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Abstract—With the omnipresent usage of APIs in software
development, it has become important to analyse how the
routines and functionalities of APIs are actually used. This
information is in particular useful for API developers, to
make decisions about future updates of the API. However,
also for developers of static analysis and verification tools this
information is highly important, because it indicates where and
how to put the most efficient effort in annotating APIs, to make
them usable for the static analysis and verification tools.

This paper presents an analysis of the usage of the rou-
tines and functionalities of the Java concurrency library
java.util.concurrent. It discusses the Histogram tool
that we developed for this purpose, i.e., to efficiently analyse a
large collection of bytecode classes. The Histogram tool is used
on a representative benchmark set, the Qualitas Corpus. The
paper discusses the results of the analysis of this benchmark set
in detail. This covers both an analysis of the important classes
and methods used by the current releases of the benchmark
collection, as well as an analysis of the time it took for the Java
concurrency library to start being used in released software.

Keywords-API usage, java.util.concurrent, static analysis,
Qualitas Corpus.

I. INTRODUCTION

The widespread use of Application Programming Inter-

faces (APIs) has had a significant impact on programming.

Typically, APIs implement many standard routines and data

structures, and can shield the programmer from many imple-

mentation details. For example, the Java language includes

an extensive standard API [1].

Because of the widespread and varied use of APIs, it is

difficult to predict which routines and functionality of an API

are used most often. However, there are many reasons why it

is important to actually have this usage information. First of

all, like all other software, APIs need maintenance. For API

developers, knowing how heavily an API is used, and which

functionality of the API is actually used, gives a good indi-

cation where to put effort during this maintenance. Spending

much effort on optimising performance of a method that is

never used might not be worth the effort, whereas improving

performance or resource use of a method that is heavily used

will be appreciated by many developers. Usage information

also can help to predict impact of refactorings, and help to

decide between different refactoring or deprecation options.

Knowledge about API use is not only useful for API

developers, but also for developers of tools that increase

software quality, such as tools for static analysis (e.g.,
FindBugs [2] and PMD [3]); validation (e.g., JMLunitNG [4]

and KeYTestGen [5]), and program verification (e.g.,
Clousot [6], Code Contracts [7], [8], various JML tools [9],

[10], [11], KeY [12], ESC/Java [13], and VerCors [14]). To

be used effectively, these tools require annotations of some

or all of an application, including those API classes and

methods that are actually used. Extending APIs with such

annotations is a great deal of work without much reward.

Therefore, usage information of APIs is important to do this

work strategically, and to focus on those parts of the APIs

that are most-widely used.

In this paper, we study the Java concurrency library

(java.concurrent.util). This top-quality, highly

scalable library provides many concurrency and synchro-

nisation mechanisms (essentially as described in [15]). Our

main concern is to find out which (parts of) classes and

interfaces must be specified in order to make design by

contract possible for realistic Java programs.

To do the analysis, we wrote the Histogram tool [16]. This

tool has been developed to perform efficient, simple usage

analyses of APIs for Java at the bytecode level. We applied

the Histogram tool to a large corpus of roughly half a million

Java classes of various sizes, in bytecode format (collected

as the Qualitas Corpus benchmark set [17]). The classes

are written by thousands of developers, are of production-

quality, and are typically using multiple threads of execution.

The results of this analysis, i.e., an overview of usage

frequency and patterns for different concurrency constructs,

has been used to guide annotation writing of library classes

for the VerCors (Verification of Concurrent Data Structures)

project [14].

The results of the analysis show that it is important to

consider several different ways to count the usage of classes.

It also revealed that developers use concurrency construct
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not always in the same way as they are taught in university,

including using synchronisation mechanisms that are not in

the standard textbooks, or using unexpected routines. Finally,

the analysis also shows that the uptake of the concurrency

library has not been as fast and complete as one might hope

for.

The remainder of this paper is organised as follows. First

of all, Section II discusses the Java concurrency library, what

we want to know about its use and how the applications

to be analysed are determined, and what are the important

characteristics to ensure representativeness of such a set.

Next, Section III discusses our way of determining the

importance of classes and methods and the Histogram tool

that we used to compute the raw data. Then Section IV

shows the application of Histogram to determine the usage

of the Java concurrency library on the set of example classes.

Finally, Section V concludes and discusses related and future

work.

II. SETUP OF EXPERIMENT

This section describes the basics for our experiment: it

first gives an overview of the Java concurrency package, and

then it introduces the benchmark collection that we use to

obtain information about the use of the concurrency package:

the Qualitas Corpus [17].

The Java Concurrency Package

The Java concurrency package has been added to the Java

standard with the release of Java 5 on September 30, 2004. It

is a standardisation of the concurrency package developed

by Doug Lea [15], [18]. Since its release in Java 5, the

package has been relatively stable. In both Java 6 and 7, the

queueing functionality has been extended with new variants.

Moreover in Java 7, the notion of fork-join task was added

to the task-based computing framework.

The package provides the most important building blocks

for developing concurrent programs:

• Implementations of synchronisation primitives, such as

locks, including read-write locks, semaphores, count

down latches, and barriers.

• The atomic classes, which are wrapper classes for

volatile variables, supporting set, get and atomic

compare-and-set operations.

• Implementations of typical concurrent data structures,

such as concurrent maps and queues.

• The Executor framework, supporting task-based paral-
lelism.

The synchronisation primitives are implemented on top of

the Synchronizer framework, providing basis synchronisa-

tion mechanisms. Several different locking mechanisms are

implemented, all implementing a common Lock interface.

This interface declares methods lock() and unlock,

allowing arbitrary locking patterns. Before introduction of

this interface, locking in Java could only be done by using

a synchronized code block.

Volatile variables can be used for lock-free synchronisa-

tion. Updates to volatile variables are immediately visible to

other threads. Essentially, get and set-operations are updates

and lookups of these volatile variable, whereas the compare-

and-swap operation uses the hardware-specific CAS operator

natively.

The java.util.concurrent API provides a wide

range of common concurrent data structures, such as queues,

maps, stacks etc. For many of these data structures different

implementations are provided, providing different blocking

behaviour (e.g., lock-free implementations, fine-grained and

coarse-grained locking). As an example, the multi-threaded

version of the map ConcurrentMap extends the standard

Map with atomic operations. Threads can atomically attempt

to add, replace and remove mappings. For example, if an

add operation succeeds, the thread knows that it was the

first thread to add that particular key.

The basic task-based framework is based on the notion

of tasks that run from start to finish without blocking.

These tasks are submitted to an execution queue, that is

backed by an unknown number of worker threads. The

essential functionality of the framework is provided by the

Callable, ExecutorService, and Future interfaces.

In particular, the Callable interface encapsulates a com-

putational task, which is queued for execution by calling

an implementation of the Executor interface. To obtain

the result of the task, the creator of the task obtains a

reference to a Future object that was returned by the

enqueue operation. When the task is done, its result will

become available in this Future object.

In the initial version of the framework, tasks are not

supposed to block. Therefore, it is unsafe for a task to wait

for another task, which makes writing divide-and-conquer

style algorithms awkward. This is fixed in Java 7, with the

notion of a fork-join task which can not only spawn new

tasks, but can also wait for the completion of the tasks that

it submitted, without deadlocking.

The Qualitas Corpus

To analyse the use of Java’s concurrency API, we need

to derive statistics from a representative benchmark set. To

avoid unfair bias, this should be a data set collected by

somebody else. The Qualitas Corpus collection of software

system has been collected exactly for purposes such as

ours: its primary goal is to provide a resource that supports

reproducible studies of software [17]. It contains open source

Java projects, in source and bytecode format. Criteria for

inclusion in the set are only based on technical conditions

(such as being open source, written in Java), but not on

software quality or purpose. This makes this collection

suitable for the kind of analysis that we intend to do: it

provides a good average sample of large software projects.
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Table I
QUALITAS CORPUS SYSTEMS WITH EVOLUTION HISTORY.

Project Description
ant A Java library and command-line tool for supporting processes

described in build files as targets and extension points depen-
dent upon each other.

antlr A parser-generator framework for constructing recognizers,
interpreters, compilers, and translators from grammatical des-
criptions containing actions in a variety of target languages.

argouml ArgoUML diagram generator/data visualization.
azureus A P2P file sharing client using the bittorrent protocol.
eclipse An open extensible development platform.
freecol Turn-based strategy game.
freemind Mind-mapping tool.
hibernate Projects allowing utilisation of POJO-style domain models.
jgraph Graph management and visualisation.
jmeter Application for measuring performance.
jung An extendible language for the modelling, analysis, and visu-

alization of data that can be represented as a graph or network
junit Unit testing framework.
lucene Indexing and search implementation.
weka A collection of machine learning algorithms for data mining

tasks.

Moreover, the Qualitas Corpus set also maintains old

releases of the systems included in the benchmark set. This

makes the collection also suitable for a historical analysis, to

investigate the penetration of the Java concurrency library.

We used the 2012-04-01 version of the Qualitas Corpus

set. It contains the most recent versions of 111 software

projects, including 14 projects with 10 or more historic

releases (see Table I for a short description of these systems).

These historic releases go back in time to well before even

the prototype of the concurrency framework. To give an idea

of the size of the data set, the 111 most recent projects

together add up to roughly half a million of Java classes and

1.3GB of bytecode, while the historic releases altogether add

up to 5.5GB.

We analyse the collection of current releases to establish

what are the most important and widely-used classes and

methods in the concurrency library. Moreover, we looked at

the historic series to study how fast the concurrency library

was adopted by developers. The next section discusses

the tool that we used to analyse the bytecode, and the

main considerations underlying the analysis; Section IV then

discusses the results of the analysis.

III. ANALYSIS TOOL CHAIN AND METHODOLOGY

This section provides the details of the analysis process.

Essentially, we scan the bytecode of every project in the

benchmark set. Every invokation of a method on an object

of a certain class counts as one use of class, and also as one

use of the method for that class. Once we have obtained the

counting information, we pass (a subset of) the data into a

spreadsheet and analyse the spreadsheet.

To support the counting process, we have developed a

simple tool: the Histogram tool. We briefly describe its

implementation. Then we argue that the analysis method of

counting uses of classes and methods has its limitations, but

still can provide useful information.

Histogram Tool Details

To count the method invokations, we developed the His-

togram tool, publicly available via [16]. Histogram is a

command-line tool that is given one or more projects as

parameters. Given a project, it will search for bytecode files

in that project. Specifically, given a directory it will find all

.class files, and it will scan all sub-directories. The tool

will also consider all .class files contained in archives,

such as .jar and .war files. This approach mimics the

behaviour of a JVM, which will scan directories and archives

in its CLASSPATH.

Each of the bytecode files is opened using the ASM

library [19] and scanned for method invokations. For each

method invokation, depending on the settings either the class

of the object on which the method invoked is counted, or

the class/method pair is counted.

The result of the scan is a table whose columns are

indexed with the projects and whose rows are indexed with

classes or methods. The entries are the computed counts.

The result is written to disk as a CSV file, which can then

be further analysed using a standard spreadsheet tool.

The Relevance and Correctness of Invokation Counts

As mentioned above, the tool counts invokations of meth-

ods on objects. This might seem a rather trivial measure,

but we claim that even though it has its limitations, it still

provides useful information.

First of all, it should be observed that the analysis will

answer the question whether a class is used at all much

accurately, because if a class is used, its constructor has

to be invoked. And constructor calls can only be hidden

from our analysis if they either happen in an external library

(just the Java standard library in our case) or if reflection

is used. Moreover, the simplicity of the approach allows us

to analyse very large collections of bytecode quickly, and

thus to provide this information efficiently, and without any

extra effort. Furthermore, even though the information is

incomplete, the really important methods are likely to show

up, and the differences in frequency still can be used to

decide which method is more relevant.

To understand this, it is important to understand in

which cases our analysis results are incomplete. As men-

tioned above, for each method invokation, the method

call is counted as a call to the method of the static

type of the object. Since Java uses dynamic dispatch in

many cases this is not the method that will be exe-

cuted. There is one specific case where this difference

in result is especially relevant, namely when the static

receiver type is not part of the concurrency library. In

Fig. 1, we give an example of two situations in which

a method invokation is counted for a different class than

214



Figure 1. Example with imperfect method counts.

import j a v a . u t i l . c o n c u r r e n t . l o c k s . R e e n t r a n t L o c k ;

p u b l i c c l a s s LockDemo ex tends R e e n t r a n t L o c k {

p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) {
T a l k e r t =new LockedTa lke r ( ) ;
t . s ay ( ” h e l l o wor ld ” ) ;

}

}

i n t e r f a c e T a l k e r {
p u b l i c vo id say ( S t r i n g s e n t e n c e ) ;

}

c l a s s LockedTa lke r ex tends R e e n t r a n t L o c k
implements T a l k e r

{

p u b l i c vo id say ( S t r i n g s e n t e n c e ){
l o c k ( ) ;
System . o u t . p r i n t f ( ”%s%n ” , s e n t e n c e ) ;
u n l o c k ( ) ;

}
}

desired. First, the main program creates a LockedTalker
but assigns it to a Talker variable. Thus the call to

LockedTalker.say in the main class is counted as a call

to Talker.say. Second, the LockedTalker class inher-

its from ReentrantLock, in order to be able to directly

call the lock() and unlock() methods. But because

those method calls occur in the body of method say(),

they are counted as uses of the LockedTalker.lock()
and LockedTalker.unlock() methods rather than as

uses of the same methods in ReentrantLock. The end

result is that no method calls to ReentrantLock are

counted. Note however that there will always be a call to

the constructor of ReentrantLock (from the constructor

of LockedTalker), so it cannot happen that the use of

this class is completely ignored.

As a real example of the first case, consider the

ConcurrentHashMap, which extends Map from the Java

collection API. If the static type of the receiver object is a

Map, then any call to a method that was inherited (e.g., put),

will mean that this use of the concurrent hashmap will be

uncounted.

The other case in the example was constructed, due

to the fact that we observed that two projects did use

a ReentrantLock, but never used the lock() or

unlock() method. Detailed inspection of the two projects

revealed that these cases were due to extension of the

ReentrantLock class, thus hiding the use of the lock()
and unlock() methods.

It is future work to combine the counting results of the

Histogram tool with static analysis techniques for dynamic

method call resolution (such as e.g., Rapid Type Analy-

sis [20]) to increase the precision of the analysis regarding

the first effect. But these analyses can be expensive and must

be incomplete, as the underlying problem is undecidable. In

addition, if we extract the class hierarchy first then we can

count every method invokation for every class for which the

method is defined and thus also eliminate the second effect.

Finally, for our particular application domain, the anno-

tation of API methods to be used in design by contract-

based verification tools, the imprecisions in the analysis

results often coincides with the methodological approach.

In particular, it is the static receiver type that determines

which contract is used for verification, and thus the counting

information that we generate correctly indicates how often

the contract will be used.

IV. RESULTS OF ANALYZING JAVA.UTIL.CONCURRENT

This section discuss the results of our analysis, i.e.,
how is the java.util.concurrent packaged used

in the Qualitas Corpus benchmark set. As mentioned

above, the results are based on the benchmark set with

version number 2012-04-01, which contains 111 projects

in total; our analysis revealed that 53 out of these 111

projects used the Java concurrency API. For comparison,

the java.lang.Thread class is used in 102 projects.

First, we present the results of the analysis for class usage.

We present the results in two different ways: first we sort by

absolute number of references to the class; second we sort

by the number of different projects that use the class.

Next, for two widely used classes – the Lock inter-

face (most commonly used by absolute count) and the

ConcurrentHashMap class (most commonly used by

project count) – we discuss the results of the analysis for

method usage. Finally, we discuss the data we obtained

regarding the uptake of the concurrency package from

analysing the systems with more than 10 systems in the

Qualitas Corpus benchmark set.

The complete results of the analysis are available online at

the download page of [16]. This allows the interested reader

to inspect for example method usage information of classes

of his or her own interest.

Most Often Used Classes

First, we discuss the results of the analysis of counting

the references to java.util.concurrent classes in the

current release variant of the Qualitas Corpus. We computed

both the total number of references to each class in all

projects and the number of projects referencing a class. The

top 25 classes according to reference counts and project

counts can be found in Table II and III, respectively.

It is important to compute the most important classes

both by considering the absolute number of references and

by considering the number of projects. The size difference

between the smallest and the largest project is about 3 orders

of magnitude. By looking at just the absolute number a big

project that intensively uses a single class could make that

class seem more important than it really is. By looking at
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Table II
TOP 25 CLASSES BY REFERENCE COUNT

refs projs class name
3401 21 Lock
2148 33 ConcurrentHashMap
1826 17 ConcurrentMap
1625 29 AtomicInteger

5 1596 22 AtomicLong
1295 26 ReentrantLock
1279 17 AtomicBoolean

619 21 ReentrantReadWriteLock
607 16 ReadWriteLock

10 551 26 CopyOnWriteArrayList
544 23 Future
502 20 ThreadPoolExecutor
440 12 ConcurrentLinkedQueue
429 11 AtomicReference

15 413 16 CountDownLatch
393 13 ReentrantReadWriteLock$WriteLock
371 27 ExecutorService
338 16 BlockingQueue
325 13 Condition

20 313 11 ReentrantReadWriteLock$ReadLock
303 25 LinkedBlockingQueue
234 18 TimeUnit
213 8 Semaphore
189 12 FutureTask

25 171 29 Executors

just the number of projects, a group of tiny projects that all

use a class once could make that class seem more important

than it really is too.

What is also a factor is that certain classes, by design are

used less often than others. For example, the Executors
class has many factory methods. It is an important class,

ranking number 3 in the project count top 25, yet it ranks

as number 25 for total number of invokations. Similarly, the

Lock interface ranks as number 10 on the project count,

but is is the undisputed number 1 when considering absolute

numbers.

There are a small handful of surprises that arise out of

this objective, quantitative analysis.

Firstly, the CountDownLatch is far, far more popular

than CyclicBarrier, even though the latter has a simpler

semantics and is, in our experience, typically taught much

more frequently in concurrency courses. Apparently, the

differences in the signalling protocol, make the latch more

important in practice.

Archetypical constructs available at the language level,

like semaphores, various kind of queues, and futures, occur

with very low frequencies. We have no working hypothesis

for why this is the case beyond the suspicion that, as

instruction in concurrency theory has fallen out of favour

in universities, so too has appreciation for these basic

constructs.

Finally, atomic primitive type wrappers are used enor-

mously more often than atomic reference wrappers. We

suspect this is due to the fact that developers rightly believe

that reference updates are atomic, but forget that a test-and-

Table III
TOP 25 CLASSES BY PROJECT COUNT

refs projs class name
2148 33 ConcurrentHashMap
1625 29 AtomicInteger

171 29 Executors
371 27 ExecutorService

5 1295 26 ReentrantLock
551 26 CopyOnWriteArrayList
303 25 LinkedBlockingQueue
544 23 Future

1596 22 AtomicLong
10 3401 21 Lock

619 21 ReentrantReadWriteLock
502 20 ThreadPoolExecutor
234 18 TimeUnit

1826 17 ConcurrentMap
15 1279 17 AtomicBoolean

607 16 ReadWriteLock
413 16 CountDownLatch
338 16 BlockingQueue
157 16 Executor

20 108 15 ExecutionException
393 13 ReentrantReadWriteLock$WriteLock
325 13 Condition

86 13 CopyOnWriteArraySet
82 13 ArrayBlockingQueue

25 440 12 ConcurrentLinkedQueue

set sequence on a reference is not and/or can behave in

unexpected ways. (E.g. the double-checked locking problem

[21].) Therefore, they mistakenly believe it is not necessary

to use the atomic reference wrappers. Another explanation

that we see is that AtomicInteger and other primitive

wrappers are relatively easy to understand and to reason

about in global invariants, so developers use them. But the

major use of AtomicReference is in the design of lock-

free algorithms, which are much harder to understand, and

therefore probably avoided by many developers.

Most Important Methods

This section discusses the results of the method usage

analysis for two widely-used classes: the Lock interface

and the ConcurrentHashMap.

Lock-Related Methods: The Lock interface is the most

widely used according to reference count, therefore we

further analyse which methods are used. As it is diffi-

cult to look at an interface in isolation, we also consider

the method counts for the cluster around this interface.

Specifically, we looked at the Condition, Lock and

ReadWriteLock interfaces and the ReentrantLock
and ReentrantReadWriteLock classes.

The top 10 of methods, sorted by project counts can

be found in Table IV. The top 10 by reference counts is

not included because it only differs in the ranking of the

constructors (as expected, objects are constructed less often

than that they are used).

As expected, the lock/unlock methods are by far the most

often used. Out of 6428 method invokations in total, the
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Table IV
TOP 10 LOCK RELATED METHODS BY PROJECT COUNT

refs projs method name and signature
260 26 ReentrantLock.<init>() : void

2333 21 Lock.unlock() : void
956 21 Lock.lock() : void

80 20 ReentrantReadWriteLock.<init>() : void
568 16 ReentrantLock.unlock() : void
312 16 ReadWriteLock.readLock() : Lock
295 16 ReadWriteLock.writeLock() : Lock
286 16 ReentrantLock.lock() : void
252 12 ReentrantReadWriteLock$WriteLock.unlock() : void
122 12 ReentrantReadWriteLock$WriteLock.lock() : void

various lock methods account for 1458 invokations and the

various unlock methods for 3352 invokations. A good third

of the projects using locks also use condition variables,

which is not unexpected. What came as a surprise is that

no less than 11 projects use isHeldByCurrentThread.

This particular method is not covered at all in the theoretical

standard API for locks, which consists of (variants of)

lock/unlock plus wait/notify.

By taking a look at the available sources, we could find

10 uses of the isHeldByCurrentThread method. In 4

cases, the method is used in an assertion. In 3 other cases,

the method is used to actually find out if a lock is held

or not. Finally, there are 3 cases where the method is used

inside what seems to be a utility library that is part of the

project.

Considering our particular application domain, the anno-

tation of API methods to be used in design by contract-

based verification tools, this means that our specification

techniques have to be able to describe the behaviour of this

isHeldByCurrentThread method: design by contract

verification can only be successful is all methods that are

invoked have been specified.

ConcurrentMap-Related Methods: The most important

artefact by project count (33) is the ConcurrentMap in-

terface. This interface extends java.util.Map, is in turn

extended by ConcurrentNavigableMap. The latter two

interfaces are implemented by ConcurrentHashMap and

ConcurrentSkipListMap, respectively. For the method

analysis, we ignore ConcurrentNavigableMap and

ConcurrentSkipListMap because they are used twice

only.

The analysis of this interface is complicated by the fact

that it extends the common java.util.Map interface

from the collection API. Hence, as discussed above, there

are cases where calls to the concurrent map are not counted

as such, but counted as calls to the Map interface instead.

Table V shows the top 10 of concurrent map methods.

Note that 33 projects create a concurrent map, while the

first non-constructor method is used only in 16 projects.

This suggests that the concurrent map is indeed used as

a thread-safe replacement of the sequential map and not

Table V
TOP 10 CONCURRENT MAP RELATED METHOD BY PROJECT COUNT

refs projs method name and signature
991 33 ConcurrentHashMap.<init>() : void
124 18 ConcurrentHashMap.<init>(int) : void
447 16 ConcurrentMap.get(Object) : Object
285 16 ConcurrentHashMap.get(Object) : Object
205 15 ConcurrentHashMap.put(Object,Object) : Object
182 14 ConcurrentMap.putIfAbsent(Object,Object) : Object
171 13 ConcurrentMap.put(Object,Object) : Object
59 12 ConcurrentHashMap.<init>(int,float,int) : void
59 12 ConcurrentHashMap.putIfAbsent(Object,Object) : Object
87 11 ConcurrentMap.clear() : void

because of the extra functionality it offers. When looking at

the usage information of the four atomic methods that form

the difference between the Map and ConcurrentMap
interfaces, we get similar indications. If we add up their

uses in the concurrent map interface and implementation,

we get:

method count projects

putIfAbsent(key,value) 241 19

remove(key,value) 68 12

replace(key,value) 13 8

replace(key,old,new) 35 8

total 357 21

Thus according to our counts, only 21 out of 33

projects use the new atomic methods, again indicating

that ConcurrentMap is typically used as a thread-safe

replacement of the sequential map.

Results

This section gives a list of the classes from the Java con-

currency API that we consider the most important according

to the results from our analysis. As a starting point, we

merged the analysis results of Tables II and III. To complete

the list, we also added their parent classes and implemented

interfaces to our list. Finally, because the various atomic

classes are highly similar, we added all of them instead of

just the popular ones (because a change to or a specification

for a method in one of these classes is easily carried over

to the other atomic classes).

This list is relevant for application developers and

specifiers. In particular, further developments of the

java.util.concurrent API are best focussed on

these classes, and also annotation-based verification methods

should focus on annotating these classes first.

The resulting list is:

• From the lock hierarchy:

Condition, Lock, ReentrantLock, ReadWriteLock,

ReentrantReadWriteLock, ReentrantReadWriteLock$

WriteLock, and ReentrantReadWriteLock$ReadLock.

• From the atomic variable classes:

AtomicInteger, AtomicLong, AtomicReference, and

AtomicBoolean.
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Figure 2. Concurrency use in releases during time period.
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• From the concurrent data structures:

ConcurrentHashMap, ConcurrentMap, BlockingQueue,

ArrayBlockingQueue, LinkedBlockingQueue, Concur-

rentLinkedQueue, and CopyOnWriteArrayList.

• From the executor framework:

Executors, ExecutorService, Future, Executor, Thread-

PoolExecutor, FutureTask, Callable, ExecutionExcep-

tion, RejectedExecutionException, and ThreadFactory.

• From the remaining classes:

CountDownLatch and Semaphore.

To confirm the relevance of the classes on this list, we have

counted the number of projects from the Qualitas Corpus

set, whose use of concurrency classes is completely covered

by classes on our list of most frequently used classes.

This indicated that this list fully covers the concurrency-

related aspects of 29 out of the 53 projects that use Java’s

concurrency API.

Adding a few more classes to the list can make a

big difference. For example, the coverage is increased

to 39 out of 53 by adding the following classes: Time-

Unit, CopyOnWriteArraySet, ScheduledExecutorService,

ScheduledThreadPoolExecutor, SynchronousQueue, Thread-

PoolExecutor$AbortPolicy, and TimeoutException.

The Uptake of the Concurrency Library

The historic releases in the Qualitas Corpus allowed us

to also look at the uptake of the framework over time. The

analysis gives us a lot of data points, with a system name, a

system version, a release date and the class counts. Unfor-

tunately the releases are not in all cases linear, meaning that

computing precisely how many systems use the concurrency

library at a certain point in time is difficult. E.g., if version

3.0 released in January uses the library, while version 2.8

released in February does not, should we say that the system

does or does not use the library in March?

We chose to answer the question in both ways. That is, for

each year we count the number of systems with at least one

release that uses the library and we also count the number of

systems with at least one release that does not use the library.

Hence, when a system phases in the library in some year, the

year before the transition it contributes 0 to the using count

and 1 to the non-using count. During the transition year,

it contributes 1 to both counts and after the transition year

it contributes 1 to the using count and 0 to the non-using
count.

Further, this counting is not just based on using and

not using the library, but we also looked at several other

criteria, including the use of of Doug Lea’s prototype of the

java.util.concurrent library and its variants.

Figure 2 shows the counts for the years 2004-2011 (before

2004 the concurrency library was not standardized and our

data points end early in 2012). It displays the following five

criteria:

criterium Matches releases during the year that . . .

releases . . . merely happen,

prototype . . . use one of the prototypes of the con-

currency library,

official . . . use the official release of the official

concurrency library,

any . . . use either variant of the concurrency

library,

none . . . use none of the variants of the con-

currency library.

The picture shows us several things, which are not neces-

sarily all surprising. For example, in each year there are

typically two systems that do not release during the year,

which means that there is more than a year between releases.

Also, the first year in which the concurrency library is used

is 2006, which is more than a full year after the release

of the official version in September 2004 as part of Java 5.

Neither of which is surprising, considering that development

cycles of a year or two are not unusual.

What can be considered strange is that the prototypes

show up during 2009-2011 only, instead of already being in

use before 2004. The use of the prototypes seems to decline,

but because our data ends early in 2012, this is guessing

rather than fact.

What is clearly visible is that the releases that do not

use the concurrency library have decreased over the years

from all 12 to just 4 in 2012. From those 4, three are

applications which do not need concurrency very much:

freemind, argouml, and antlr. The one application that needs

concurrency but does not use the concurrency library is

ant. Assuming the sample is representative, this means

that two-thirds of all systems released use the concurrency

library in some way. Moreover, nearly all systems that need

concurrency seem to use the library in one way or another.
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V. CONCLUSION

Contributions/Summary

This paper describes how we have analysed the use of

the classes and methods of the Java Concurrency library

(java.util.concurrent). We have done this by im-

plementing a tool that counts the number of method invoka-

tions in bytecode. The tool has been used on the Qualitas

Corpus benchmark set as a collection of representative

product-quality Java projects. Both the tool and the results

of the analysis are available at the download page of [16].

We have presented and analysed the usage data obtained

by the analysis. In addition, we have used the historic

information in the Qualitas Corpus benchmark set to derive

information about the uptake of the concurrency library

for Java. Most results are as expected, but even so a few

surprises show up, showing that developers do not always

use concurrency mechanisms in the way they are taught in

textbooks.

The data that is provided by the tool conclusively indicates

whether a class is used at all. However, because of the

difference between dynamic and static typing, the analysis

is not precise enough to count all method usages. However,

even though the data about method usage is incomplete, it

still shows important trends about method usage. The results

from the analysis can be used to determine where to put

effort when maintaining and improving the library, it can

provide information about the consequences of refactoring

the library, or deprecating certain methods, and it can be

used by developers of annotation-based analysis tools, to

decide where to put the effort in annotating library classes.

The results from the analysis have in particular been used

to determine the focus on the Java concurrency library for

the VerCors project [14].

Related Work

Peer-reviewed large-scale code analysis is relatively un-

usual given the volume of code created and available via

various Open Source projects and websites. Within the realm

of researchers focused on reasoning about programs, one

would think that developers, as stakeholders, and code, as

the primary artefact about which we reason, would hold the

attention of researchers more.

Chalin has published two pieces of work whose results

directly, objectively derived from developer surveys or code

analysis, that directly impacted the semantics of the Java

Modelling Language. In his ICSE paper he summarizes a

developer survey which, in part, made the community realize

that an assertion semantics based upon strong validity was

necessary [22]. In the complementary paper by Chalin and

James, large-scale static code analysis drove the community

to decide to switch to a non-null reference default semantics

to relieve annotation burden. Our work differs from his

mainly in the sheer size and scope of our analysis, given he

only analysed 700 KLOC of code, which is several orders

of magnitude smaller than our sample.

Raemaekers et al.’s work is quite similar to ours because

it focuses on answering a particular question, one that is

perhaps presumed known in the folklore, through objective

static analysis [23]. They analyse the contents of the Qualitas

Corpus as well as nearly two hundred proprietary systems

to which they have access. Their analysis is different from

ours because it is syntactic, applied to source rather than

bytecode, and is thus potentially erroneous and overcounts

library use, since import statements do not mean that a class

is actually used.

Rocha and Valente gather empirical evidence about the

use of Java annotations by developers by statically analysing

the Qualitas Corpus as well [24]. They attempted to use

the JDK’s apt tool to analyse source, but quickly found

the tool not up to the task. They then developed a textual

search program, which they do not describe in any detail.

Consequently, they suffer the same flaws as Raemaekers et

al.

Finally, Beckman et al. study nearly two millions lines

of code to understand how object protocols are used in

practice [25]. Their work is based upon a conservative static

analysis of source code, based upon their own static analyser.

Thus, their method is more similar to ours in both scale and

method than any of the other aforementioned papers.

Threats to Validity

The main threat to validity for our work is the question

of whether or not the code base we have analysed is truly

representative of what developers write in practice. We are

confident of our validity due to the size and scale of our

analysis, the recognized validity of other published studies

based upon the same corpus, and the fact that we precisely

statically analyse bytecode. Originally we had prepared to

analyse a much larger corpus, which included every Open

Source system ever shipped by the Apache Foundation,

IBM, Sun, and the Eclipse Foundation. We have kept this

corpus in reserve, in case we need to do a larger-scale

analysis in the future.

Future Work

Future work breaks down into two categories: further

analyse the results of our analysis, and improve the tool

and analysis method to obtain more detailed results.

In the first category, one of the open ends is the unex-

plained popularity of the CountDownLatch. The main

purpose of this class is to synchronise between computa-

tions, which until Fork/Join tasks were added in Java 7, was

not easily achieved between tasks. Therefore, we believe it

will be interesting to see if the new Fork/Join tasks will

take over market share from the old style tasks and/or the

CountDownLatch. But given the uptake periods observed
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before, it will take a few more years until this effect might

become visible.

In the second category, an obvious improvement would be

to make the counts produced by the tool more detailed. As

mentioned above, the source of this incompleteness is that

the tool counts the method as being invoked on the static

receiver type of the object, instead of the dynamic type. It

would be interesting to extract the subtype hierarchy and to

count a method usage for every supertype that has the same

method, in order to avoid artificially low counts. In addition,

we could also integrate an efficient static analysis for method

call resolution that allows us to consider the dynamic type

of the receiver object in as many cases as possible.

In addition, the tool could also do the counting at dif-

ferent levels. With the analysis in this paper, we obtained

an overview of which classes and methods are important

to projects, but projects themselves are almost always a

collection of sub-projects and it might be interesting to also

look at that level. However, this would increase the number

of data items by an order of magnitude, which requires

that the analysis is supported by a database, and that more

advanced queries can be made.

Finally, it would also be useful to extend the tool so that

it can automatically give use and coverage information for

a user-specified list of methods.
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