
HAL Id: hal-03900243
https://ut3-toulouseinp.hal.science/hal-03900243

Submitted on 15 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Supporting the Design of Safety Critical Systems Using
AADL

T. Correa, L. Becker, J.-M. Farines, Jean-Paul Bodeveix, M Filali, François
Vernadat

To cite this version:
T. Correa, L. Becker, J.-M. Farines, Jean-Paul Bodeveix, M Filali, et al.. Supporting the Design of
Safety Critical Systems Using AADL. 15th IEEE International Conference on Engineering of Com-
plex Computer Systems (ICECCS 2010), IEEE, Mar 2010, Oxford, United Kingdom. pp.331-336,
�10.1109/ICECCS.2010.56�. �hal-03900243�

https://ut3-toulouseinp.hal.science/hal-03900243
https://hal.archives-ouvertes.fr

Supporting the Design of Safety Critical Systems
Using AADL

T. Correa, L. B. Becker, J.-M. Farines
Federal University of Santa Catarina

Dept of Automation and Control Systems

Florianopolis, Brazil

{tiagotb,lbecker,farines}@das.ufsc.br

J.-P. Bodeveix, M. Filali
IRIT-CNRS

Université de Toulouse

Toulouse, France

{bodeveix,filali}@irit.fr

F. Vernadat
LAAS-CNRS

Université de Toulouse

Toulouse, France

francois@laas.fr

Abstract: Designing safety critical systems is a complex

task due to the need of guaranteeing that the resulting

model can cope with all the functional and non-functional

requirements of the system. Obtaining such guarantees is

only possible with the use of model verification techniques.

This paper presents an approach aimed to fulfill the needs

of critical system design. The proposed approach is based

on the Architecture Analysis and Design Language (AADL),

which is suitable to describe the system’s architecture. A

sequence of model transformations facilitates the verification

of the designed AADL model and so assures its correctness.

It must be highlighted that this is not performed in a single

step, as it is possible to verify AADL models with different

abstraction levels, which allows successive refinements in a

top-down approach.

I. INTRODUCTION

The Architecture Analysis & Design Language (AADL) [6]

is a textual and graphical language used to design and analyze

the software and hardware architecture of safety critical real-

time systems. AADL is used to describe the structure of

systems as an assembly of software components mapped

onto an execution platform. It is used to describe functional

interfaces to components (such as data inputs and outputs) and

performance-critical aspects of components (such as timing).

In order to support model analysis, AADL relies on a precise

execution model. AADL is by now a standard [9]; The version

2 has been recently voted.

The goal of this paper is to present an approach that supports

model checking over AADL models. This is possible by means

of a sequence of model transformations, which finishes when

the model is suitable for verification, as further discussed along

the paper. Using the proposed approach we expect to enhance

considerably the reliability of AADL models designed for

safety-critical applications.

The remainder parts of the paper are structured as follows:

Section II discusses some related methodologies and tool

support. Sections III and IV detail the proposed verification

approach and its application in a case study. Section V presents

our conclusions and directs our future work.

II. RELATED METHODOLOGIES AND TOOL SUPPORT

Designing new generations of embedded real-time systems

is so complex that became mandatory to work with higher

abstractions (namely computational models) previous to imple-

mentation. The Model Driven Engineering (MDE) [10] is, for

instance, an initiative to help developers to manage software

development complexity using models at the very beginning,

and with different abstraction levels. The key aspect from

this technology is the design of models that are decoupled

from their target platform. Among the main benefits of the

emerging MDE approach it should be highlighted its enhanced

possibilities for early model verification.

In fact, many recent tools have been proposed to support

different kinds of verification. With respect to our concerns,

timing verification tools have been an active area of research

over these last years. It is interesting to remark that although

most of these tools are based on existing theoretical models,

e.g., timed automata, Petri nets, the limitations (especially

with respect to combinatorial explosion and scalability) of

which are well known, the effort has been undertaken to

achieve them. In fact, it is hoped that first, the abstraction

and the structure brought by the model driven approach and

second, the adoption of a specific execution model will help

to struggle against these limitations. Along these lines, we

can cite the Cheddar [4] scheduling tool which proposes

dedicated analysis for the AADL execution model. Currently,

it considers mainly analytical models. Future versions should

take into account more detailed behavior descriptions [7]. The

tools Uppaal Port [8] and Pola[2] are based on the traditional

model checking approach. Uppaal Port is based on timed

automata and supports component based development. In order

to reduce the combinatorial explosion Uppaal Port adopts a

synchronous like execution model which restricts interleaving

of the asynchronous approach. Moreover, it proposes partial

order techniques for reducing space explorations. The tool Pola

is based on timed Petri nets, and it proposes specific support

for the AADL execution model.

III. THE PROPOSED APPROACH

Our proposed design-process for critical embedded systems

supports the safe design of the system’s architecture using

MDE’s principles. By safe design we mean that the resulting

system architecture goes through several verification steps

in order to assure its correctness. To reach this goal it is

performed a sequence of model transformations, which starts

with an AADL model and finishes with an automaton model

that can be verified. This section skips the details of the

verification chain (which is covered in the next section) and

concentrates in the high-level steps of the proposed process,

which are shown in Figure 1.

1. Requirements Definition

3. Environment Description

4A. Sw Architecture Modeling

6. Refine Real Time Properties

7. Timing Verification

5B. Architecture Simulation

4B. Hw Architecture Modeling

5. Sw/Hw Mapping

2. Functional Modeling + Simulation

Proposed
AADL process

Fig. 1. Proposed Design Flow

The process starts in level-1 with the definition of the

functional and non-functional requirements of the system,

resulting in a textual set of requirements. It is followed by

the design of a functional model for the system (e.g. Lustre or

Simulink model). In level-3 it begins the design of the AADL

model, providing the specification of the external devices

(environment) that interact with the system. Level-4 is split

in two parts: (4A) software architecture modeling/verification

and (4B) hardware architecture modeling. The overall result

here should be an AADL model with basic properties already

verified and a hardware architecture potentially capable to

run the designed software model. In level-5 a mapping from

the modeled software components to the hardware model is

performed. The result is a complete AADL model. In level-6 it

is suggested that the real-time properties of the AADL model

should be updated with the precise timing information coming

from the simulation of the software in the target platform,

which is conducted in level-5B. The proposed development

process is concluded in level-7 with the final model verifica-

tion, which uses as input the AADL model updated with the

precise timing information.
It is important to highlight that the design flow among the

levels is not unidirectional. Every time that a verification step

fails the designer should either backtrack to higher abstraction

levels of the AADL model and its properties or change

assumptions made in earlier levels. For example, if there is

an error in the timing verification (level-7), then the designer

should be able to judge if the problem is due to the result of

level-4A (proposed software architecture) or to the result of

level-4B (target hardware architecture).
In this paper we concentrate the discussions on the software

architecture modeling and in the verification chain (level-

4A). The target hardware architecture definition (level-4B),

although very important in the context of the proposed process,

should be subject of additional investigation and therefore

is left out of this work. Given that the verification chain is

detailed in the next section, the reminder parts of the current

section details every level depicted in Figure 1. We use an

Autonomous Parking (AP) System case study to elucidate the

work performed in each level.

A. Requirements Definition

The initial step in any development methodology is to

define the requirements of the system to be developed. This

includes both functional requirements (FR) and non-functional

requirements (NFR). While the former depicts the main func-

tionalities to be performed by the system, the latter imposes

restrictions to those functionalities.

Table III-A presents the list of requirements from the AP

system, which has three main functionalities: (FR1) start/stop

the system using a GUI; (FR2) search for a parking slot; and

(FR3) parking the car. NFRs are like properties that must be

satisfied by the related FR. For example, NFR2.2 states that

if the speed is too high (over 20km/h), than it is not possible

to search for a parking slot.

FR1 - Start/stop the system using a GUI
Description: The system must be explicitly activated
by the driver to start operation

NFR1.1 - To start the system the speed must
Maximum speed be kept at ≤ 20Km/h

NFR1.2 - The system must inform the user
On operation while it is working

NFR1.3 - The system must inform the user
Finished as it is turned off

FR2 - Search for a parking slot (real-time operation)
Description: When activated, the system must start
searching a new park slot as the vehicle moves forward

NFR2.1 - The system must inform the user
Driver alert when a new parking slot is found

NFR2.2 - If the speed is too high (over 20km/h)
Safety than it is not possible to search a parking slot

FR3 - Parking (real-time operation)
Description: The driver must trigger the beginning
of the parking after a parking slot is found.
The system controls the speed and direction of the vehicle.

NFR3.1 - The system is allowed to start parking
Safety only if the current speed is zero

NFR3.2 - The system must be halted immediately
Emergency Stop if the driver moves the wheel

NFR3.3 - The system must alert the driver when
Finish allert the parking maneuver is finished

TABLE I
REQUIREMENTS SET OF THE AUTONOMOUS PARKING (AP) SYSTEM

B. Functional Modeling and Simulation

In many applications, especially those related with control

systems, it is required to first design a functional model of

the system and to simulate it before any design decision on

the system architecture is carried on. This is used either to

provide a deeper understanding of the system functionalities

or to test/simulate control solutions in early development stage.

Tools like Scade/Lustre and Matlab/Simulink are often used

for this propose.

C. Environment Description

The third level of the proposed process consists of using

AADL to describe the environment that interacts with the

system under development. In other words, it is necessary to

define the set of interactions of the system with the external

devices, such as sensors, actuators, user interface, etc.

For this reason it is suggested here the use of a high-

level AADL diagram. Figure 2 presents the diagram designed

for the AP system, where it is possible to observe the main

system in the center (named ParkingCtrl) surrounded by

the devices. An advantage of using AADL is that it allows

detailing each message exchanged between the system and the

devices, including information like data type, arrival pattern,

and time constraints.

Fig. 2. AP System Environment Description.

In this phase it is assumed that two different kind of external

devices can exist: reused devices and new devices. While

devices like sensors and actuators are normally reused from

previous applications, devices like User Interfaces (UI) are

normally designed on demand for each application.

New devices can be subject of formal verification prior to

its use in the model. Therefore it is necessary to specify the

device’s behavior. In the scope of this work it is suggested to

describe behavior using finite automatons.

D. Software Architecture Modeling

The software architecture modeling (level-4A) is probably

the most important phase of the proposed design process. This

phase may have several steps of iterations, given the fact that

the designer may create several AADL models, from more

abstract to more detailed ones. Moreover, each step should

have its properties verified before the designer proceeds with

detailing the AADL model.

In the first iteration the designer must detail the AADL

system process (e.g. ParkingCtrl at Figure 2) into a set of

subcomponents (that can be either processes or threads). As

this detailing is completed, model verification is performed,

as explained in the next section. If the verification fails (many

times due to the lack of information in the model), a new

refinement in each component should take action, starting new

iterations.

Following this approach, each component of the AADL

model can derive into several subcomponents. By definition,

the successive refinements will only finish as the model

contains enough details to be proof correct or incorrect by the

model verification. Each detailed model (i.e. iteration) should,

however, cope with the abstract behavior defined for the

higher level component. Follows a more detailed discussion

about the main steps of this phase, namely Architecture
Refinement and Model Verification.

1) Architecture Refinement: The architecture refinement

process consists of successive model refinements and verifi-

cation, as suggested in the design flow from Figure 3. It starts

with identifying the operation modes (1) and threads (2) of

the system, being followed by the mapping of functions to

threads (3). Afterwards the designer can make the connections

among the threads (4) and associate an execution mode to each

thread (5). The reminder of this section details these steps and

presents its application on the AP system.

2. Identify threads

1. Identify modes

A2.2. Architecture Refinement

4. Add connections

3. Map functions to threads

5. Assign modes to threads

A1. Select System or Thread

yes

new
refinement?

Fig. 3. Refined steps from Architecture Refinement

We suggest organizing the functionalities of the system

using different operation modes. This can be seen as a kind

of temporal decomposition of the set of available functions.

Therefore it is necessary to identify how many different modes

the system should have. These modes can be used to guide the

modeling of the distinct AADL processes that will be used to

decompose the system in sub-parts. In our case study, the sub-

functions of the first decomposition are more or less analogous

to the operation modes.

After the identifications of the system (sub)functions it is

possible to decompose the AADL model into different threads.

This can be either the first level of decomposition of the

AADL-system or a refinement of an existing thread. Defin-

ing connections means to establish the information exchange

among the system subparts (threads). This also requires the

definition of the data types associates with each port that

transfer data.

For the AP system case study, the first level of decomposi-

tion consists basically in three threads, as shown in Figure 4.

SystemManagement is used to start or halt the AP system

by means of the graphical interface (FR1), SlotSelection
is responsible to search for a parking slot (FR2), and finally

ParkingManeuver is responsible to perform the parking

(FR3).

Fig. 4. AADL model of parking control system (in the first decomposition)

Once we have both functions and threads defined it is

necessary to relate them, i.e. define which functions belong to

each thread. Here, information like periodicity and deadlines

of threads and functions can be defined. The result of this

mapping in the AP system is shown in Figure 4. As it can be

observed, in this level every thread is responsible for one FR

of the system.

Finally it is required to define in which operation modes

each thread will be active. This represents a common modeling

procedure to make the timing decomposition of the system

functionalities. In AADL this is performed directly in the code,

i.e. there is no graphical representation for this association. It

must be highlighted, however, that it is possible to associate

a thread with several operation modes.
2) Model Verification: It is a modeler decision whether

he wants to perform further refinements (as discussed in the

previous subsection) or to verify the behavior of the current

model. In order to make the model verification it is necessary

to provide the abstract behavior of each thread that belongs to

the AADL model. Afterwards designer should define the set of

properties of interest to be verified and perform the verification

process. Such process is detailed in the next section and, for

the remainder of this section, we conclude the presentation of

the proposed methodology.

E. Time-Related Levels

To verify the real-time properties of the model it is necessary

to make the Software/Hardware Mapping (level-5). After this

step, every thread must be associated with a specific processor.

The hardware architecture must have at least one processor.

Thereby, in the Real-Time Properties Refinement (level-6),

the designer can add additional timing information in the

AADL model to be further verified. Such information must

be obtained using, for example, model simulation on top

of the target architecture. Thereby it is possible to obtain

the worst case execution time (WCET) for each function of

the system prior to its implementation. The last step of the

proposed process is in charge of making the verification of the

timing properties. Schedulability and response-time analysis

are exemples of possible properties to be verified.

IV. VERIFICATION PROCESS

It is possible to argue that our proposed verification process

supports the safe design of the system’s architecture using

MDE’s principles. By safe design we mean that the resulting

system architecture goes through several verification steps

in order to assure its correctness. To reach this goal it is

performed a sequence of model transformations, which starts

with an AADL-like model and finishes with an equivalent

automaton model that is suitable for verification.

The verification process we have been working on uses

AADL models as input and performs the model checking of

LTL properties. Moreover, schedulability and buffer overflow

can also be analyzed, as well as user defined properties. This

process is split in the following phases (Figure 5):

Fig. 5. The verification process.

• Use of the OSATE-TOPCASED [11], [12] environment

for AADL model edition and XMI generation. We con-

sider AADL together with its behavioral annex.

• Translation of AADL XMI models to Fiacre [1].

• Translation of Fiacre to the timed transition system (TTS)

input format of Tina toolbox.

• Translation to an untimed automaton via an LTL-

preserving time abstraction.

• Verification of LTL properties using the Selt tool from

the Tina toolbox.

A. Verification Tools

TINA is a software environment to edit and analyze Petri

nets, Time Petri nets, Time Transition Systems, and also

extension of these nets handling data, priorities and temporal

preemption. Beside the usual editing and analysis facilities of

similar environments, the essential components of the toolbox

are a state space abstraction tool (also called Tina) and a model

checking tool (selt). Detailed information about the toolbox

capabilities can be found in [3].

TINA offers various abstract state space constructions that

preserve specific classes of properties of the state spaces of

nets, like absence of deadlocks, linear time temporal prop-

erties, or bisimilarity. For untimed systems, abstract state

spaces help to prevent combinatorial explosion. For timed

systems, TINA provides various abstractions based on state

classes, preserving reachability properties, linear properties or

branching properties.

State space abstractions are provided in various formats

suitable for existing model checkers. The TINA toolbox also

provides a native model checker, selt. Selt allows one to check

more specific properties than the general ones (boundedness,

deadlocks, liveness) already checked by the state space genera-

tion tool. Selt implements an extension of linear time temporal

logic known as State/Event LTL [5], a logic supporting both

state and transition properties. The modeling framework con-

sists of Kripke transition systems (labeled Kripke structures,

the state class graph in our case), which are directed graphs

in which states are labeled with atomic propositions and

transitions are labeled with actions.

State/Event-LTL formulas are interpreted over the compu-

tation paths of the model. They may express a wide range of

state and/or transition properties. Some typical formulas are

the following (a formula evaluates to true if it does so on all

computation paths, X, F, G and U are LTL modalities, p, q

are formulas):

p p holds at the start

X p p holds at the next step (next)

G p p holds all along the path (globally)

F p p holds in a future step (eventually)

p U q p holds until q holds (until) and q holds eventually.

We also use the weak until operator W. p W q holds until q

holds. It is not mandatory that q eventually happens.

Real-time properties, like those expressed in so called

“timed temporal logics”, are checked using the standard tech-

nique of observers, encoding such properties into reachability

properties. The technique is applicable to a large class of

real-time properties and can be used to analyze most of the

“timeliness” requirements found in practice.

B. Properties Verification

Currently, we support the verification of three kinds of

properties: (i) implicit properties taken into account by the

translator and leading to deadlock when not satisfied; (ii) user

properties specified through AADL real-time observers; and

(iii) properties specified directly in linear temporal logic.

1) Implicit properties: For the moment, two implicit prop-

erties are taken into account by the translator:

• Schedulability: threads are scheduled using a fixed prior-

ity protocol with user-specified preemption points. Dead-

line events are generated by the translator. If a deadline

occurs while a thread is still active, a specific deadlock

is generated.

• Buffer overflows: AADL defines the property Over-
flow Handling Protocol which specifies what to do in

case of overflow. Either the oldest or the newest data is

lost, or the component is erroneous. The latest case is

handled by the translator to generate a specific deadlock

if the capacity of the input buffer is exceeded.

2) Real-time observers: Some properties such as bounded

response time can be expressed using AADL threads acting as

real-time observers. The component to be checked is linked

to an observer which plays the role of its environment and

checks its responses.

For example, properties of the maneuver component of the

parking can be verified by specifying an environment as the

following. It checks that the highSpeed signal is emitted one

period (fixed here at 10ms) after the speed becomes non zero.

Otherwise, the err state would be reached. It also checks

that the abort signal is sent if the wheels are moved. The

selt model checker is used to show that the err state is

unreachable.

thread implementat ion Envi ronmen tThread . imp
annex b e h a v i o r s p e c i f i c a t i o n {∗∗
s t a t e s

s0 : i n i t i a l complete s t a t e ;
s1 , s2 , e r r : complete s t a t e ;

t r a n s i t i o n s
s0 −[]→ s0 { speed ! (0) ; r a n g l e ! (0) ; } ;
s0 −[f i n i s h e d ?]→ s0 ;
s0 −[]→ s1 { speed ! (1 0) ; } ;
s0 −[]→ s2 { wheelMoved ! ; } ;
s1 −[h ighSpeed ?]→ s0 ;

−− d e t e c t e d i n l e s s t ha n t h e p e r i o d
s1 −[on highSpeed ’ count = 0]→ e r r ;
s2 −[a b o r t ?]→ s0 ;
s2 −[on a b o r t ’ count =0]→ e r r ;

∗∗} ;
end Envi ronmen tThread . imp ;

Remark Response time information could be added to the

AADL model as properties of flow specifications and thus

be implicitly checked. However, this is not easy if response

time is greater than the minimum period of the input signal.

Here, our observer supposes that speed does not change while

waiting for the highSpeed signal.

3) Linear time Temporal Logic: Temporal properties can be

checked on the closed system. They can be expressed in linear

temporal logic (LTL) and passed to the selt tool. Atomic

properties are either event properties or state properties. For

example:

• If the speed is too high, the interface cannot get the

found message while the search has not been restarted.

� (highSpeed ⇒ (¬found W startSearch))

This property is in fact not satisfied because taking into

account the speed information and aborting the process

needs one cycle. We use the hyperperiod event H to

reformulate the property as follows: if the speed is too

high, starting from the next hyperperiod signal, we cannot

get the found message unless startSearch has been

pushed.

�highSpeed ⇒ (¬HU H∧(¬foundW startSearch))

• It is possible to park the car, i.e. there exists an execution

path leading to a state where the car is parked. It is

expressed as a negated property: it is not true that in

any execution, finished is never sent.

Parking �|= �¬finished
• The car can be parked infinitely often. It is also expressed

as a negated property:

Parking �|= ♦�¬finished
4) Modal mu-calculus: There exists some useful properties

that cannot be expressed neither in LTL, nor in CTL. For

example, the fact that the user interface can be reinitializable

by the user whatever the system does. To solve this problem,

it can be expressed in modal mu-calculus using the macro

bellow, where U is the set of user events and ϕ the property

to be reachable, i.e. the initial state. It defines the set of states

from where ϕ is reachable by user events even if non user

events are fired as a smallest fixed point (the min operator).

reachable(U , ϕ) = min X | ϕ ∨ ([−U]X ∧
∨

e∈U
([e]X ∧ 〈e〉X)

Such a property can be verified on atemporal models by the

muse tool of the Tina toolbox. It must be associated with a

stability property expressing that non-user events do not leave

the initial state.

It would also be possible to encode a possibly real-time

winning strategy using the AADL behavior annex and check

that the initial state is reachable using an LTL property over

the generated abstract automaton. In our example, this is very

simple because a user command can always be used.

V. CONCLUSIONS

In this paper we presented a verification approach and

the related toolset to design safety critical systems using

the AADL language. This work is part of a more general

project, which also covers the hardware architecture definition

in more details, going towards producing safe models for

critical applications. It must be highlighted that in the end of

the process it is possible to make automatic code generation

from the AADL model for a given platform.

It should be noticed, however, that given the complexity

of the situation, the guarantee of the existence of a correct

solution cannot be asserted. This also applies to the imple-

mentation derived from the generated model. To overcome

this problem, designer feedbacks are necessary and, more

generally, it should be wise to superpose to the software

engineering process risk management.

Currently there is no automated process to transforms the

requirements identified at a high level of abstraction and the

final concrete properties to verify on the final formal model.

This is currently under investigation in our group.

Finally, this study has made us aware of the fact that

linear temporal logic although simple is not rich enough for

expressing some required intuitive properties. In this paper,

we have suggested the use of mu-calculus. We intend to study

in future work suitable patterns to enhance the use of such

a logic. Another further direction of this research would be

providing a risk analysis to assist the design.

ACKNOWLEGEMENTS

This work was developed with the grant CAPES STIC-

AmSud 003/07 TAPIOCA : Timing Analysis and Program
Implementation On Complex Architectures and supported by

the French AESE project Topcased.

REFERENCES

[1] B. Berthomieu, J.-P. Bodeveix, P. Farail, M. Filali, H. Garavel, P. Gaufil-
let, F. Lang, and F. Vernadat. Fiacre: an intermediate language for model
verification in the TOPCASED environment. Proceedings of the 4th Eu-
ropean Congress on Embedded Real-Time Software ERTS’08(Toulouse,
France), January 2008.

[2] B. Berthomieu, F. Peres, and F. Vernadat. Model checking bounded
prioritized time petri nets. In K. S. Namjoshi, T. Yoneda, T. Higashino,
and Y. Okamura, editors, ATVA, volume 4762 of Lecture Notes in
Computer Science, pages 523–532. Springer, 2007.

[3] B. Berthomieu, P. Ribet, and F. Vernadat. The tool TINA – construction
of abstract state spaces for petri nets and time petri nets. International
Journal of Production Research, 42(14), 2004.

[4] P. Dissaux and F. Singhoff. Stood and cheddar: Aadl as a pivot language
for analysing performances of real time architectures. In 4th European
Congress ERTS EMBEDDED REAL TIME SOFTWARE, Jan. 2008.

[5] S. C. Edmund, E. M. Clarke, N. Sharygina, and N. Sinha. State/event-
based software model checking. In In Integrated Formal Methods, pages
128–147. Springer-Verlag, 2004.

[6] P. Feiler, D. Gluch, and J. Hudak. The architecture analysis &
design language (AADL): An introduction. Technical report, Software
Engineering Institute, Carnegie Mellon University, 2006.

[7] R. B. Franca, J.-P. Bodeveix, M. Filali, J.-F. Rolland, D. Chemouil, and
D. Thomas. The AADL behaviour annex – experiments and roadmap. In
ICECCS ’07: Proceedings of the 12th IEEE International Conference on
Engineering Complex Computer Systems, pages 377–382, Washington,
DC, USA, 2007. IEEE Computer Society.

[8] J. Håkansson, J. Carlson, A. Monot, P. Pettersson, and D. Slutej.
Component-based design and analysis of embedded systems with uppaal
port. In ATVA ’08: Proceedings of the 6th International Symposium on
Automated Technology for Verification and Analysis, pages 252–257,
Berlin, Heidelberg, 2008. Springer-Verlag.

[9] SAE. Architecture Analysis & Design Language (AADL), AS-5506. SAE
International, 2004.

[10] D. Schmidt. Model-driven engineering. IEEE Computer, 39(2), 2006.
[11] S. A. Team. OSATE: An extensible source aadl tool environment. Tech-

nical report, Software Engineering Institute, Carnegie Mellon University,
2004.

[12] Topcased. (toolkit in open-source for critical apllications and systems
development). http://www.topcased.org.

