV mainly contain information about size of
the models (number of states and transitions) and memory/time
consumption. Experiments are performed either on a computer
with a CPU of 2.26 GHz and 2Gb main memory (for cases
with memory consumption≤ 2G) or on a powerful machine
(of a cluster) with CPU of 3.4 GHz and 32Gb main memory
(for cases with memory consumption greater than 2G). Due to
space limitation, details about our models in Spin are left out
and can be found in an extended version of the paper [13].

A. Verifying the leader election algorithms

Based on the identified distances of round numbers (Theo-
rems 1 and 2), we are able to have a finite representation of
round numbers for both algorithms in Section III.

In our Spin models, instead of increasing round number
by one each time when entering next election round, an
active process proceeds with changing its round number by
round = (round + 1) |2 for Algorithm 1 and round =
(round + 1) |n for Algorithm 2, respectively. Furthermore,
we need to maintain the relations of round numbers to track
which round is the latest election round. In our Spin models,
we use a global variable to indicate the latest election round. It
adjusts its value by monitoring the round numbers of all active
processes. Moreover, due to the fact that the communication
channels arenon-FIFO, even though some processes have

become passive their messages may still stay in the channels.
Therefore, when we transform the algorithm using bounded
round numbers we need to recognize the delayed messages as
well. For this purpose, we use a dedicated procedure to mark
these messages asold at the end of each election round (when
all active processes have entered into next election round).
The desirable property of leader election is specified as an
LTL formula in the form of “¬23p ⇒ 32 q”. The formula
says that if the situation where more than one active processes
have the same (largest) identity (captured byp) does not appear
infinitely often2 then an unique leader (captured byq) will be
eventually elected. In Tables I and II, the first three columns
give the number of processes (n), the number of identities
(m), and the size of the message channels (s).

TABLE I
VERIFICATION RESULTS OFALGORITHM 1

n m s #states #trans. mem.(Mb) time(s)

2 2 2 2.3*103 2.3*104 2.6 0.06
3 2 3 6.3*105 1.3*107 42.3 37.4
3 3 3 2.0*106 4.4*107 129.1 131
4 2 4 9.2*107 1.5*109 10,479.1 8,770

TABLE II
VERIFICATION RESULTS OFALGORITHM 2

n m s #states #trans. mem.(Mb) time(s)

2 2 2 1.4*103 1.7*104 5.2 0.04
3 2 3 5.3*105 1.5*107 48.0 42.9
3 3 3 2.0*106 6.4*107 172.5 180
4 2 4 2.7*108 1.1*1010 20,567.1 51,600

B. Verifying the consensus algorithms

With theoretical results in Section IV, we are able to
have finite representations of unbounded round numbers (and
message channels) for Algorithms 3 and 4.

In our Spin models, instead of increasing round number
by one each time when entering next election round, each
process proceeds with changing its round number byround =
(round+1) |4 for Algorithm 3 andround = (round+1) |3n

for Algorithm 4, respectively. Since both algorithms operate
in rounds, in each round all processes either broadcast their
votes or send their votes to the coordinator. Each process in
Algorithm 3 or the coordinator in Algorithm 4 proceeds with
those messages of the same round number as its own. Thus,
in our Spin model we simply define the message channels
dedicated to a fixed number of different rounds, they are
shared by all processes. Each process sends messages to the
corresponding channels according to its current round number
and proceeds the messages in the corresponding channel of the
same round. Implementing channels in this way simplifies the
models and gives rise to smaller state spaces. For Algorithm3,

2Note that the Itai-Rodeh algorithm is a Las Vegas algorithm terminating
with probability 1.0.

to make sure that processes may take different subset of
messages into account, we model that each process randomly
choosesn − t messages from the channels. For Algorithm 4,
we model the failure detector⋄S by two global variables to
indicate when it has becomestrongly complete and/orweakly
accurate. These two variables will be used by processes when
they suspect another process to be crashed.

The property “eventually some process decides” for Algo-
rithm 3 is specified in a similar way as for the leader election
algorithms, where we have to rule out the possibility for the
situation where no “progress” is made towards a decision to
appear infinitely often. While for Algorithm 4, it is an LTL
formula “32 q”, the predicateq captures that some process
has decided. In Table III the algorithm takes any initial inputs
to the processes, while due to the complexity of Algorithm 4
we need to fix the inputs for the processes (we only take the
isomorphically distinct cases).

TABLE III
VERIFICATION RESULTS OFALGORITHM 3

n #states #trans. mem.(Mb) time(s)

3 1.1*105 7.9*105 9.6 2.0
4 3.4*106 4.1*107 174.1 113
5 1.8*107 5.5*108 1,413.3 1,600

TABLE IV
VERIFICATION RESULTS OFALGORITHM 4

n inputs #states #trans. mem.(Mb) time(s)

4 1000 4.0*106 1.6*108 329.8 516
4 0100 7.1*105 3.6*107 21.3 31
4 0010 2.2*106 1.1*108 73.9 98.2
4 0001 5.2*106 2.8*108 249.0 242
4 1100 6.1*107 2.6*109 7,909.6 12,800
4 1010 5.2*107 2.2*109 7,398.1 11,000
4 1001 6.0*107 2.6*109 7,839.9 11,900

VI. RELATED WORK

Two variations of the Itai-Rodeh algorithm are proposed by
Fokkink and Pang [9] for anonymous unidirectional rings with
FIFO channels. Both of them are finite-state as round numbers
are omitted. They have model checked their algorithms with
up to 5 processes in PRISM. Faragó model checks several
variations of the Itai-Rodeh algorithm with FIFO channels in
Spin [14], including the above two [9], by either putting upper
bounds on round numbers or having round numbers modulo
a fixed integer to make state spaces finite. He has managed to
check algorithms with up to seven processes. Since channels
are FIFO, round numbers are actually not needed [9]. Hence,
Faraǵo does not give a way to solve the inherent infinite
state space problem when model checking these algorithms.
Differently, we identify bounds on distance of round numbers
of active processes and use it to achieve a finite representation
of round numbers.

The papers on combining model checking and other proof
techniques for verifying consensus algorithms and on model

checking consensus algorithms with fixed numbers of pro-
cesses and rounds have already been discussed by Tsuchiya
and Schiper [10], [15]. Tsuchiya and Schiper present a first
(fully) automatic verification of consensus algorithms using
NuSMV without imposing any restrictions on the number of
rounds [10]. They reduce agreement and termination verifica-
tion to the problem of model checking the algorithm with a
global round, and use bounded model checking to effectively
verify consensus problems [15]. The reason why they can
reduce their verification is justified by the reduction theorem of
Chaouch-Saad, Charron-Bost and Merz [16]. Chaouch-Saad,
Charron-Bost and Merz [16] model check theOneThirdRule
consensus algorithm after applying the reduction theorem.
However, the consensus algorithms they discuss are all based
on the Heard-Of model. Moreover, the reduction theorem [16]
has the assumption of communication-closedness and can
only be applied to the verification of local properties.3 We
concentrate on automatic verification, but our work is still
different from theirs. Their verification is largely due to the
high abstraction provided by their network model. Thus, when
model checking Heard-Of model-based consensus algorithms,
one no longer has to explicitly consider messages buffered in
the channels. Due to the difference in network models, we
have to model message channels explicitly. Thus, our models
are more complicated and have an additional cause for state
space explosion. This requires us to find bounds on message
channel size as well. The other difference is the way on how
to deal with unbounded round numbers. They focus on either
maintaining relative order of pairs of round numbers [10] ora
global round of the checked algorithm [15], [16], while we aim
to find bounds on distance of round numbers. Our approach
is not limited to consensus problems, it can be also applied to
other algorithms such as leader election.

VII. C ONCLUSION

We have presented a general idea of studying the relations of
round numbers in round-based distributed algorithms, which
normally have infinite state spaces. Based on the identified
relations (bounded distance), it is possible to transform state
spaces of the algorithms under verification into finite, and thus
automatic verification of these algorithms is made possible. We
have tested our idea on the Itai-Rodeh algorithm and a newly
proposed algorithm for leader election and two (different types
of) algorithms for distributed consensus. Their model checking
results in Spin look quite promising.

In future, we want to look at other distributed algorithms
including recently developed algorithms for mobile ad hoc net-
works, as we strongly believe that model checking is a crucial
automatic technique to guarantee correctness of complicated
systems and algorithms. Another research direction is to
combine the presented verification idea with other approaches
dealing with state space explosion to make verification of
distributed algorithms more scalable.

3Consensus can be formulated as a local property, while it is not the case
for leader election.

ACKNOWLEDGMENT

We want to thank Wan Fokkink for helpful discussions.

REFERENCES

[1] R. Fuzzati, M. Merro, and U. Nestmann, “Distributed consensus, revis-
ited,” Acta Informatica, vol. 44, no. 6, pp. 377–425, 2007.

[2] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systems,”Journal of the ACM, vol. 43, no. 2, pp. 225–267,
1996.

[3] A. Itai and M. Rodeh, “Symmetry breaking in distributive networks,”
in Proc. 22nd Annual IEEE Symposium on Foundations of Computer
Science, 1981, pp. 150–158.

[4] ——, “Symmetry breaking in distributed networks,”Information and
Computation, vol. 88, no. 1, pp. 60–87, 1990.

[5] G. Bracha and S. Toueg, “Asynchronous consensus and broadcast
protocols,”Journal of the ACM, vol. 32, no. 4, pp. 824–840, 1985.

[6] G. Tel, Introduction to Distributed Algorithms. Cambridge University
Press, 2000.

[7] G. J. Holzmann,The Spin Model Checker: Primer and Reference
Manual. Addison-Wesley, 2003.

[8] D. Angluin, “Local and global properties in networks of processors
(extended abstract),” inProc. 12th Annual ACM Symposium on Theory
of Computing, 1980, pp. 82–93.

[9] W. J. Fokkink and J. Pang, “Variations on Itai-Rodeh leader election for
anonymous rings and their analysis in PRISM,”Journal of Universal
Computer Science, vol. 12, no. 8, pp. 981–1006, 2006.

[10] T. Tsuchiya and A. Schiper, “Model checking of consensus algorithms,”
in Proc. 26th IEEE International Symposium on Reliable Distributed
Systems, 2007, pp. 137–148.

[11] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,”Journal of the ACM,
vol. 32, no. 2, pp. 374–382, 1985.

[12] T. D. Chandra, V. Hadzilacos, and S. Toueg, “The weakestfailure
detector for solving consensus,” inProc. 11th Annual ACM symposium
on Principles of Distributed Computing, 1992, pp. 147–158.

[13] X. An, “Model checking round-based distributed algorithms,” Master’s
thesis, University of Luxembourg, 2009.

[14] D. Faraǵo, “Model checking of randomized leader election algorithms,”
Master’s thesis, Universität Karlsruhe, 2007.

[15] T. Tsuchiya and A. Schiper, “Using bounded model checking to ver-
ify consensus algorithms,” inProc. 22nd International Symposium on
Distributed Computing, 2008, pp. 466–480.

[16] M. Chaouch-Saad, B. Charron-Bost, and S. Merz, “A reduction theorem
for the verification of round-based distributed algorithms,” in Proc.
LIX Colloquium Reachability Problems, ser. Lecture Notes in Computer
Science, vol. 5797. Springer, 2009, pp. 93–106.

APPENDIX

Proof of Theorem 1

Proof: We apply induction to prove this theorem. We use
δ to represent the maximal distance between any two round
numbers of active processes,δ = max{|ri − rj |},∀i, j ∈
{1, ..., n} and processespi, pj are active.

BASIS: Prior to the first arrival of a message, all the processes
are active and in the same round. Thus the theorem trivially
holds.

INDUCTION STEP: By induction, we assume that the theorem
holds before some message arrives at some process. That
is δ <= 1 so far. When a message arrives at a passive
process, it’s simply forwarded. Assume a messagem with
parameters(id, round, hop, bit) arrives at an active process
pi with identity idi and round numberroundi. According to
the algorithm, there are the following cases.

Case 1: hop = n and bit = true. Then pi becomes the
leader, and no process changes its round number. The distance
remains unchanged.

Case 2: hop = n andbit = false. In this situation,pi would
increase its round number. There are two cases:δ = 0 or
δ = 1. For the first case, all the active processes have the
same round numberri. After pi increases its round number,
δ = 1. In the second case, the set of round numbers of active
processes beforepi receives the message has two possibilities
ri, ri +1 or ri, ri −1. For the first subcase, whenpi increases
its round number tori +1, the theorem still holds. We look at
the second subcase. When pi receives its own message again,
it means its message withri have visited all the processes and
made all active processes with round number smaller thanri

passive. Thus at this moment there exists no active processes
with round numberri − 1. It implies that the second subcase
never occurs.

Case 3: hop < N and (round, id) = (roundi, idi). Thenpi

just dirties thebit and passes on the message. The distanceδ
remains unchanged.

Case 4: (round, id) > (roundi, idi). Thenpi would become
passive and be eliminated from the set of round numbers of
active processes. Ifδ = 0, all the active processes have the
same roundri. If δ = 1, some active processes are in round
ri and the others in round eitherri +1 or ri −1. For all these
cases, when an active process withri becomes passive, the
theorem still holds.

Case 5: if (round, id) < (roundi, idi). Thenpi simply purges
the message. The distanceδ remains unchanged.

Proof of Theorem 2

Proof: We apply induction to prove this theorem. We use
δ to represent the maximal distance of round numbers of active
processes. It’s defined as in the proof of Theorem 1.

BASIS: Prior to the first arrival of a message, all the processes
are active and in the same round. Thus the theorem trivially
holds.

INDUCTION STEP: By induction, we assume that the theorem
holds before some message arrives at some process. That is
δ <= n−1 so far. When a message arrives at a passive process,
it’s simply forwarded. Assume a messagem with parameters
(id, round, hop) arrives at an active processpi with identity
idi and round numberroundi. If hop = n, thenpi becomes
the leader and its round number remains unchanged. Suppose
hop < n, we consider the the following cases according to
Algorithm 2.

Case 1: (round, id) = (roundi, idi). Thenpi would increase
its round number. By induction,δ is either smaller thann− 1
or equal ton − 1. If it is smaller thann − 1, then with some
active process increases its round number by one,δ is either
still smaller thann − 1 or equal ton − 1. Thus, the theorem
holds. Ifδ is equal ton−1, then there must exist two different
active processes in theround rmax andrmin respectively, and
rmax − rmin = n−1. There are two subcases:ri < rmax and

ri = rmax. For the first subcase, afterpi increases its round
number fromri to ri + 1, ri + 1 is maximally equal tormax.
δ is still n − 1. For the second subcase, ifpi increases its
round number by one, then the distance would exceedn − 1.
However, the second subcase never occurs. We prove it by
contradiction. If this subcase exists, it means thatpi with round
ri = rmax has just received a message with the same round
number and identity. Ashop < n, this message is from some
other process. Thus there must exist some other active process
pj with the same roundrj = rmax. Suppose active processpk

is in the minimal roundrmin. Thenpk has never received some
message with larger round number thanrmin, otherwise it
would be made passive. Then the next processpt following the
direction of the ring frompk can only have received messages
with round numbers no larger thanrmin. Thus, the processpt

is either passive or active and maximally in roundrmin + 1.
According to the same reason, the followingw-th processes
are maximally in roundrmin + w if active. The ring size is
n. Thusw is maximally n − 1. Therefore, only the (n − 1)-
th process has the possibility in roundrmin + n − 1 (that is
rmax). That contradicts with the subcase that another process
with rmax exists. Therefore, the second case never occurs.

Case 2: (round, id) > (roundi, idi). Thenpi would become
passive and be eliminated from the set of round numbers of
active processes. The theorem still holds.

Case 3: (round, id) < (roundi, idi). Thenpi simply purges
the message. The theorem still holds.

Proof of Theroem 3

Proof: We prove it by showing that (1) if the distance of
round numbers is more than 3, then some process must have
decided, and (2) there exists a scenario that the distance is3
without any process deciding.

Proof of (1). Let pi, pj be two different active processes with
round numbersk andk+(3+d), respectively (d ≥ 1). We need
to prove that in this situation some process must have decided.
The situation implies thatpj has come through roundk + 1,
k +2 andk +3 without the engagement ofpi. As for 1-crash
cases,n − 1 messages are needed to proceed. It implies that
pj have received all the messages in these rounds from all the
processes except forpi. It means that all the other processes
are at least in roundk + 3 and have come through the rounds
k + 1 andk + 2 by receiving the set of messages from all the
processes exceptpi. Because they have received the same set
of messages, at the end of roundk+1 all the processes except
for pi must have chosen the same vote. At roundk+2, all the
processes could have only received the samen− 1 vote, thus
they must have chosen the vote with weightn− 1. Therefore,
in round k + 3, pj receivedn − 1 same votes with weight
n− 1, all of which are witnesses. According to the algorithm,
pj must have decided in this round.

Proof of (2). We give a scenario that the distance of round
numbers is 3 and no process decides. Letpi, pj be two
different processes and all processes are in roundk. n is an
even integer andn = 2t. s processes have the value1 including

pi and the others have0. So in roundk all processes are
able to choose1 or 0 with weight s according to the set of
messages received.pi stays in roundk after sending its vote
to all processes. At the end of roundk, s processes choose
value 0 and the others − 1 choose1, all with weight s. In
roundk +1, all these processes except forpi receive all these
messages with weights. And they all choose0 with weight s
and have no witness. In roundk +2, all the processes receive
the samen − 1 messages with the same value0 and weight
s. As no witness appears in this round, they all enter round
k + 3.

PROOF OFTHEOREM 4

Proof: We will prove it by proving that (1) if the distance
is larger than2n, then some process must have decided and
(2) there exists a scenario that the distance is2n before some
process decides.

Proof of (1). Let two active processespi, pj be in the round
k andk + (2n + d) respectively andd ≥ 1. We prove that in
this situation, some process must have decided. The situation
implies thatpj has come through all the rounds from k to
k+2n without the engagement ofpi. As only one process may
crash, according to the algorithm in each round the coordinator
needs to getn− 1 messages to proceed. It implies that all the
coordinators fromk + 1 to k + 2n must have received the
messages of all the processes except forpi. In the algorithm,
all the processes take turns to play the coordinator. So from
k + 1 to k + 2n, pj must have played the coordinator twice.
Supposepj plays the coordinator for the second time in round
rj , thenk+2n ≥ rj ≥ k+n+1. Becausen−1 messages are
needed for the coordinator to proceed,pj must have received
all the messages exceptpi in round rj , which means all the
other processes are in roundrj or larger. Then during rounds
k + 1 to k + n they have all played the coordinator once and
received the same set of messages without the message from
pi. As they run the same local algorithm, then after roundk+n
all the other processes exceptpi have chosen the same value.
Therefore, whenpj played the coordinator for the second time
in roundrj which is betweenk+n+1 andk+2n, it received
n−1 messages with the same value and decided in that round.
So in the roundk + 2n + d, pj must have decided.

Proof of (2). We give a scenario that the distance is2n before
some process decides. Letpi, pj be two different processes
with the same value0. pi is in the roundk and the coordinator
of this round ispj . n is an even integer. Half of the processes
have value0 and the other half have1. pj receivesn/2
messages with the value0 and n/2 − 1 messages with1.
According to the algorithmpj keeps its value in roundk.
From roundk+1 to k+(n−1), each process exceptpj plays
coordinator once and chooses1 as it receives at leastn/2
messages with1. In roundk+n, pj plays the coordinator again
and changes its value to1. Thenpj proceeds with suspecting
all the other processes and increasing its round number until
k+2n in which it plays the coordinator again. At this moment,
we have two different active processes with round numberk
andk + 2n.

Proof of Lemma 2

Proof: Suppose some processpi decides valuev at round
k. Then according to the algorithm,pi receives the outcome
from the coordinatorpc of this round with bit d set to 1.
Other correct processes can either receive the outcome from
pc and decide in this round or suspectpc and enter next round.
And from roundk + 1 to k + n, each process will play the
coordinator once. When those processes that have not decided
so far play the coordinator, they may either receiveN − t
messages with the same valuev and decide or set its value to
v (According to Lemma 3, it can receive at mostt messages
with different value fromv andn−2t messages with valuev.
Consideringt < n/3, such thatn−2t > t). At the end of round
k + n all processes have the same valuev. If there still exist
processes that haven’t decided, they will decide valuev when
playing coordinator next time in round betweenk +n+1 and
k + 2n. Therefore, when some process decides, all the other
correct processes will decide in maximally2n rounds with the
same value.

Lemma 3. [6, pp.514] If at the beginning of a round k ≥ N−t
processes have value v, then at least k processes have v at the
end of that round.

