A Tile-based Approach for
Self-assembling Service Compositions

Elisabetta Di Nitto
DEI, Politecnico di Milano
Milano, Italy
dinitto @elet.polimi.it

Luca Cavallaro
DEI, Politecnico di Milano
Milano, Italy
cavallaro @elet.polimi.it

Abstract—This paper presents a novel approach to the design
of self-adaptive service-oriented applications based on a new
model called service tiles. The approach allows designers to
develop a service-oriented system by building an assembly of
component services that accomplishes the given goal. The assem-
bly is computed automatically starting from the specification of
a subset of the whole system, a few constraints, and the goals
the application should fulfill. An application designed according
to the service-tile model can also dynamically self-adapt by
replacing, in part or entirely, services in the assembly whenever
they fail or the application context changes. The service-tile
design technique has been implemented in a prototype and some
experiments with several examples demonstrate the feasibility of
the approach and its practical efficiency.

I. INTRODUCTION

Service-oriented architectures are based on the integration
of third-party components published on a network as software
services. Applications built in this scenario cannot rely on the
traditional closed-world assumption, where developers know
all available components a priori and can model and analyze
their interactions exhaustively. Such applications are usually
situational: changes in the context can trigger the selection
of new components, possibly unforeseen by the developer,
at runtime. This entails that a developer should be able to
defer at runtime part of the decisions about which components
should be included in the application. Moreover runtime self-
adaptation features are required to compensate for the lack of
control on used software services and to react to fast context
changes.

To cope with this uncertainty a developer should be able
to build an application by specifying a subset of the whole
system, a few constraints, and the goals the application should
fulfill. Then, from the provided specification, a suitable com-
position of available services is computed. This problem is
widely treated in literature (see Section VI). Most existing
approaches, however, suffer from significant overheads in
computing suitable aggregates of services.

In this paper, we develop an approach that identifies proper
service assemblies very efficiently by exploiting the the notion
of tile-based systems.

This research has been partially funded by the European Community’s
FP7/2007-2013 Programme, grant agreement 215483 (S-Cube), IDEAS-ERC
Programme, Project 227977 (SMSCom), and MIUR PRIN project "D-ASAP:
Dependable Adaptable Software Architecture for Pervasive Computing”.

Carlo A. Furia
Chair of Software Engineering
ETH Zurich, Switzerland
caf @inf.ethz.ch

Matteo Pradella
CNR IEIIT-MI
Milano, Italy
pradella@elet.polimi.it

Tile-based systems are models of computation that have
been introduced to describe biological processes such as DNA
recombination (e.g., [1]) and have been exploited in the context
of formal languages (see e.g., [2], which introduces and studies
Tiling Systems; [3], which defines the equivalent Wang Sys-
tems; and [4], where the problem of parsing and automatically
generating pictures from tiling systems is considered). Tile-
based systems define computations as processes that assemble
atomic units called tiles. Each tile can be composed only
with certain other tiles, according to the symbols they carry.
The resulting assembly process is similar to building a jigsaw
puzzle with the pieces from a given box.

Recently, various authors (e.g., [5], [6]) have suggested
that analogous formal models can be proficiently used to
describe highly dynamical software and networked systems. In
particular [5] proposes to model elementary components with a
variant of Wang tiles, where constraints for building the system
are specified only locally on each single tile, independently of
the actual setup of the overall system. The properties of the
system are then satisfied by construction as they emerge out
of the composition of tiles according to the local compatibility
rules.

Working in the same line, we tackle the problem of service
composition by means of a variant of tile-based system that we
call service tiles. In a sense our concept of tile is a generaliza-
tion of a standard Wang tile, since the latter is limited to a fixed
square structure, thus bearing at most four symbols, while we
also consider an arbitrary number of symbols. Service tiles also
enable systems to compute proper self-adaptation strategies in
case of failure of component services or of changes in the
context. The “local nature” of tile-based systems allow for
the identification of replacement strategies that are usually
confined to the region of failure and does not require an
expensive re-design of the whole system from scratch. In
this paper, we rely on self-assembly capabilities of tile-based
systems to address the aforementioned problems.

Compared to other approaches for automatic composition,
ours offers a terse model that allows a very efficient com-
putation of service compositions. To demonstrate this, we
implemented the tile-based model using integer linear pro-
gramming, and we built a proof-of-concept framework (see
Sections III-A and IV). The experiments we performed (see
Section V) confirm that our approach can efficiently automate

the task of computing a proper service assembly.

Another interesting aspect of the approach is that is does
not assume, as many others do, the existence of a single or-
chestrator for the assembly. Instead, it allows each component
to be responsible for coordination with its “neighbor services”,
thus reducing the burden of tasks demanded to a centralized
executor.

II. MOTIVATING EXAMPLE

Commuters prefer to use public transportation to move
from home to work every day. Unfortunately, public trans-
portation may suffer schedule delays or denials of service
due to overcrowding, technical problems of trains or buses,
or severe weather conditions. We assume that public trans-
portation users are equipped with portable computing devices,
which enable them to retrieve information and suggestions
about their planned route. To this end, public transportation
authorities provide mobility information services by gathering
and combining data about vehicles moving along the network.
Mobility information services can signal, for example, delays
of trains or buses, or traffic jams.

Information services can also forecast the status of the trans-
portation network by elaborating sensed weather conditions.
For instance, a likely delay of buses can be forecast based on
the presence of snow. When problems are signaled on his/her
route, a commuter may re-plan his/her way, for example by
switching from a bus to a train. In order to do so, he/she also
needs access to a public transportation route planning service
and to a ticket vending service.

The transportation network is divided into five zones and
a different information service is available in each of them.
This gives more detailed information to commuters, but it also
complicates the selection of the services to be used according
to the the zone of the city a commuter is in or wants to reach.

This scenario makes the life of the designer significantly
harder compared to a traditional system as it is unlikely that
the designer can get a total knowledge of the services involved
in the overall system. First of all, invoked services should
be selected according to the application context, since, for
instance, a commuter is interested to contact the information
services from those zones where he/she is, or is planning to
go through in his/her route. Moreover, the capability of in-
formation services to provide up-to-date information depends
on vehicle information and weather sensors spread around
the network, which may be unreliable since vehicles may go
through zones where it is impossible to send their data, and
sensors can fail for technical problems. Thus, the application
should be able to react to these failures replacing some of
the unavailable information sources on-the-fly. Consider, for
instance, the case of weather data: if sensors in one area of
the network fail it is possible that sensors of a neighbor area
are still reachable and can replace the unavailable ones. These
new sensors would likely be less accurate and contribute to
a solution of lower quality, but by using them the application
can at least continue to work.

[OFFERED OPERATIONS [REQUIRED OPERATIONS |

route planning
mobility information [location]
ticket booking

TABLE I: The Commuter Buddy Application

commuter buddy

We consider the problem of formalizing this scenario. The
application residing of the commuters’ portable devices is
called Commuter Buddy; Table 1 summarizes it in terms of
offered and required operations. In this model, which we are
going to formalize in the following sections, the concepts
of offered or required operations are application-specific and
could represent, for instance, a service operation or a UML-
style offered or expected interface.

Table II lists a possible set of other services, available to
Commuter Buddy at one instant of the application lifetime.
Different services provide data for different zones and a
less accurate service covering forecasts for the whole city
exists as well. This entails that the selection of weather
forecast (and mobility information) services depend on the
departure and destination points. This is represented in Ta-
ble I and in Table II by parameters in square brackets,
appended to offered or required operations. For instance,
Mobility Information Center Milan offers a mobility informa-
tion service specific for the city center area, through the oper-
ation mobility information. We represent this offered service
locality by appending the parameter [CM] to the name of the
offered operation.

As the reader can notice, there is no required operation mo-
bility information [CM] for the Commuter Buddy Application
(see Table I), while a mobility information [location] appears
between required operations. In this case we use the [location]
parameter to point out that the zone for which mobility
information is required is left unspecified at design time. The
decision about which zone the operation is required for will
be made at runtime, when the context information will be
available (e.g., when the user is going through the city center).

The situational nature of the application makes it difficult
to have a complete knowledge at design time about which
services will be suitable for binding at runtime in a given
instant. Moreover, some particular characteristics call for a
decentralized coordination of the services. Consider for in-
stance the services providing mobility information for the
various parts of the city. Their efficiency depends on the
weather services covering the corresponding part of the city.
If we consider the traditional central orchestrator hypothesis
the mobility information service would be seen as a black box
and, in case of failure of the corresponding weather service, it
would stop working and need to be replaced. This would make
commuters lose information about the corresponding zone.

In the following sections, the Commuter Buddy application
will be the running example to demonstrate the service-
composition model based on tiles. The examples will hint at
how some of the aforementioned difficulties in developing a
service-based application can be approached and overcome.

SERVICE NAME

[OFFERED OPERATIONS

[REQUIRED OPERATIONS

Vehicle Information 1

vehicle information [VI]

Vehicle Information 2

vehicle information [V2]

Vehicle Information 3

vehicle information [V3]

Vehicle Information 4

vehicle information [V4]

Route planner

route planning

Weather forecast Center Milan

weather forecast [CM]

Weather forecast North Milan

weather forecast [NM]

Weather forecast South Milan

weather forecast [SM]

Weather forecast East Milan

weather forecast [EM]

Weather forecast West Milan

weather forecast [WM]

Weather forecast Milan

weather forecast

Mobility Information Center Milan

mobility information [CM]

weather forecast [location]
vehicle information [vehicle]

Mobility Information North Milan

mobility information [NM]

weather forecast [location]
vehicle information [vehicle]

Mobility Information South Milan

mobility information [SM]

weather forecast [location]
vehicle information [vehicle]

Mobility Information East Milan

mobility information [EM]

weather forecast [location]
vehicle information [vehicle]

Mobility Information West Milan

mobility information [WM]

weather forecast [location]
vehicle information [vehicle]

TicketBooking TicketBooking Payment
Payment gateway 1 Payment
Payment gateway 2 Payment

TABLE II: An example of available services

III. TILE-BASED SYSTEMS AND THEIR APPLICATION TO
SERVICE COMPOSITION

This section presents a formal model of services and service
composition based on the notion of tile. A developer approach-
ing the problem of designing a service-based application with
this model would first abstract the structure of the process of
the application and would define it only in terms of offered
and required operations. The designer builds a workflow for
the application and defines which external services should be
invoked. These external services are associated to an identifier
that can be a plain string or a logical formula that represents
a goal. In both cases it is made available through a service
facet [7].

Our model represents these facets as atomic symbols.
Correspondingly, we develop an analysis technique which
allows the discovery of an assembly of suitable services for
the application under design. The developer would bind the
resulting composition at design time. At runtime, the assembly
can be totally or partially recomputed, in reaction to changes
in the application context or to failures of services.

A. Service tiles: tiles for services

Let us start by introducing a new kind of tile-based system
that can suitably represent the composition of a finite set of
services. We remark that our model is quite different from the
traditional literature on the subject, such as tiling systems or
Wang systems: the service-tile model is only loosely inspired
by these forerunners.

The rules of our model definition must ensure that services
are composed correctly. While the notion of (correct) service
composition is a very broad one, here we focus on a specific
— yet significant — aspect, namely the problem of creating a

composition by selecting services in such a way that every ser-
vice request is satisfied by some other unit in the composition.
In other words, the solution to our problem is a composition
that “works” when considered in its entirety.

We represent offered and requested operations (i.e., facets)
syntactically, with symbols from a finite alphabet 3. For
instance, mobility_information and payment are two operations
of the running example. Offered and requested operations are
grouped into service units that represent the tiles of our system.
Each unit comes with a vector of (scalar) costs of arbitrary size
(possibly empty). An element in the cost vector represents the
magnitude of a certain cost dimension resulting from using
the operations offered by the service unit.

Definition 1. A service unit U is a tuple (X,C, 0, R) of
offered O = {01,09,...} and requested R = {ry,r2,...}
operations from alphabet >, together with a cost vector
C= [61,02, ..] S INICT,

A service unit U will be conveniently represented as
[c1,¢2,.. 5401, 400, ..., =11, —T2,...].

A collection of service units over a common alphabet with
cost vectors of the same size constitutes a service base.

Definition 2. A service base S is a tuple (X, k,U), where
U C INF x 2% x 2% is a set of service units over operations in
the common alphabet 3, each with its cost vector of size k1

Figure 1 pictures a possible service base for the running
example (cmp. Table II), with omitted costs.

'More explicitly, each element (C, O, R) € INF x 2% x 2% represents a
service unit (X, C, O, R).

Route planne

route planning

Mobility Information!
O North Mil
mobility

orth Milan

weather
flocation]

Mobility Information|
O Center Milan
mobility

weather
[location]

vehicle :
info’&mation information mflocnr('\‘]amn vehicle
routePlanning (NM] I information
bility
commuter information weather
information . "CommuterY mobility information ISMI (obility Information [location]
Buddy [location] weather o y Infon
Application Mobility Information [location] South Milan .
O East Milan vehicle
mobility Vvehicle information
Ticket booking information information
[EM]
weather
Mobility Information [location]
b‘ West Milan
ticket payment ("payment information vehicle
booking Ticket payment gateway 2 [WM] information
O Booking
payment, . - weather
aymen orecast Weather forecast
O™ gateway 1 INM] O North Milan vehicle _
information
Vehicle
O Information 1
weather Weather forecast:
forecast Center Milan weather
[CM] th fo[(ﬁﬁ/la]st
weather Weather forecast
forecast, Weather forecast O West Milan
rsmy O South Milan vehicle

Weather forecast
O East Milan
weather
forecast
weather
forecast Weather forecast
o Milan

Required
operation

Offered
operation

vehicle

information .
Vehicle
O Information 4

information
ormatio Vehicle
O Information 2
vehicle
nformation
! ! Vehicle
C Information 3

Fig. 1: Service units of the Application.

B. A formalization of the service-building problem

We are interested in finding consistent compositions of
service units from a given service base. Intuitively, a service
unit in a compound can offer its operations in O only if it
works properly, that is only if all its operation requests in R
are satisfied by some other chosen unit. Also, an operation
request —z is satisfied only by an operation offer +z. Cor-
respondingly, the service system building problem requires to
compose service units from a service base in such a way that
they can function properly, that is all requests of all instantiated
units are satisfied. This is the formalization of the service
composition problem that we consider in this paper.?

Definition 3 (Service-building problem). Given:
« aservice base S = (X, k,U);
e a multi-set I : &/ — IN of initial service units;
e acostbound K = [Ki,..., K;] € (INU {oc})¥;

determine if there exists a multi-set 7' : &/ — IN of service
units from the base such that:

1) ICT.

2) Every operation request from a service unit in 7' is
satisfied by the offer of some service unit also in 7.
This is formalized by requiring that R C O, where R :
¥ — IN is the multi-set of operation requests defined by>

2Multi-sets are sets with repeated elements. With standard notation, a multi-
set A over elements in D is represented by a function A : D — IN such
that A(d) is the cardinality of element d € D in A. The notion of subset is
extended to multi-sets as customary: A C B for multi-sets A, B: D — IN
iff A(d) < B(d) for all d € D.

3 A| B denotes the projection of tuple A over set B, i.e., B’s component in
A.

R(z)=> veu T(U) and O : ¥ — N is the multi-set
zeU|
of operation offers defined by O(z) = veu T(U).
zeU]|
3) For each cost dimension 1 < ¢ < k, the total C(())St of the

service units in 7" is bounded by K.

Notice that in our formal model any operation of any unit
can be connected with the corresponding operation of any
other unit in the solution. Hence, a notion of bi-dimensional
locality — usually present in traditional tile-based systems —
is lost, because the requirements for a correct composition are
ultimately just on the cardinality of chosen tiles and not on
their spatial displacement.

Intuitively, I represents the input that the system designer
provides to the the problem. This input usually consists in one
or more service units that represent the core of the application.
In the running example of Section II, I would represent a
single instance of the Commuter Buddy application, for which
the designer wants to find a suitable binding.

U represents all service units that are available at the instant
in which the solution for the service-building problem is
computed. Available service units can be found, for instance,
by querying a registry. Figure 1 pictures such a service base
in our example.

Given I and U, the service-building problem consists in
finding a composition of instances of service units from U/
which satisfies all the requests of the service units in [
and do not exceed the bounds on costs. For instance, unit
Ticket Booking = [1;+ ticket_booking, — payment] and unit
PaymentGWI1 = [3;+ payment] can be composed in such a
way that all requests are satisfied, the total cost is 4, and there

is exactly one instance of each unit. Since in general a service
unit both offers and requests operations, including a service
unit in the solution may trigger the need for more service units,
in an iterative fashion.

IV. IMPLEMENTATION AND PRACTICAL ISSUES

This section discusses how service-tile models can be
implemented and analyzed using integer linear programming
techniques and tools (Section IV-A), and how context infor-
mation can be modeled using service tiles (Section IV-B).
The section also outlines a proof-of-concept framework to
support the integration of the service-tile approach in a real
service-based application (Section IV-C). The framework is
based on SCENE [8], which allows a developer to define
and execute self-adaptable service compositions with dynamic
service binding.

A. Encoding the service-building problem with integer linear
programming

Integer Linear Programming (ILP) problems consist in
minimizing the value of a linear function of some integer-
valued variables subject to a set of linear inequality constraints
on the same variables [9]. ILP is a natural formulation for
many optimization problems. The technology for ILP solving
is very mature: even if ILP is an NP-complete problem, a
variety of practically very efficient off-the-shelf ILP solvers
are available.

We show how to solve instance of the service-building
problem (Definition 3) by encoding them as ILP problems.
Given that the service-building problem is NP-complete (see
the proof in the Appendix), this is the best possible encoding
from a worst-case complexity viewpoint.

A service-building problem for generic service base S =
(3, k,U), initialization I, and cost bound K can be solved
by encoding it as an ILP problem of size polynomial
in |U|,|X]|, k, max, I(x), maxi<,<i K;. To this end, con-
sider || integer variables wi,usg,...,up, and let X =
{z1,22,...,25}. Let us introduce the binary-valued func-
tions R(xg,u;), O(xg, u;) with x;, € ¥ defined as the indica-
tor functions 1y, |, (xx) and 1y, (z) of the sets Us|r and
Uilo, respectively. C; = [ci1, ¢, ..., Cii] denotes the cost
vector of the service unit corresponding to w;. The system of
|| + || + k linear inequality constraints and one objective
function reported in (1) encodes the service-building problem.

The first [U| inequalities encode the data about the initial
service units I; the following |X| inequalities encode the
requirement that the total amount of offers for any service
must be no fewer than the total amount of requests for the
same service; the last k£ inequalities constrain the total costs
not to exceed the values in K.

A solution of the ILP problem of (1) is a vector of
nonnegative integer values, one for each service unit in U.
Each value in the vector specifies how many instances of that
service unit are included in a the composition. Correspond-
ingly, it is straightforward to compute the the total cost of the
composition.

min E

1<i<u

E Cij | U S.t.

1<j<k

uy Z I(Ul)

) = I(up)
> (O(x1,ui) = R(wy, ui))u; >0

1<i<|U|

(D

> (Ows),wi) = R(ws),ui))ui >0

1<i<|u

Z —citu; > —(K1 +1)
1<i<|U|

> —cipui > —(Kp +1)
1<i<|U|

[Service Unit

Cardinality | Response Time (seconds) |

Vehicle Information 1

Vehicle Information 2

Vehicle Information 3

Vehicle Information 4

Route planner

WeatherForecast Center Milan

WeatherForecast North Milan

WeatherForecast South Milan

WeatherForecast East Milan

WeatherForecast West Milan

WeatherForecast Milan

Mobility Information Center Milan

Mobility Information North Milan

Mobility Information South Milan

Mobility Information East Milan

Mobility Information West Milan

TicketBooking

Payment gateway 1

O = OO OO = | O O O O | —| —| —=| O O D

Payment gateway 2

OOf| = = = | B W]| —| W Q| O | | W —| —[& W[N

[Total Cost (response time) [[

TABLE III: An example of solution for the service-building
problem formulated as ILP.

Table III shows a possible solution to the ILP model
of the service-building problem for the example introduced
in Section II. The solution is a ‘“snapshot” of a possible
valid assembly under the assumption that the current location
is CM (Center Milan) and where a mono-dimensional cost
representing the response time of services is considered. The
Cardinality column represents how many instances of a service
unit of a certain type are needed in the solution.

B. Context representation in the service-building problem

Let us point out how we represented context information in
the service-tile model of our running example. We augmented
the set U of available service units with a few virtual service
units. These do not represent any “real” service unit but have
the only purpose of modeling the context. Each virtual service
unit offers some operation required by one of the service units
in U and requires some other operation which is used to select
the service unit which is appropriate in the current context.

Consider for instance the example reported in Figure 2. The
virtual service units Mobility Information [location] Center
Milan and Weather [location] Center Milan represent the con-
text dependences of operations mobility information[location]
of unit Commuter Buddy and weather [location] of unit
Mobility Information Center Milan, respectively. For instance,
virtual service unit Mobility Information [location] Center
Milan offers operation mobility information [location] and
requires operation mobility information [CM]. This guaran-
tees the inclusion of unit Mobility Information Center Milan
whenever the location is CM. Virtual service unit Weather
[location] Center Milan serves a similar role for operation
weather forecast.

C. A framework for service-tiles

In order to demonstrate how an analysis technique based
on service tiles can be integrated in a real service-oriented ap-
plication, we implemented a framework based on SCENE [8].
SCENE provides a runtime execution environment to execute
service compositions and capable of binding external services
at runtime. At deployment time, a component analyzes the
composition, identifies the cases in which dynamic rebinding
had been foreseen by the designer, and generates some proxies
that will manage these cases. By masking what services are
actually invoked, the proxies enable a transparent dynamic
replacement of services without affecting the workflow.

The standard SCENE environment provides proxies only
for the part of the composition executed by a centralized
orchestrator, while invoked services are treated as black boxes.
We extend this basic setting by enabling the creation of proxies
local to any service. More precisely, we create a proxy for
every requested operation; the proxy is responsible for the
selection and binding of the corresponding offered operation
of some other unit.

Figure 3 sketches the framework architecture for the case
study presented in Section II. Notice that proxies are created
for requested operations such as the mobility information
SCENE proxy. When Weather forecast Center Milan is se-
lected, the proxy receives requests from Mobility Information
Center Milan and forwards them to the currently bound ser-
vice. Whenever Weather forecast Center Milan is unavailable,
an alternative binding with Weather forecast Milan is estab-
lished. In this case requests are forwarded to the latter unit,
while Mobility Information Center Milan remains unaware of
the change.

V. EVALUATION

We implemented a simple tool to input and solve the
service-building problem as defined above. Our prototype is
based on a simple DSL (domain specific language), which
is used to easily define the problem instance and its basic
constraints,* such as needed services and their cardinality.
The actual set of service-tile system model is computed and
translated into a GNU MathProg script (a subset of AMPL
[10]), which is then interpreted by GLPK (the GNU Linear
Programming Kit [11]). We implemented both the DSL and
the GLPK translator and interface in Common Lisp.

We experimented with the example of Section II. The
basic mapping between elements of the example and tiles is
straightforward (see Figure 1). The initial set of services is
chosen simply to correspond to Commuter Buddy, while the
set U is based on the content of Table II. These sets were
augmented with some virtual tiles to represent the context.
The preliminary experimental results with the tool are quite
encouraging. Solutions to the example from Section II can
be found in negligible time and require a minimal amount
of memory (0.6 Mb). The experiments were run on a PC
equipped with AMD Athlon 64 X2 4600+, 4 Gb RAM, Linux
OS. The GLPK tool used was version 4.29.

We also performed additional experiments to push the
limits of our simple prototype. To this end, we devised an
abstract complex model, parametric with respect to some sets
of numbers. By changing these parameters we were able to
generate sets of more than 30,000 different tiles. The total
time used by GPLK, the time to solve the actual model after
it is built, and the memory usage are reported in Table IV. The
leftmost column in the table represents the number of service
units available when the problem solution is computed (i.e.,
the size of the set /). In these experiments we assumed that
all the services available in a given moment would be used
to try to build up the solution. The experiments show that the
bottleneck in the solution process is the computation of the
model in memory: in the last example the constraint matrix
alone contained more than 450 million elements, and GLPK
had to use almost all the available memory. On the other hand,
the actual model solving time is usually a small fraction, less
than 4 seconds for the biggest example.

The real world examples that we may consider, such as our
trip-planning application, exhibit usually much smaller sets of
tiles. In practice, not all available services are usually con-
sidered when building a service assembly; instead, a filtering
phase usually precedes the actual computation of a solution. In
common practice, in fact, a designer builds a set of candidates
for her assembly by querying some registries according to cost
or functionality criteria. This reduces the candidate set size
before calling the solver, in a situation in which the service
building problem with our model can be solved with small
overhead.

4A DSL model describing the example in Section II is available at:
http://home.dei.polimi.it/cavallaro/tiles-experiments.html. The downloadable
material includes the prototype translator to MathProg and the data used for
the experimental evaluation.

routePlanning

commuter

information "CommuterY mobility information
Buddy location]
Application

mobility information
[location]

v,
mobility

mobility
information
[CM]

Ticket booking Center Milan
information
[location]
mobility weather
information forecast
Mobilty Information llocation]
South Milan vehicle
information
[vehicle]

mobility
information
[cM]

. vehicle
information

[vehicle]

Mobility Information

Center Milan weather

forecast
[location]

weather

weather forecast

forecast
[location] ©

weather
[location]
Center Milan

weather

Weather forecast

forecast d
cmy © Center Milan
weather
forecast

Weather forecast
O Milan

Fig. 2: An example of virtual service units to represent context for Mobility Information and Weather Forecast

vehicle P—
" mformatlon vehicle information
mobility [vehicle] SCENE
information e PROXY
[CM]
o Mobility Information weather
route planning 4 Center Milan forecast
SCENE - ... [location]
PROXY .
4 o A
/’ & mobility information
routePlanning / 8 SCENE
. : PROXY
commuter mobility information — -
information (ommuter mobility information N Ly
Buddy o L3
: & 3
Application PROXY & . %
. 8

Ticket booking {

ticket booking
SCENE
PROXY

weather ." weather Y, _ [leatrer forecst
forecast Weather forecast forecast Center Milan
O Milan [cM]

Fig. 3: An example of use of SCENE proxies in service tiles framework

[#0FTILES [ToTAL GLPK TIME (S) [SOLVING TIME (S) [MEMORY (MB) |

122 0.1 ~ 0.0 1.4
677 1.3 ~ 0.0 14.0
2602 7.1 0.1 95.2
10202 34.5 0.9 701.8
22802 119.6 2.5 2307.5
30302 183.1 3.8 3556.9

TABLE IV: Results of some experiments on the complex
parametric example.

VI. RELATED WORK

The state-of-the-art can be partitioned according to the
techniques that are used to model and analyze service sys-
tems: some approaches are model-driven, others are based on
optimization techniques, and others borrow from the artificial
intelligence repertoire.

In model-driven approaches, the developer designs the con-
figurations that the system can go through, possibly assisted by
some generative or verification tools. Model-driven approaches
work under the assumption that relevant information about

system behavior and its possible reconfigurations are available
at design time, and can be formalized into a model which is
used to guide the system through reactions due to component
failures or changes in the application context. [12] presents the
PLASTIC approach to develop self-adaptive services able to
respond to changes in the application context (defined by users
preferences) and to maintain certain levels of quality-o service.
With PLASTIC, the system is designed by building a model.
From this model, several variants of the service code can be
generated. Different variants are used to support adaptation in
response to changes of context or quality-of-service require-
ments. The current PLASTIC framework provides adaptation
at discovery time (i.e., the deployed application is customized
at binding time) but not at runtime. The service-tile model
frames the compositional aspect of building self-adaptive
service-oriented systems and enables re-configuration at run-
time. Consequently, an extension of the PLASTIC framework
with service tiles would allow applications to be reconfigured
both at design time and at runtime. In [13] and [14] two model-

driven approaches are presented. They require to include all
the possible variation points (i.e., aspects in which the system
can change its configuration in order to perform adaptation) in
the model at design time. This limits the situations the system
can react to at runtime, since the number of configurations
that need to be explicitly enumerated at design time can
be hardly handled by a human developer. Service tiles also
offer a model-driven approach to design self-adaptive service
oriented applications, focusing on reducing the amount of
information to be elicited at design time. In fact, service-tile
models allow to build a system designing a part of it (i.e.
the initial set), while the rest of the system is determined
using the self-assembly capability of the tile-based system. As
showed in the paper, this technique can be used also to find
possible reconfigurations for the application, without having
the designer to explicitly enumerate them at design time.

Optimization-based techniques, such as linear programming
or genetic algorithms, are used to select a proper assem-
bly of services to be invoked. At runtime, if one or more
services fail or the quality of service of the composition
becomes inadequate re-optimization is exploited to react to
the situation. Linear programming based approaches can be
found in [15] and [16]. These approaches model the service
selection problem as an optimization problem: they model
a workflow in terms of the operations it requires, define
a complex quality-of-service model, and solve optimization
problems to find the assembly of services to be allocated for
each of the tasks, so as to maximize the overall quality-of-
service. Service-tile models are also implemented using integer
linear programming; however, their focus more on providing
a flexible tool to design self-adaptive service-oriented systems
than on optimizing the binding according to a sophisticated
quality-of-service model.

In [17] the authors present a genetic-algorithm-based and
quality-of-service-constrained service selection mechanism. In
this approach, binding of a service-oriented system with a
set of services, which meet some non-functional constraints,
can be performed at runtime. This solution allows computing
and reconfiguring only the portion of the system affected by
changes. Unfortunately, genetic algorithms are usually compu-
tationally expensive. This prevents their usage at runtime for
dynamic reconfiguration.

Artificial intelligence based techniques are also used to
determine a proper service assembly, typically by encoding
service selection as a planning problem. Both the approaches
in [18] and [19] use planning techniques to determine which
service assemblies can fulfill some goals specified by a de-
veloper at design time. The reconfiguration can take place
both ad design time and at runtime, allowing also subsets
of the system to be reconfigured. The approaches depend on
the hypothesis that a centralized executor will orchestrate the
process execution and will take care of reconfigurations when
needed. Applications built under this hypothesis fail to provide
suitable reconfigurations in scenarios similar to that presented
in Section II where invoked services are needed to reorganize
autonomously. Service tiles overcome this limitation modeling

system component services in terms of offered and required
operations.

[20] also specifically addresses the problem of building
component-based applications, with a goal-oriented approach.
Components are selected by adaptive planning (i.e. by a
selection strategy that varies in response to the system’s
variability). This solution, however, does not focus on the
distributed application domain, while the service-tiles model
is more flexible in this respect.

VII. DISCUSSION

Service-based applications rely on compositions of services
which should be selected according to context and which
are out of developer’s control. This entails that the criteria
according to which they are selected cannot be totally foreseen
at design time. This was the case of the example of Section II,
where the application should invoke an external service to
retrieve mobility information for the current city zone: the
application should be able to retrieve information for all city
zones, bu the developer does not necessarily have a complete
knowledge of which services are available in which city zone.

The service-tile model helps to build an application having
only a partial vision of the system at design time: the de-
signer focuses on a limited subset of the system, while the
self-assembly capability will find a suitable instantiation of
the other components. In the example, this implies that the
developer only specifies which service operations are required
by the Commuter Buddy application (i.e. specifies the initial
set 1) and chooses a desired cost. When the needed context
information is available (likely at runtime in our example)
a registry is queried to retrieve the available services (i.e.
determines the set f). Finally, an assembly satisfying the
given constraints is determined by calling an ILP solver (see
Section IV).

The context information can change during the application
life-cycle or some of the used services can fail. Service-
tile models can help managing context information, too: the
simplicity of the model makes it possible to automatically
recompute the assembly when needed, introducing the new
constraints. This amounts to remove from U the failing
services, while I is unchanged. Consider, for instance, the
service units that provide information about the mobility
in our running example. All of these service units receive
information about the weather and gather data from vehicles.
Unit Mobility Information Center Milan, which is required
by the Commuter Buddy Application, requires operations
weather forecast and vehicle information. If the units provid-
ing these operations fail, Mobility Information Center Milan
would also fail. However, it would be sufficient to replace
Weather Forecast Center Milan with the other service unit
Weather Forecast Milan to restore functionality of the whole
system (possibly with a lower quality of service). This new
binding is local to the failed unit and is easily recomputed
with the tile-based model.

Finally, service tiles represent a service in terms of of-
fered and required services; in this respect, they can help

enforcing distributed service coordination and self-adaptation.
This breaks, to some extent, the “traditional” black-box view
of service applications; however, it does not significantly
complicates the view of the system, because the designer needs
only to specify an initial subset of services (I), while leaving to
the self-assembly capability of the tiling system to determine
the rest.

VIII. CONCLUSION

We presented a new approach to build self-adaptive service-
oriented system. The main contributions of this paper are:

o A theoretical framework for modeling self-adaptive
service-oriented systems based on service tiles.

o A proof-of-concept tool used to demonstrate the feasibil-
ity of our approach.

Preliminary experiments showed encouraging results and
pointed out at the following advantages:

o The development is simplified, by allowing the specifi-
cation of systems at component level (abstracting away
low-level details);

o The solution of combinatorial problem arising in service
composition scenarios is achievable with acceptable over-
head even in large-sized examples;

« The enforcement of distributed self-adaptiveness is better
supported.

The model and framework we developed are part of ongoing
work, and tackling other significant aspects belongs to future
work. Among them, let us mention the problem of developing
a rigorous process to define labels associated to service re-
quests and offers. We plan to borrow relevant notions from the
literature dealing with similar problems, such as goal models
using wide-spread methodologies such as i* [21] or Kaos [22].

REFERENCES

[11 E. Winfree, F. Liu, L. Wenzler, and N. C. Seeman, “Design and self-
assembly of two-dimensional DNA crystals,” Nature, vol. 394, pp. 539—
544, 1998.

[2] D. Giammaresi and A. Restivo, “Two-dimensional languages,” in Hand-
book of Formal Languages, Vol. 3, Beyond Words. Springer, 1997.

[3] L. de Prophetis and S. Varricchio, “Recognizability of rectangular
pictures by Wang systems,” Journal of Automata, Languages and
Combinatorics, vol. 2, no. 4, pp. 269-284, 1997.

[4] M. Pradella and S. Crespi Reghizzi, “A SAT-based parser and completer
for pictures specified by tiling,” Pattern Recognition, vol. 41, pp. 555—
566, 2008.

[5] Y. Brun, “A discreet, fault-tolerant, and scalable software architectural
style for internet-sized networks,” in In Proceedings of ICSE COMPAN-
ION, 2007.

[6] 0. Babaoglu, G. Canright, A. Deutsch, G. D. Caro, F. Ducatelle, L. M.
Gambardella, N. Ganguly, M. Jelasity, R. Montemanni, A. Montresor,
and T. Urnes, “Design patterns from biology for distributed computing,”
TAAS, vol. 1, no. 1, pp. 26—66, 2006.

[71 M. Colombo, E. Di Nitto, M. Di Penta, D. Distante, and M. Zuccala,
“Speaking a common language: A conceptual model for describing
service-oriented systems,” in In Proceedings of ICSOC, 2005.

[8] M. Colombo, E. Di Nitto, and M. Mauri, “SCENE: A service compo-
sition execution environment supporting dynamic changes disciplined
through rules,” in In Proceedings of ICSOC, 2006.

[91 A. Schrijver, Theory of Linear and Integer Programming.

& sons, 1998.

R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Modeling

Language for Mathematical Programming. Duxbury Press, 2002.

John Wiley

(10]

[11]
[12]
[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

GNU Project, “GNU linear
http://www.gnu.org/software/glpk/.”
M. Autili, P. D. Benedetto, and P. Inverardi, “Context-aware adaptive
services: The plastic approach,” in In Proceedings of FASE, 2009.

J. Zhang and B. H. C. Cheng, “Model-based development of dynamically
adaptive software,” in In Proceedings of ICSE, 2006.

N. Bencomo and G. S. Blair, “Using architecture models to support the
generation and operation of component-based adaptive systems,” in In
Proceedings of Software Engineering for Self-Adaptive Systems, 2009.

L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, “Qos-aware middleware for web services composition,” IEEE
Transactions Software Engineering, vol. 30, no. 5, pp. 311-327, 2004.
D. Ardagna and B. Pernici, “Adaptive service composition in flexible
processes,” IEEE Transactions Software Engineering, vol. 33, no. 6, pp.
369-384, June 2007.

G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani, “An approach
for QoS-aware service composition based on genetic algorithms,” in In
Proceedings of GECCO, 2005.

M. Trainotti, M. Pistore, G. Calabrese, G. Zacco, G. Lucchese, F. Bar-
bon, P. Bertoli, and P. Traverso, “ASTRO: Supporting composition and
execution of web services,” in In Proceedings of ICSOC, 2005.

A. Lazovik, M. Aiello, and M. P. Papazoglou, “Planning and monitoring
the execution of web service requests,” International Journal on Digital
Libraries, vol. 6, no. 3, pp. 235-246, 2006.

W. Heaven, D. Sykes, J. Magee, and J. Kramer, “A case study in
goal-driven architectural adaptation,” in In Proceedings of Software
Engineering for Self-Adaptive Systems, 2009.

E. S.-K. Yu, “Modelling strategic relationships for process reengineer-
ing,” Ph.D. dissertation, Toronto, Ont., Canada, Canada, 1996.

A. van Lamsweerde, “Goal-oriented requirements engineering: A guided
tour,” in In Proceedings of RE, 2001.

programming kit (GLPK),

IX. APPENDIX

This section proves the NP-completeness of the service-
building problem introduced in Definition 3. The ILP encoding
of the service-building problem shown in Section IV-A proves
that the problem belongs to complexity class NP. Hence in
this section we are left with proving the problem is NP-hard.

First, let us consider a special class of service-building
problems where the cost bound K is taken to be a vector
of oo values; correspondingly, the cost vectors of every unit
become irrelevant as long as it is not zero, hence without loss
of generality we set them to be the singleton {1} and we omit
considering it in the following proofs. The resulting special
class of problem instances is called flat service-building prob-
lem. It is obvious that the NP-hardness of the flat service-
building problem entails the NP-hardness of the (standard)
service-building problem of Definition 3.

Then, we introduce a generalization of the flat service-
building problem where service units are defined by multi-
sets O and R rather than plain sets; this generalized problem
is called multi service-building problem. Let us show that it is
at least as complex as the flat service-building problem.

Lemma 4. If the multi service-building problem is NP-hard,
then the flat service-building problem is also NP-hard.

Proof: A poly-time reduction of the multi service-
building problem to the flat service-building problem will
prove the statement.

In the following reduction, primed items denote items of
a generic multi service-building problem, whereas unprimed
items denote items of the corresponding flat service-building
problem. Let us start by setting ¥ = ¥/ = {z1,...,2,}.
Then, for every U € U’, let ny be the maximum multiplicity
of any element in U| g or U|p; correspondingly we add the ny
variables yJ;, ..., y" to X. Correspondingly, ny service units
Vi, ..., VU are added to U as follows. For 1 <i < ny, Vi,
denotes the service unit with: (i) x; € Vo iff Uo(x;) > 4
(i) z; € ViR iff Ulg(x;) > i (ii) yi; € Vio; (v) if i <
ny, yii ' € Vi|g; and (v) if i > 1, yi; ' € V|- Finally, for
all 1 < j < |I'|: I;(V}}) = I}(U) for every U and I;(V{;) = 0
for all 4 > 0.

The soundness of the reduction follows from the fact that,
whenever a unit Vé is chosen, its requests over services yy
can be satisfied only by including all sibling units V¥ for all
1 < k # i < ny. Together, these ny units represent precisely
the requests and offers of the original multi-set unit U. Notice
that the reduction is poly-time only if we assume a unary
encoding of multiplicities ny.]

We are now ready to prove NP-hardness of the multi
service-building problem.

Lemma 5. The multi service-building problem is NP-hard.

Proof: We provide a poly-time reduction of the set-
covering problem to the multi service-building problem. The
set-covering problem is as follows: given a family F =
{Y1,...,Y,} of subsets of a finite set Y, and a budget b,

10

determine if there exists a collection of at most b sets in F'
whose union is Y.

Given F,Y,b we build a corresponding instance of multi
service-building problem. Let ¥ = Y U {c}; without loss of
generality assume ¢ ¢ Y. For every 1 < i < n we define
service unit V; as follows: Vi|o(y) = 1 for all y € Y; and
0 otherwise; and V;|r(c) = 1 and O otherwise. In addition,
let V' be the service unit defined as follows: V|g(y) = 1 for
all y € Y and 0 otherwise; and V|p(¢) = b and 0 otherwise.
Finally, let &/ be V U|J, Vi and I = {I}, where I(V) = 1,
and I(V;) = 0 for all 4.

Let us show that the answer to the set-covering problem is
affirmative iff the corresponding instance of the multi service-
building problem has an affirmative answer.

The left-to-right implication is straightforward: given a
collection Z of at most b sets in F' whose union is Y, the
set of service units {V; | ¥; € Z} U {V} is such that all
requests are balanced out by offers.

For the right-to-left implication let us first assume that there
are no repeated elements in the solution 7" to the multi service-
building problem (i.e., T" is a regular set). In this case it is clear
that the collection of sets Z = {Y; | V; € T'} is a solution to
the set-covering problem, as: (i) (J,., 2z = Y because every
request of services in Y is satisfied by some unit, and (ii)
|Z] < b because every request for service ¢ by every unit V;
is satisfied by some of the b offers of service ¢ in V.

Next, assume that the solution to the multi service-building
has a single instance of V. Then, the total number of V;’s
cannot be more than b because otherwise not all requests of
service c in the chosen V; would be satisfied. Now, assume that
some entry occurs more than once, i.e., T(V;) > 1 for some
Vi. As far as satisfying requests for services from Y in V' is
concerned, additional instances of V; are useless because they
have precisely the same services and every request for services
in Y occurs exactly once in V. Hence, if we let T'(V;) = 1
we still have a valid solution. In all we reduce to the previous
case of no repeated elements in 7'

Finally, consider the case in which more than one instance
of V appears in T'. In this case, reasoning similarly as in the
previous paragraph, we can actually consider only a single
instance of V with all related V;’s and still have a valid
solution.

Notice that even if b is encoded in unary, the reduc-
tion shows NP-hardness because the set-covering problem is
strongly NP-hard. []

In all we have the desired result.

Corollary 6. The service-building problem is NP-complete.

Proof: The encoding of Section IV-A proves that the
service-building problem is in NP. NP-hardness is shown as
follows: Lemmas 5 and 4 prove that the flat service-building
problem is NP-hard; then any NP problem is reducible to the
flat service-building problem, which is easily reducible to the
service-building problem of Definition 3 as it is a special case
of it. []

