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Abstract

Cyber-Physical Systems are embedded computers that control complex, physical pro-

cesses via autonomous peripherals while cooperating as agents in distributed networks.

Due to the scale and complexity of the interactions that occur within cyber-physical

systems, tracing system requirements accurately and appropriately is extremely hard.

The literature confirms that they are even harder to maintain and keep up-to-date during

the life of the project.

However, the information that requirements traceability provides is a crucial part of

determining the completeness of an application. Existing requirements management

systems do not scale well and traceability is difficult in such highly heterogeneous

environments.

This research presents TORUS (Traceability Of Requirements Using Splices), a

novel traceability framework that operates outside of, yet connects to, diverse require-

ments and development environments. Our approach introduces Splices, autonomous

traceability data structures that persist trace information through the inevitable changes

that occur during system design and development.

A Design Science research methodology was adopted to show how the TORUS

framework can be applied to cyber-physical systems that employ the IEC 61499 Func-

tion Block Architecture. A mechanical item sorting machine is modeled, the require-

ments of which are described initially using CESAR (Cost-efficient Methods and
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Processes for Safety-relevant Embedded Systems) requirement templates. These tem-

plates help to formalize the pre-Requirement Specification’s free-form text into less

ambiguous requirements statements. A domain ontology is defined before modeling the

requirements further within the Sparx Enterprise Architect Requirements Management

system. Enterprise Architect uses SysML diagrams to capture each requirement in

context with its acceptance tests, non-functional and safety requirements while the

model can be persisted for later use.

Formal mathematical models of requirements, function blocks and splices are

presented to show how this trace information can be mined, delivering important project

metrics to stakeholders. By capturing not only the current state of the system but also

by preserving historic traces, TORUS allows project teams to see a much richer view of

their system’s artifacts.

In parallel with the creation of these models, prototypes of TORUS were created

in Java to explore the proposed splice metadata model. These demonstrated that it is

possible to extract trace information directly from both Enterprise Architect models and

the nxtStudio IEC 61499 object repository.

Using the relationships expressed by these formalisms, the resulting metadata

information model for splices is extended to demonstrate how these entities can capture

the status of each requirement. We define a set of splices as being the Skein of the system;

the set of traces that connect the model and application artifacts together like warp and

weft of the threads in a tapestry. Information aggregated in this way is important since

it provides quantifiable metrics that can be used to provide an empirically-determined

overall state of the system under examination.

The results indicate that the TORUS framework scales well and that the skein and

splices can provide metrics that should allow us to perform code-level validation and

completeness checking in the future.
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Chapter 1

Introduction

How can we be sure that the computer systems that control our elevators, medical

devices, automobiles and aeroplanes actually satisfy all the requirements we specify

for them? It is often easy to manually trace how requirements are implemented for

simple systems such as electric coffee brewing machines. However, the majority of real-

world systems are far more complex and must deal with huge numbers of requirements,

a problem that has been studied deeply in projects such as CESAR (Cost-efficient

Methods and Processes for Safety-relevant Embedded Systems) (Rajan & Wahl, 2013;

Mitschke, Andreas and Loughran Neil and Josko Bernhard and Häusler Stefan and

Dierks Henning, 2010). The depth of analysis such systems require is only one aspect

of their complexity; managing a large requirements set to ensure that each aspect of

the design is implemented correctly demands sophisticated requirement traceability

techniques (Cleland-Huang, Gotel & Zisman, 2012).

Requirements Traceability is defined as the degree to which a relationship between

a piece of code in an application and its stated, parent requirement can be established

(IEEE, 1990). Traceability also helps to establish the reason why a particular software

algorithm should exist in the product. However, traces alone do not provide ways of

ascertaining completeness; the degree to which the requirements have been implemented

16



Chapter 1. Introduction 17

in the system so far (Barnat et al., 2015). Estimating completeness and other metrics

can be complex and time-consuming, yet they are crucial in order to successfully deliver

a product that meets the expectations of all of its stakeholders (M. J. Ryan, Wheatcraft,

Dick & Zinni, 2015).

The focus of this research is requirements traceability for Cyber-Physical Sys-

tems. These are typically distributed networks of cooperating computers that control

intelligent peripheral devices (Khaitan & McCalley, 2014). They control peripherals

directly and their computational elements can often perform complex data processing

autonomously on the raw telemetry they capture before passing refined information

onto other computing elements. In industrial environments, cyber-physical systems

contain distributed software which control mechatronic components that interact with

complex physical processes. Applications developed for such environments are usually

highly standardized.

IEC 61499 is one of several well-known architectures for writing software con-

trollers for industrial cyber-physical systems (IEC, 2013). IEC 61499 is particularly

applicable since it provides a formal, event-driven execution model. Each IEC 61499

application is constructed from basic elements called Function Blocks, whose inputs

and outputs are connected as a collaborative network. Through encapsulation and

component re-use, complex and highly modular software for distributed control systems

can be constructed.

While traceability is now a well-established and mature software engineering discip-

line (O. Gotel et al., 2012), cyber-physical systems present unique challenges. Finkel-

stein comments that traceability in environments where complex and safety-critical

requirements predominate is still an emerging discipline; advances in traceability

techniques that have emerged within other sectors are not always applicable in this

environment (Finkelstein, 2012, p. vi). Distributed processing usually implies decent-

ralized control so tracing an individual requirement through to all the components that
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work together to fulfill it is difficult (Penzenstadler & Eckhardt, 2012). Large-scale

systems can involve thousands of requirements, covering both internal system needs as

well as mandated contract requirements (Wnuk, Regnell & Schrewelius, 2009). Storing

requirements artifacts in an appropriate framework often requires the use of hierarchical

relationships if large numbers of traceability linkages are going to be created. There is

little evidence that traditional elicitation and management frameworks will scale when

tens of thousands of requirements are involved in cyber-physical environments (Broy &

Schmidt, 2014).

This research proposes a novel and generalized framework for the traceability

of requirements within large-scale cyber-physical systems. The framework, called

Traceability Of Requirements Using Splices or TORUS enables an automated yet formal

approach to tracing requirements. Central to TORUS, is the concept of a Splice, which

is a link between software requirements, their Use Cases and Unit Tests on one side and

system elements such as components, algorithms and their lines of code on the other.

By connecting or splicing together these artifacts, we can follow the traces like threads

in a tapestry. We have named this web of traces the Skein of the system. The metadata

stored within each splice is used to extract useful traceability-related information such

as historical linkages to previous versions, relationships between requirements and

system elements as well as information about code coverage. The generalized TORUS

framework is presented in Chapter 6.

One of the focuses of the research is scalability. An ideal traceability solution for a

complex application that has a large number of requirements has to scale well. It must

demonstrate ways of detecting ambiguity and differentiate between correct and incorrect

trace information. The literature clearly shows that there is no simple, all-encompassing

solution for this class of systems.
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1.1 The Workpiece Color Sorter Case Study

While TORUS is not bound to any specific Requirements Model (RM) or system

architecture, we demonstrate the applicability of TORUS via a case study using the

Cost-efficient Methods and Processes for Safety-Relevant Embedded Systems (CESAR)

requirements metamodel (Rajan & Wahl, 2013). IEC 61499 was used for system

development. Figure 1.1 presents a Workpiece Color Sorter machine which classifies

and segregates widgets based on their color. Its architecture is similar to those of real-

world cyber-physical systems such as automotive cruise-control systems, pacemakers,

elevators, high-speed sorting machines and baggage-handling equipment.

Workpiece_Color_Sorter_01.pdf

Controller

Figure 1.1: The Workpiece Color Sorter.

A solid-state camera detects the color

of each spherical widget, referred to as

a Workpiece, to be sorted and a software

controller uses this information to actuate

one of two pistons to push the sphere in

an appropriate direction. We intentionally

kept this case study simple and allowed

only red and black workpieces. It can

easily be scaled to multiple colors where

pistons move different distances depend-

ing on their color and we can just as easily

add more pistons for a two or three dimen-

sional sorting of workpieces. This case study was developed using IEC 61499 in the

nxtStudio development environment (nxtControl GmbH, 2016a) and is presented in

more detail in Chapter 5. We also use it to illustrate the problem at hand in the following

sections of this chapter.
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1.2 Early-Stage Requirements and Specifications

Pre-Requirements Specifications (pre-RS) are the early-stage informal explanations

of what a system must do, often elicited directly from project stakeholders (Cleland-

Huang, Gotel & Zisman, 2012). Since these documents are typically created very early

in the project, they are often free-form, semi-structured, incomplete and ambiguous. A

representative pre-RS specification for the workpiece color sorter is shown below:

"The sphere moves into the workspace. The system checks the color of the workpiece.

If the sphere is black, the horizontal piston moves it horizontally off of the workspace. If

the workpiece is red, the vertical piston moves it vertically. If it is any other color, the

direction the thing is moved in is exactly the same direction the last one was moved in."

Current IEC 61499 development tools such as nxtStudio do not directly support

traceability so in Chapter 6 we propose how easily TORUS can be adapted for this case

study to facilitate traceability. The experimental results showing the applicability of

TORUS from a prototype implementation appear in Chapter 7.

1.3 Putting the Research Question into Context

The primary research question this work examines is "How do we use formal methods

to facilitate the traceability of large, complex requirement sets for safety-critical Cyber-

Physical Systems?" Each of the aspects of this question, alluded to in the previous

section, need to be put into context in a literature search. Chapter 2 looks at the current

state of traceability research and its applicability to cyber-physical systems. We examine

the way the automotive, aerospace and industrial automation sectors implement software

traceability in real-world environments and the issues they face.

A requirements management framework for a complex, software-intensive system
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must provide ways of capturing and presenting requirements that do not become cumber-

some as the number of requirements increases. Since Object-Orientated Encapsulation

is a core feature of cyber-physical system architectures such as IEC 61499, the ability

to partition and manage subsets of common requirements is one way of addressing

complexity and scalability that is examined.

Change is a constant challenge throughout the design and build phases of a solution’s

life-cycle. How do we maintain the integrity of the traceability links we create and the

code we write? How do we re-factor code safely so that we are not continually breaking

the relationships between these entities? Further, how can we refine the requirements in

our models in such a way that we can quickly identify which parts of our code need to

be re-visited? How do we elucidate non-functional requirements such as reliability and

safety from pre-RS and later stage documentation? Hänninen identifies non-functional

requirements as being the main source of concern amongst developers (Hänninen,

Maki-Turja & Nolin, 2006).

At the same time, cost and time are relentless drivers in real-world projects. While

it is always desirable to build thorough, detailed and complete requirements models,

the cost of doing so cannot always be justified. Rapid development cycles are often

mandatory since the time-to-market for many products is very short. Throughout this

research, we examine the trade-offs needed to facilitate traceability that really does

provide valuable feedback to the teams who are creating these products.
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Literature Review

The research work to design the TORUS traceability framework has been driven primar-

ily by seeking to understand the needs of representative industry groups. The auto-

motive, aerospace and industrial automation communities are typical sectors where

cyber-physical systems are widely used. Hence, there are numerous examples in the

academic literature which outline the results of collaborations within these groups and

the challenges they face.

This section looks more deeply at the current thinking on each of the key themes

outlined in the introduction section. It also explores how we have arrived at our current

understanding of traceability based on historical research in this area. Finally, it attempts

to clarify the gaps in the research that our work attempts to bridge, which also helps to

establish the novelty of this work.

2.1 Cyber-Physical Systems

Khaitan (2014) explains that the computer systems we now refer to as cyber-physical

systems have emerged due to a natural and obvious convergence of different computing

technologies. For example, the advances in TCP/IP networking topologies from other

22
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sectors have been progressively adopted to replace proprietary network protocols that

were common in industrial automation environments. These and other complementary

technologies have developed independently but where advances in one area have been

shown to supersede current methodologies, cross-pollination occurs to take advantage

of opportunities. Lee emphasizes that cyber-physical systems are more likely to be

designed as networks of interacting elements rather than discrete, stand-alone devices

(E. A. Lee, 2008).

Lee and Bagheri (2015) describe the way cyber-physical systems are different from

traditional embedded systems using their multi-level 5C model. Figure 2.1 was adapted

from their work by including additional comments to illustrate their concepts:
Cyber-physical_5C_architecture.pdf

The ability to self Configure to manage changes and 
optimize automatically to handle disturbances.

Cognitive abilities that allow it to communicate 
information to humans.

The Cyber-physical interface between computational 
elements and physical peripherals that allow the 
system to interact with the real world.

The ability to Convert data to information for 
determining the status of components, multi-
dimensional data correlation and performance 
prediction.

The smart Configuration layer. The ability to join and 
integrate autonomously into existing systems. 

Figure 2.1: The 5C Cyber-Physical System Architecture. (adapted from Lee et al,.
2015)

The Smart Connection Level is the lowest layer, closest to the sensors, actuators

and motors used to control or interact with the physical parts of the system. Cyber-

Physical system elements are responsible for gathering accurate data and disseminating

processed information to other, connected parts of the system. To do that, they have to
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be able to negotiate and manage connections, often to dissimilar units within the same

network.

The Data to Information Conversation Level. Cyber-physical systems have

powerful computational elements, capable of executing high-level languages, managing

large amounts of data and processing algorithms rapidly. They usually execute on

high-level architectures (Alippi, 2014; Wolf, 2014; Marwedel, 2010). Cyber-Physical

system networks are often used where the capture and processing of large amounts of

high-speed telemetry is required (Stojanovic, Stojanovic & Stuehmer, 2013).

The Smart Connection Level is the lowest layer, closest to the sensors, actuators

and motors used to control or interact with the physical parts of the system. Cyber-

Physical system elements are responsible for gathering accurate data and disseminating

processed information to other, connected parts of the system. To do that, they have to

be able to negotiate and manage connections, often to dissimilar units within the same

network. This creates challenges when verifying and tracing requirements because

the system configuration can be dynamic. Since tasks can be shared across distributed

components, verifying the fulfillment of a requirement demands traceability strategies

that can cope with heterogeneous systems.

The Data to Information Conversation Level. Cyber-physical systems have

powerful computational elements, capable of executing high-level languages, managing

large amounts of data and processing algorithms rapidly. They usually execute on

high-level architectures (Alippi, 2014; Wolf, 2014; Marwedel, 2010). Cyber-Physical

system networks are often used where the capture and processing of large amounts of

high-speed telemetry is required (Stojanovic et al., 2013).

The Cyber Level lies one layer below the Cognition layer. The Cyber Level is

defined as being the point where all data that has been made available to this unit from

external sources is correlated. Self-testing and analytics to extract information and

make decisions within the Cognition level are processed here.
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The Cognition Level acts on the available data, making decisions and managing

its presentation to humans as needed.

The architecture outlined shows that cyber-physical systems are much more complex

than traditional embedded systems. Hence the need for traceability that traverses these

levels is critical.

2.2 Function Blocks as Cyber-Physical Systems

The concept of programmable industrial controllers evolved from the purely mechanical

cams and relays that had predominated in industrial environments for the last hundred

years. The software for the earliest industrial control systems was usually created in

low-level assembly language (Osswald, Matz & Lienkamp, 2014). Since on-board

memory was expensive, compact, optimized code was the most important characteristic

of these systems. As systems became more complex and the microprocessors available

to build them with became more cost-effective, software architectures designed specific-

ally for industrial control began to emerge. The IEC 61131 standard, first published in

1992, was designed for industrial controllers, also known as Programmable Logic Con-

trollers or PLCs (TC65, 1993). This standard consolidated techniques such as Ladder

Logic Diagram Programming while offering additional implementation languages that

supported the architecture (Kamen, 1999). It adopted the traditional block diagrams

commonly used at the time and introduced the concept of these being discrete units of

common functionality or function blocks.

The IEC 61131 definition of a function block specifies both an interface and an

implementation so that within each controller, logical units of functionality can be

created and interconnected. While IEC 61131 laid important foundations, it did not

support built-in communications layers to allow functionality to be distributed easily

across separate controllers (Gerber, Hanisch & Ebbinghaus, 2008). Communications
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architectures such as PROFInet (Kleines, Detert, Drochner & Suxdorf, 2008) and

Modbus-IDA (Modbus, 2004) that were implemented to exchange information between

distributed nodes evolved from earlier proprietary work by vendors. The IEC 61499

Standard was released in 2005 (IEC, 2013) and addressed these communications needs

as well as deeper architectural issues that were intrinsic to the then current industrial

control paradigms.

2.2.1 Event-Driven Object-Orientation in IEC 61499

IEC 61131 functions blocks always operate in a cyclic, polled-mode. In contrast, IEC

61499 is entirely event-driven; the function block only responds when new data appears

at its event inputs. The interface it presents contains event inputs and outputs in addition

to data inputs and outputs. Each event represents a finite state in a state machine

that is described by its Execution Control Chart or ECC. This architectural model

associates pre-defined discrete states with code algorithms to implement constraint logic

and data processing. Hence IEC 61499 function blocks remain idle until new data is

received through their event inputs. This abstraction is a key factor in enabling IEC

61499 function blocks to be described formally since they are deterministic finite state

machines (Yoong, Roop, Vyatkin & Salcic, 2009).

Vyatkin (2009) explains that this was a novel concept to PLC engineers when it was

introduced. They were more familiar with the timed cyclic approaches PLCs of the time

used and were comfortable with their ability to share variables globally across the whole

application. The strong, object-orientated encapsulation of IEC 61499 encouraged

component re-use since global, and hence hidden, cross-module variable dependencies

were not possible. IEC 61499 only allows data to be exchanged between function blocks

using message passing (Graefe & Basson, 2014). Hence, implementing distributed

systems using function blocks is no more complex for the designer than creating local
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applications; all communication requirements are provisioned automatically at design

and compile time by the development systems themselves.

2.2.2 Real-world system implementation using IEC 61499

IEC 61499 addresses well each of the cyber-physical system architectural layers shown

in Figure 2.1. Table 2.1 illustrates the diversity of the usage of IEC 61499 in typical

industry sectors where cyber-physical system approaches are having an impact:

Table 2.1: Application of IEC 61499 by industry sector

Industry Sector Focus of IEC 61499 implementation

Industrial and
manufacturing
systems.

- Agent-orientated techniques for manufacturing systems
(Hoffman et al., 2014).

- Software agents for real-time control of manufacturing systems
(Hegny et al., 2008).

- Integration with Enterprise Resource Planning (ERP) systems
for flexible manufacturing (Morel et al., 2003).

Intelligent buildings.

- Energy-efficiency and the use of ontological agents
(Mousavi et al., 2014).

- Smart agents in cyber-physical building control
(Leitao et al., 2016).

- Safety-critical issues in smart buildings
(Saldivar et al., 2015).

Smart Power Grids.

- Multi-agent techniques for intelligent automation and regulation
(Zhabelova & Vyatkin, 2012).

- Distributed intelligent control of power systems
(Strasser et al., 2011).

- Decentralised architectures for voltage regulation
(Loia & Vaccaro, 2011).

Smart Power Grids.

- Multi-agent techniques for intelligent automation and regulation
(Zhabelova & Vyatkin, 2012).

- Distributed intelligent control of power systems
(Strasser et al., 2011).

- Decentralized architectures for voltage regulation
(Loia & Vaccaro, 2011).

Traffic Control
Systems.

- Intelligent, component-based approaches
(Black & Vyatkin, 2010).

Baggage Handling
Systems.

- Cyber-Physical design approaches
(Yan & Vyatkin, 2011).
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Yan and Vyatkin (2011) describe the design of baggage handling systems built using

IEC 61499 in terms of cyber-physical concepts. Both Young and Roop (2012) and Riedl

and Zipper (2014) explain how IEC 61499 addresses the challenges of scale, dynamic

adaptability and complexity needed to build large cyber-physical systems.

Vyatkin (2011) cites the development of IEC-61499-specific integrated development

environments such as nxtControl (nxtControl GmbH, 2016a), IsaGRAF (ISaGRAF,

2010) and 4DIAC (Strasser et al., 2008) as facilitators of the acceptance of IEC 61499

by industry. Gerber (2008) observes that IEC 61131 had become a classical and

well-accepted programming methodology for PLCs, effectively slowing the uptake of

newer standards. The advantages of IEC 61499, including encapsulation of intellectual

property, are being taken advantage of only when systems are re-designed as well as

when larger systems are contemplated. However, given the size of the user base for IEC

61131, changes like this take time.

2.3 Software Requirements for Cyber-Physical Systems

We have proposed traceability as a way of managing software requirements, which are

statements that describe a discrete, atomic capability that a computer system must be

able to perform to satisfy a client’s needs. Hamilton and Zeldin explain that requirements

are "those items that are desired" while the resultant specifications are "..the results that

realize those requirement" (Hamilton & Zeldin, 1980, page 29).

IEEE Standard 610.12-1990 (IEEE, 1990, page 62) defines software requirements

more formally as:

1. "A condition or capability needed by a user to solve a problem or achieve an

objective.
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2. A condition or capability that must be met or possessed by a system or system

component to satisfy a contract, standard, specification, or other formally imposed

document.

3. A documented representation of a condition or capability as in 1 or 2."

The earliest references to software requirements engineering in a distributed, em-

bedded system’s environment is Alford and Lawson’s work at TRW, a U.S. Department

of Defense provider in the early 1970’s (Alford & Lawson, 1979). They echo Hamilton

and Zeldin’s reflections on the difficulties encountered in the design and verification

of software used on the Apollo program during the 1960’s (Hamilton & Zeldin, 1976).

Both emphasize that the task of managing requirements is a time-consuming, error-

prone and on-going process, one that should not stop when the initial specification is

thought to be complete. This was in direct contrast to the widely-used forward-only

approaches of the 1950’s that would later come to be known as the Waterfall Method

(Royce, 1970).

Alford and Lawson’s work was a year-long study of the problems encountered in

the development of complex weapon systems and embedded real-time software. By

the late 1970’s, the control systems for rockets designed by TRW could contain over

a million requirements (page 114). As the missiles they were creating became faster

and were required to have more precise targeting, their data processing and control

needs became significantly more difficult to fulfill. Their study sought to uncover ways

to solve problems through an integrated requirements engineering approach. They

proposed the use of automated tools as well as formal mathematical foundations for

front-end requirements engineering and design. Key to their recommendations was the

need for requirements traceability. While this might initially seem to be an obvious

conclusion, implementing the methodologies, processes and frameworks to capture

software requirements properly and facilitate traceability was and still is fraught with
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controversy and open problems. Alford and Lawson’s preface to their 1979 report bears

repeating in the current context of cyber-physical systems:

"..however, the major cause of inadequate software, poor requirements definition

and design, had been relatively neglected by the R&D community. The few efforts which

did address the more tangible pre-coding and pre-design activities, yielded prototype

developments for specific and limited applications... A broad and comprehensive view

of the initial user-developer interactions was needed; one which portrayed goals and

alternative solutions, in spite of complexity, being successively defined and refined

within a framework of effective common understanding." (Alford & Lawson, 1979, page

xiii).

Further than this, Finkelstein (2012) re-iterates that the requirements elicitation

process must be a relationship-driven one. On-going involvement with stakeholders is

more important than Royce’s uni-directional Waterfall approach, which often isolated

clients and end-users from the engineering process. The resulting catastrophic mis-

matches between what was requested and what was delivered are well documented; the

survey by Emam and Koru (2008) reported a combined rate of failure and cancellation

of IT projects as high as 34% while the Standish Report of 1994 continues to be debated

to this day (Standish, 1994).

2.3.1 Functional and Non-Functional Requirements

It is useful to categorize requirements into sub-groups dependent on their differing

characteristics. Non-functional requirements often capture the qualitative aspects of a

system including scalability, capacity, performance and reliability (A. J. Ryan, 2000).

Functional requirements are quantitative, more concrete descriptions of needs that

describe more implicitly discrete tasks that a system has to be able to perform. In the

specification for the workpiece color sorter, requirements which are functional describe
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how the workpiece should be moved under well-defined, concrete conditions. The

intended motion of the red and black workpieces is clearly specified so when testing

such a system, functional requirements such as these usually pass or fail in more clearly

defined ways than a non-functional requirement would.

Hänninen et al. (2006) identify non-functional requirements as being the main source

of concern amongst developers. A non-functional requirement such as performance,

perhaps measured in transactions processed per second, can fail by almost reaching its

target. Ryan (2000) comments that most studies that focus on inadequate requirements

only discuss functional requirements. In practice, non-functional requirements are most

often fulfilled by successfully implementing a related set of functional requirements.

Ryan notes that it is significant that the software engineering standards EIA 632 (SAE,

2016b) and ISO 15228 (ISO, 2015) do not address non-functional requirements at all.

Chung (2012) notes that there is a need to describe non-functional requirements such

as performance or throughput in quantitative terms such as baggage items or fruit sizes

sorted per second. Since non-function requirements are often thought of in qualitative

terms, there is the temptation to think of them as somehow immeasurable. Non-function

aspects of cyber-physical systems are also observed in the Cognitive Level of Figure

2.1 where aspects including ease-of-use and understandability are requirements for the

human-machine cyber interface.

The ability to trace non-functional requirements is important since safety-critical

requirements are most often non-functional in nature (Cleland-Huang, Gotel & Zisman,

2012). Forward-traces assist with project planning and scale estimations (Ramesh,

Powers, Stubbs & Edwards, 1995). Backward-traces to original design decisions help to

reinforce acceptance testing of load capabilities and transactional throughput by provid-

ing justification for baseline metrics. Siewiorek and Narasimhan (2005) illustrate this by

examining the fault-tolerant characteristics of satellite avionics systems for whom the

unattended, autonomous mode is the most common operational environment. Tracing
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both functional and non-functional requirements from a fault-tolerant perspective leads

to more resilient cyber-physical systems which usually have to take rapid corrective

action autonomously without operator intervention.

The concept of requirements existing also as run-time entities to support mul-

tiple System-of-Systems instances and monitor their performance is now emerging

(Vierhauser, Rabiser, Grunbacher & Aumayr, 2015; Bencomo, Whittle, Sawyer, Finkel-

stein & Letier, 2010). Boeing pioneered the ability for the requirements set of an

airliner to be used to drive real-time predictive diagnostics or prognostics (Stephenson,

2006). It is used by flight and maintenance engineers to monitor both functional and

non-functional performance of components and predict imminent or future failures.

2.3.2 Pre-Requirement and Post-Requirement Specifications

One of the core problems of requirements engineering is that pre-RS stakeholder

specifications are notoriously informal, vague, ambiguous, and often unattainable (Li

et al., 2015, page 164). They must be refined through the application of systematic

processes to transform them into requirement statements that are consistent, formal and

measurable.

Gotel and Finkelstein (1994) define the Post-Requirements Specification (post-RS)

as those aspects of a requirement’s life after it has been included in the requirements

specification. Figure 2.2 illustrates the demarcation point that separates the scope of

traceability initiatives in the pre-RS phase from the subsequent post-RS phase. Pre-

RS traceability is most often useful during root-cause analysis of later requirements

issues and for determining who the original owner of that particular need was. Post-RS

traceability reaches from the requirements specification itself through to the code in

the application and can be bi-directional (O. C. Gotel & Finkelstein, 1994). This has

implications for the resultant scope of traceability initiatives; defining where the traces



Chapter 2. Literature Review 33

will stop and start can make a significant impact on the cost of implementing traceability

(O. Gotel & Mäder, 2012). Knowing what to trace as well as how far to trace is a crucial

decision in any project.

Requirements Model

Requirement

Acceptance 
tests expressed 

as Use Cases

derived 
from

Stakeholders Application

Pre-RS Traceability Scope

Save as: pre-RS_and_post-RS.pdf 

Requirement 
implementation 

in code

Requirements Specification

Post-RS Traceability Scope

Figure 2.2: The scope of pre-Requirements and post-Requirements Traceability (after
Gotel & Finkelstein, 1994)

Not all traces are useful and defining the criteria to determine what is important is

challenging. Vierhauser (2015) discusses what to monitor in real-time, linking it the

concept of the requirements scope. Scope is defined in terms of what System-of-System

instances need to be monitored and what they connect or reach to. When cyber-physical

components protect their intellectual property from inspection, it is not possible to

trace beyond the public interface of a resource. This impacts the granularity of the

traceability; in IEC 61499 systems, it is often desirable to be able to reach down to the

level of individual algorithms in safety-critical environments to ensure that all specified

scenarios are covered.
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2.4 Traceability Initiatives for Cyber-Physical Systems.

The problems Alford and Lawson identified are still being explored in the current liter-

ature. Finkelstein (2012) provides a perspective on the current maturity of traceability

in this sector in his introduction to Cleland-Huang, Gotel and Zisman (2012). He

states that general traceability has reached a level of maturity where the problem has

been characterized and tools exist to manage traces between different document types.

However, while he believes that traceability works well in most environments including

Agile ones, he states that "..there remains a hard core of large systems development

characterized by strong safety and other constraints. Defense and other mission-critical

systems exemplify this. There is a continuing need to address traceability in this setting

and in particular to support navigation of the complex relationships that arise. This still

remains at the edge of what can be practically accomplished and will require further

research." (page vi).

In parallel with Alford and Lawson’s early work on cyber-physical systems, the

NATO working conference in 1968 included one of the earliest references to traceability.

It recommends making traceability an implicit part of the design process (Naur &

Randell, 1969). Boehm writing on software quality (1976) also explored the concept of

external consistency, an attribute of the code that implies that its content was traceable

to the original requirements. He also cited the need for code to be self-descriptive in the

sense that it contains enough information for the person reading it to be able to verify its

"objectives, assumptions, constraints, inputs, outputs, components and revision status"

(page 604). He suggests that one way of realizing this was to create easily traceable

paths to previous changes and code comments. By doing so, he foreshadows the later

use of metadata from requirements models to support the traceability of algorithms

back to their requirements (Fernández, Penzenstadler, Kuhrmann & Broy, 2010).

The following sections examine the techniques used to facilitate traceability and the
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challenges that are still being reported in the literature.

2.4.1 Facilitating Traceability via Requirements Models

A Software Requirements Model is a collection of alternate visualizations or views

of an application’s text-based requirements using diagrams and formal expressions

(Van Lamsweerde, 2009). Through modeling, individual atomic requirements can be

inter-related to expose different aspects of them to designers and users. Patterns and

issues emerge when we see information presented in different ways that would not be

discernible if requirements were expressed purely as lists of needs (Lindland, Sindre &

Solvberg, 1994). Dubois & Perialsi-Franti (2010) argue that requirements models are

the foundation for validation and verification strategies.

Dorfman and Flynn (1984) discuss the management of thousands of requirements

within large aerospace systems. They cite Brook’s familiar Software Tar Pit metaphor to

explain the need for better requirements management if high-quality software products

are to be delivered (Brooks, 1975). Analysts and developers become progressively

more lost in a sticky tar pit of ever-changing specifications and code if requirements are

not managed in a systematic, structured way. Inadequate requirements are cited as the

most significant contributers to project failures (Dorfman & Flynn, 1984; O. C. Gotel &

Finkelstein, 1994; Wiegers & Beatty, 2013; Bell & Thayer, 1976).

Traceability relies on having structures that trace-creation systems can navigate

through and nodes within these structures that they can attach to. Hence requirements

models are a framework for organizing requirement statements. Requirements are

inherently hierarchical and software elements attach to nodes within this hierarchy at

differing depths. Tracing strategies have to be able to navigate through nested levels

but there is no single, established technique for doing so. Conversely, there is no

single, pervasive requirements model that fits all cases (O. C. Gotel & Finkelstein, 1994,
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page 1). Table 2.2 details requirements modeling systems and architectural description

languages currently in use.

Table 2.2: Traceability within Cyber-Physical System Modeling Solutions.

Name Focus and Features Traceability-related Issues

Sparx Enterprise
Architect
(Architect, 2010).

- Application
- Uses SysML.
- UML model generation.
- Integration with multiple IDEs

- Limited to links between
internal models.

IBM Rational
Rhapsody
(IBM, 2016).

- Application.
- Uses SysML
- C/C++/C# code.
- Multiple industry-specific versions.

- Limited to links between
internal models.

- Does not easily trace
externally-generated code.

AUTOSAR
(AUTOSAR, 2016).

- Automotive Framework
- Open industry standard
- UML metamodel
- Focused on standardizing interfaces
- ISO 26262 compliant

- Limited to safety-
critical systems

- Requires compatible
industry-specific
specifications.

AMALTHEA
(Wolff et al., 2015)

- Automotive Framework
- Open source Toolchain.

- Limited support for
traceability.

- Focused on timing.

SPICE
(Automotive, 2010).

- Framework.
- Automotive, Aerospace and

Avionics.
- Focused on software process

improvement.
- Assessment via the Capability

Maturity Model.

- No dedicated support
or assessment process.

2.4.2 Traceability Tools for Cyber-Physical Systems.

The previous sections have examined what a requirements model is as well as defining

the characteristics of the target cyber-physical system that we wish to trace; an applica-

tion that implements those requirements by distributing its functionality across multiple,

connected sub-systems. Such architectures present unique traceability challenges that

are explored in more detail in section 2.5. The current literature presents numerous

tool-based approaches to implementing traceability strategies. All of these tools can be

classified into one of three broad categories:
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1. Workbenches. These are integrated environments for either design or develop-

ment that often include traceability functionality. Examples of requirements

modeling tools that have this capability are Sparx Enterprise Architect and IBM

Rational Rhapsody. Examples of development system add-ons include Eclipse

ReqCycle (Eclipse, 2016b), Eclipse ProR Requirements Engineering Platform

(Eclipse, 2016a) and the Visual Studio Team Foundation Server (Microsoft,

2016). None of these integrated workbenches can reach out and mine data from

an external development system. Some of their websites discuss external import

and mechanisms for linking-in information but these require the data to first be

re-formatted externally before being imported (Architect, 2010; IBM, 2016).

2. Specialised Traceability Systems are tools that sit outside of the development or

requirements modeling environment. Shalid and Suhaimi (2011) discuss systems

such as Retro (Hayes et al., 2007), Borland CalibreRM (Borland, 2016) and

Cradle (Corporation, 2016). None of the systems they cite support automatic link

detection and creation but some are able to detect when a link is broken or has

changed. However, studies by both Hansen (2005) and Braun (2014) suggest

that there is strong evidence that both workbenches and specialized systems are

underutilized and not well-integrated.

3. General-purpose tools include unenhanced word processing or spreadsheet sys-

tems, paper-based systems with or without customized forms and collaboration

tools such as Google Docs or Dropbox. These often evolve over time to address

particular characteristics of the company that implements them (O. C. Gotel

& Finkelstein, 1994). However, they are often ad-hoc solutions with limited

integration or ability to mine traceability linkages automatically. Gartner (2014)

reported that forty to fifty percent of companies manage the creation, iteration,

testing and launch of new products with only Microsoft Office, Google Docs

and other all-purpose documentation tools. Gotel and Finkelstein comment that
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these systems often cannot guarantee the long-term viability or re-usability of the

models they generate.

2.5 Design Challenges for Cyber-Physical System

The previous sections have discussed the foundation principles of requirements mod-

eling and traceability as they apply to cyber-physical systems. Figure 2.3 emerged

from time spent considering the ways in which these entities relate to each other in the

context of how they are derived, what they validate against and where function blocks

sit within this hierarchy. It was adapted from Ortel and Malot’s (2013) original diagram:

This diagram again emphasizes the point that has emerged continually within the

literature; to successfully trace a requirement through to its implementation and back

demands a robust, formal structure to host the requirements and all their related entities

within. Any successful traceability initiative that has to track a large heterogeneous

solution has to relate each entity within the model in a navigable way.

However, cyber-physical systems push the limits of the current abstractions that we

use to describe systems (E. A. Lee, 2008; Rajkumar, Lee, Sha & Stankovic, 2010). This

section examines some of those challenges in the context of how they impact our ability

to trace requirements.

2.5.1 The Role of Abstraction in Cyber-Physical System Design

Lee (2008) comments that industrial control systems are always expected to meet

a higher standard of reliability, safety and fault-tolerance than business computing

systems. With the proliferation of autonomous functionality within cyber-physical

systems, those expectations will only increase. However, unlike desktop business

systems, cyber-physical systems inhabit a world that is highly unpredictable. While

the reliability of computer hardware has increased exponentially, what our systems
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Figure 2.3: Relationships Between the Entities Within a Cyber-Physical System Model.
(adapted from Ortel et. al., 2013)

are expected to control in the wild has become extremely complex. Lee asks if it is

even technically feasible to make such control systems predictable and reliable (page

364). Our current programming language abstractions, especially those embodied in

the C language, cannot guarantee timing since they do not manage concurrency in

ways that are applicable to heterogeneous systems. While the semantics of a particular

programming language may be impeccable, they cannot guarantee it will meet timing

deadlines; current language abstractions do not capture such characteristics.

Rajkumar et al., (2010) propose that we need abstractions with a much broader

scope to define cyber-physical systems. They must address not only the interactions
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between computing elements and time-critical external processes but also how the

system interacts with humans. In particular, how we compose architectures for het-

erogeneous, hierarchical distributed systems is not well defined at present. Security

approaches for cyber-physical, which rely heavily on agent-orientated techniques, are

not the same as those required for homogeneous business systems (J. Lee et al., 2015).

This remains an open question which is discussed further in Section 2.6.

2.5.2 Cross-functional Outsourced Development Challenges

Large cyber-physical systems are usually Systems-of-Systems and are highly hetero-

geneous. Particularly in the aerospace and automotive industries, the life-time of a

design can be extensive as it is adapted to support multiple product lines (Broy, Kruger,

Pretschner & Salzmann, 2007; Gaeta & Czarnecki, 2015). Within these environments,

what does a large-scale cyber-physical systems development project look like? Figure

2.4 illustrates the cross-functional activity silos that would be needed to manage the

entities detailed previously in Figure 2.3. What are the challenges that face managers

and developers when trying to trace information across these zones of activity?

Outsourced development of specialized sub-systems often requires that they be

maintained and put into operation by independent teams from multiple companies.

The assumption that the system under design is under the control of a homogeneous

group of stakeholders, who determines a consistent set of requirements, no longer holds

(Vierhauser et al., 2015, page 97). They can be refined by diverse teams over a period of

years, making long-term management of requirements problematic. This observation is

supported by Charette (2009) who explains that automotive manufacturers are now more

like systems integrators than Original Equipment Manufacturers (OEM’s). Broy (2007)

suggests that while functionality may change as little as 10% from vehicle-to-vehicle

with each new generation, co-ordination and version control between suppliers and
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Figure 2.4: Cross-Functional Activity Silos for Cyber-Physical Systems Development.

OEM’s is difficult.

2.5.3 Safety-Critical Aspects of Cyber-Physical Systems

Safety is a qualitative property of a system that is often a key justification for im-

plementing traceability. If a requirement of the system is to be recognized as being

safety-critical during the early elicitation and analysis phases, preexisting metrics for

identifying such behaviors must be available. Safety-Critical Requirements are non-

functional requirements, fulfilled by other functional requirements (Lutz, 1993). For

example, a safety-critical requirement to stop the pistons of the workpiece color sorter

colliding is fulfilled by the other functional requirements that stop the pistons moving

at the wrong time. In this section, we examine what safety-critical requirements are and

what standards exist to define, mandate and prove compliance.

Achieving compliance is primarily a way of establishing confidence in the design

of a system. In that sense confidence is a derived property founded upon the premise
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that a standard provides a metric to measure how completely a solution meets specified

criteria. Traceability provides a measure of confidence however, mandatory compliance

alone is not a way of identifying all possible dangerous characteristics or failure modes.

Ho gives an obvious example of the dangers of computer tape handling robots (Ho,

2015). It is significant that no international safety standards for the use of industrial

robots exist (USDOL, 2015). The 2015 accident at Volkswagen that resulted in a worker

being killed during the commissioning of an industrial robot was not necessarily a

failure in design that would have been identified via a compliance audit (Docrill, 2015).

Hänninen proposes that the software in such systems should be able to be overridden

by the cyber-physical mechanisms in cases where the software malfunctions and a

safety-critical requirement is violated (Hänninen et al., 2006).

Safety is closely coupled with the concept of risk. Charette (1991) defines risk as that

which has a possibility of loss associated with it where chance or uncertainty is involved.

The first risk-averse real-time computing system is believed to be the Whirlwind Project,

created by MIT in 1944. It was used to evaluate alternatives for building military air

traffic control systems, the first of which was deployed in the early 1950’s (J. Bowen &

Stavridou, 1993). Since the mean time between failure in Whirlwind’s vacuum tubes

was twenty minutes, fault-tolerance was established by identifying weak tubes and re-

directing signals to redundant backup components to maintain operations. This echoes

Charette’s definition; establishing empirical probabilities of failure in such systems is an

important part of designing appropriate risk mitigation strategies. You cannot manage

what you cannot measure (Breen et al., 2012) and traceability is one mechanism to help

evaluate compliance. However, a poor integration between requirements engineering

and safety engineering has been identified as an open challenge (Martins & Gorschek,

2016).

Hence safety-critical standards and guidelines exist to define acceptable behavior

and compliance activities to manage risk appropriately. All of the following examples
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mandate traceability as a key component of compliance:

DO-178C, Software Considerations in Airborne Systems and Equipment Cer-

tification is a standard for the design of safety-critical avionic software, including

embedded and cyber-physical devices (FAA, 2011). It mandates traceability from

system requirements to all source code. Traceability tools used as part of the process

must form part of the compliance declaration and certification process.

ARP-4754, Certification Considerations for Highly Integrated or Complex

Aircraft Systems is an Aerospace Recommended Practice (ARP) document that details

the compliance levels and practices for DO-178C standard compliance when applied

to large-scale or complex avionics subsystems (SAE, 2016a). It includes traceability

practice guidelines.

ISO 26262 Standard for Road vehicles - Functional safety is the 2011 standard

that defines compliance for electronic and electrical systems in production automobiles

(ISO, 2016). It embodies the Automotive Safety Integrity Level (ASIL) risk classific-

ation scheme which is a common guideline used across a set of similar automotive

standards. It is complementary to other standards including D0-178C and the railway

standard CENELEC 50126/128/129. Part six of the standard is concerned with MBSE

software development practices. It outlines fault-injection techniques using a V-Model

approach (Rana et al., 2013). Born and Favaro criticize the heavily document-orientated

compliance requirements of ISO 26262, pointing out that manual compliance docu-

ments are difficult to integrate into automated traceability frameworks (Born, Favaro &

Kath, 2010). Often the trace linkages to the primary compliance documents have to be

created and managed manually.

ANSI/AAMI/IEC 62304:2006 defines appropriate software life-cycle procedures

for medical device software (ANSI/AAMI, 2006). It was harmonized with other

European standards in 2008 and is based on the ISO 12207 generic software guidelines

(ISO/IEC, 1997). Section 5.2 of IEC 62304 states that the manufacturer must establish a
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software development process that addresses "traceability between system requirements,

software requirements, software system test, and risk control measures implemented

in the software". Section 7.3 details risk-control measures that include the ability

to "..document traceability of software hazards as appropriate: From the hazardous

situation to the software item. From the software item to the specific software cause and

from the software cause to the risk control measure and from the risk control measure

to the verification of the risk control measure".
Save as:     TIM_for_Safety-Critical_Systems.pdf

Figure 2.5: A Traceability Information Model for a Safety Critical System (Cleland-
Huang, Heimdahl et al., 2012).

However, there is evidence from both government and industry case studies of

an almost universal failure to implement traceability successfully for safety-critical

systems. Those studies suggest that this is primarily due to the "difficulty of constructing
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useful traceability queries using the existing tools" (Cleland-Huang, Heimdahl et

al., 2012, page 180). Figure 2.5 presents examples they give of the complexity of

typical Traceability Information Models (TIMs) that are needed to capture safety-

critical requirements. They argue that since regulatory agencies require full-cycle

traceability in both directions, models need to be comprehensive enough to capture all

the relevant safety requirements. Models that are too generic do not yield well to formal

analysis.Save as:     Pacemaker_Fault_Tree.pdf

Figure 2.6: The Fault Tree for a Surgical Pacemaker (Dehlinger & Lutz, 2004).

Building complementary Fault-Trees allows formal methods to identify counter-

examples that show that a particular state can be entered in a way that violates a safety

criteria. Fault trees are often used in these scenarios to facilitate Primary Hazard

Analysis (PHA). These model constraints are mandated by the safety standards in a way

that allows them to be used in formal methods. They do this by allowing the high-level



Chapter 2. Literature Review 46

fault description to be modeled as a series of connected intermediary states with their

complementary transitions. Dehlinger and Lutz illustrate this with a fault tree for a

surgical pacemaker as shown in Figure 2.6 (Dehlinger & Lutz, 2004).

2.5.4 The Complexity of Large Cyber-Physical Systems

Cyber-physical systems have become complex because the scope of what we are able

to do with current technology makes feature-rich systems possible. Economies of

scale, reliability and lower costs mean that it is now more cost-effective to innovate via

software than it is via mechanical features. Why is that and what are the problems it

causes?

The automotive sector is a typical example of how manufacturers have become

increasingly dependent on cyber-physical control systems. Volkswagen introduced

the first computer-controlled fuel injection into their 1600 Type 2 E models in 1968

(Osswald et al., 2014). Note that their discrete component system pre-dates the release

of the first integrated circuit based microprocessor, the Intel 4004, in 1971 (Bohr, 2009).

By 2007, typical high-end vehicles such as the BMW series 7 relied on 67 different

embedded micro-controllers (Pretschner, Broy, Kruger & Stauner, 2007). The 2011

Chevrolet Volt hybrid relies upon ten million lines of code, four million more than is

required by the F-35 jet fighter (Pesce, 2011; Charette, 2009). By 2016, vehicles are

predicted to contain up to 100 separate Embedded Control Units (ECUs) requiring 100

million lines of source code (Charette, 2009).

Automotive control systems interact with their users and each other in a myriad of

ways, requiring the exchange of data between engine management, electronic stability

controls, security and multimedia systems. McKinsey estimates that the ECU’s in 2014

vehicles can exchange over 25GB of data per hour (McKinsey, 2014). This explosion

of capabilities and the resultant complexity is driven in part by the economic value that
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these systems return. By 2015, the value of the software generated by these systems

is estimated to rise to 133 billion EUR (Braun et al., 2014). Extrapolating beyond this

to 2018 suggests that the total value will rise to 179 billion EUR by 2018 (Arpinen,

Hämäläinen & Hännikäinen, 2011) for total sales of 1 trillion EUR. Total expenditure

on research in the automotive sector is estimated to rise to 100 billion EUR by 2020

(Hill, Menk & Swiecki, 2016).

Figure 2.7 was adapted from Braun (2014), Broy (2007) and additional data from

Hill and Menk (2016). It shows that in 2000, the percentage value of software and

computing hardware contributing value to the entire automobile was 22%. By 2020, it is

expected that software will constitute 80% of the value of the vehicle. The percentages

in the boxes show the proportion of the software value to the hardware value that make

up each solution. By 2020, the proportional value of the hardware will have dropped to

20%. While hardware becomes increasingly more cost-effective, the expenditure on

software development will continue to rise.

Braun notes that this is an increase in market value of the software of nearly 530%

since 2003. Hardung states that electronics in automobiles now account for 90% of the

innovations. Of that, 80% are attributable to software. (Hardung, Kölzow & Krüger,

2004). Broy et al. note that, compared to the cost of the mechanical parts of the car,

the cost of replicating software is nearly zero (Broy et al., 2007). Coupled with the

low cost of the processing hardware, the most cost-effective way to realize innovation

such as this is through software. The increasing reliability and sophistication of the

hardware has meant that realizing ever-more complex, software-intensive systems is

not infeasible; it is just difficult.

However, metrics such as the lines of code quoted previously can be misleading;

the Boeing 787 Dreamliner requires only 6.5 million lines of code while the latest F-35

Joint Strike Fighter uses 5.7 million lines of code (Charette, 2009). Surely a system

which can take off and land by itself, managing multiple engines is more complex than
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an automobile?

It is not that simple. McCabe explains that code complexity is independent of its

physical size. He explains that this Cyclomatic Complexity depends only on the intricacy

of its branching structure (McCabe, 1976). McCabe also discusses good and bad coding

practices. The IEC 61499 Function Block architecture creates systems that consist of

large numbers of discrete algorithms, encapsulated as C++ or Java functions. These

Event-Processing code blocks are responsible for decision making while interacting

with the peripherals that the system is controlling. Having a clear understanding of what

makes good, well-structured and reliable code that is applicable to this architecture is

an important contributor to the problem of creating unambiguous traceability linkages.

In cyber-physical systems, complexity is also evidenced when the number of dif-

ferent functional building blocks used increases while the number of non-trivial rela-

tionships and interactions between them is growing larger (Regnell, Svensson & Wnuk,
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2008). Documenting, tracing and verifying the requirements of such software-intensive

systems becomes exponentially more time-consuming and error-prone as the overall

system code base expands.

Complexity manifests itself through two distinct characteristics of cyber-physical

systems:

A. They are often Systems-of-Systems. To maximize the return on investment for

their development, the automotive and aerospace industries increasingly rely on the re-

use of standard sub-assemblies across a range of different vehicles. These are typically

crafted in-conjunction with both internal developers and external suppliers (Hardung

et al., 2004). While car manufacturers would prefer just to be Original Equipment

Manufacturers (OEM’s), they operate today far more like systems integrators. The

design of reliable and re-usable internal software interfaces becomes critical to amortize

costs, increase reliability and standardize inventories. Hence, requirements frameworks

have to be able to cope with black-box interfaces and hierarchies of requirements. Where

safety-critical certification is required, deep requirements traceability and verification

become mandatory. However, they operate in a world of black-box componentry, the

internal workings of which may be closed and proprietary.

B. They rely on System-to-System interactions. Engine management systems work

in tandem with not only data from the engine hardware itself and its myriad of sensors

but also with the data they exchange with other autonomous sub-systems. Electronic

Stability Controls, Hybrid Fuel Management and driver interfaces rely on critical data

interchanges to facilitate both efficient fuel management and share co-operative tasks.

As the number of systems that rely on each other increases, specifying and validating

requirements that span multiple systems becomes problematic.

Pretschner cites deeper drivers of complexity. Since automotive and aerospace

systems often rely on sub-systems sourced from multiple vendors, they are highly

heterogeneous (Pretschner et al., 2007). In contrast, homogeneous systems are more
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common in companies that use closed-architecture’s such as Apple. Automobile manu-

facturers seek to have common systems that handle variants across their range. Such

variations, referred product lines, are part of their drive for differentiation within mass

markets. Pretschner (2007) gives the example of a Crysler power-train control ap-

plication that can have 3,488 possible component variations by using different code

algorithm configurations. Coupled with this, base software systems are designed to

have a life-span of at least 15 years. They must evolve as each year’s model changes

whilst providing backwards-compatibility for vehicles which are already in the field. In

the aerospace environment, systems can exhibit lifetimes of 30 years or more. Suppliers

have to guarantee the supply of compatible componentry for that period due to FAA

regulations. In contrast, the automotive industry has to cope with the changes that occur

when electronic components become obsolete within three to five years (Condra, 2015).

There are also deep interactions between separate sub-systems. Krüger and Nelson

give an example of door control systems used in Daimler cars (Krüger, Nelson &

Prasad, 2004). Up to eighteen separate electronic control units can communicate with

the door locking systems. The Engine Management System ensures that it informs the

Door Control Systems that the vehicle is moving and that the doors should be closed.

However, in the event of a collision, the systems that co-ordinate the air bags also

interact with the Door Control Systems to ensure that they are unlocked at the right

time.

2.5.5 Using Formal Methods in both design and traceability

Formal methods are those techniques that are by definition, structured or formalized

rather than being arbitrary or ad-hoc (Monin, 2012). While many formal methods

involve mathematical approaches, in their simplest expression they have three primary

characteristics:
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1. They are alternative ways of specifying how we build our requirements models.

2. They are processes, often involving mathematical techniques, that we run against

our requirements model to explore it.

3. Formal methods help to provide rigor and structure to validation, verification and

traceability techniques.

Holloway asserts that, just as in any other engineering discipline, performing math-

ematical analysis in software engineering contributes to the robustness and reliability of

a systems’ design (Holloway, 1997). Key to Alford and Lawson’s recommendations

were the use of formal mathematical methods to support requirements engineering

processes (Alford & Lawson, 1979, page xiv). Hamilton and Zeldin’s earlier work

on design and verification of spacecraft guidance systems emphasizes the same need

by relying on formal mathematics for verification. Hamilton’s later work inspired

the concepts of the Correct By Construction methodology that utilized requirements

frameworks that can be analyzed by mathematical techniques (Hamilton & Zeldin,

1976). In a related work of theirs, the formal mathematical verifications they describe

rely on locating code to analyse via traceability methods (Hamilton & Zeldin, 1980).

Within this context, Meyer (1995) stated that it is clear that a more rigorous math-

ematical approach was needed if software quality was to improve. This section explores

what the current role of formal methods is within cyber-physical system development

and how traceability supports these approaches.

Formal approaches verify and validate models using specific properties and quality

characteristics (Guessi, Oliveira, Garcés & Oquendo, 2015). Software architecture

models are necessarily abstract but they are constructed from concrete statements

or representations of the atomic requirements. Architectural Description Languages

(ASLs) are used to compose such models. While UML and SysML are semi-formal

languages, formal languages including MARTE, which focuses on performance and
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scheduling, EAST-ADL2 and AUTOSAR are widely used in automotive software

design (Guessi, Cavalcante & Oliveira, 2015).

Bowen and Hinchley emphasize the following aspects of formal methods (J. P. Bowen

& Hinchey, 1995):

The use of appropriate notations. Architectural Description Languages are

formal in the sense that they use technically-precise notations, which often include

mathematically-based syntaxes. Pre-defined and agreed language constructs help to

promote consistency.

Formal methods should be used appropriately. There is a limit to value returned

in creating formal methods for every part of a system. However, specifying requirements

using formal notations makes them more concise.

Formal Methods do not replace testing however, formal models can be used to

create executable specifications (Marwedel, 2010).

There are a number of studies that explore the impact of formal methods on the

effectiveness of traceability. Easterbrook and Singer (2008) explain how formalizing

requirements in models for NASA embedded software systems allowed traces to be

established to verify Functional Concept Diagrams (FCDs), which are flowchart-like

diagrams used to model algorithms. They report that finding little traceability in some

parts of their system was also useful since it identified issues that were not well handled

in their models. Bozzano et al., (2014) discuss model-based checking of satellite

systems using formal methods that rely on system-generated traces and well-defined

properties. Their focus is on early stage design validation where formal methods are

used to address complexity issues within avionic systems. They stress that manual

methods of traceability are too cumbersome while the advantages of probabilistic model

checking allow them to perform more dependable risk assessment. Spanoudakis and

Zisman detail rule-based creation of traces using formal constructs to analyze free-form

text requirements using Natural Language Processing (NLP) to assist with the analysis
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of their model’s integrity (Spanoudakis, Zisman, Pérez-Minana & Krause, 2004). Their

work is interesting since they model formal state relationships that capture overlapping,

incomplete and partially-fulfilled requirements. This mirrors the work of Vierhauser

and Rabiser that detected false trace monitoring violations that cross into incorrect areas.

This is a problem of context; the traceability strategy cannot determine if it is looking

in the correct part of the system (Vierhauser et al., 2015).

Formal methods also help to facilitate safety-critical compliance. Breaux and

Gordon (2013) discuss ways of data mining and interacting with regulatory requirements,

including examples from Legal Requirements Specification Languages (LRSL). These

are formalisms which requirements management systems ought to be able to extract

information from automatically to ensure that legal or compliance requirements are

being considered and satisfied.

Hence within the scope of our research question, formal methods are by definition

not just mathematical operations. Rather, they are all those techniques that facilitate the

validation and verification of the system requirements by performing traces within a

well-defined requirements model.

2.6 Gaps, Conclusions and Opportunities

Traceability is a key enabler of validation and verification strategies, especially when

applications demand safety-critical compliance. Good models and reliable traces yield

quantifiable benefits, as suggested by Mäder et al., in their study of the design of

software maintenance tasks that were supported by traceability. On average, subjects

performed 24% faster on given tasks and produced 50% more correct solutions (Mäder,

Gotel & Philippow, 2009b).

However, without adequate models and the adoption of appropriate traceability

tools, the task of manual traceability is onerous. The high cost of creating traces and
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maintaining them is only perceived to be beneficial if it leads to measurable product

improvements, even with the use of automated traceability strategies (Ramesh et al.,

1995). This problem is exacerbated by standalone tools that do not easily integrate with

external development systems, requiring traces to be created and updated manually.

It is significant that Microsoft Visual Studio, Eclipse and nxtStudio do not include

traceability tools and resources as standard core modules. In reality, the tools that do

support these environments are independent enhancement products created by other

vendors.

These shortcomings are also reflected by the predominance of general-purpose tools

in practice (O. C. Gotel & Finkelstein, 1994). Gartner’s statistics quoted earlier support

this assertion; less than 50% of the participants in their survey were using specialized

traceability or requirements management tools.

Given this trend, there is a clear need for tools that take a different approach.

We could find little evidence of traceability tools which were able to reach both into

requirements management systems as well as being able to mine data from development

tools. A neutral traceability architecture such as this would present opportunities to

capture historical information as well as perform formal analysis on the entities it has

created. Subsequent chapters examine modeling strategies and techniques in more detail.

Chapter 4 examines how we can refine requirement statements and express them more

concretely. Techniques examined include the applicability of the CESAR requirement

boilerplates (Mitschke, Andreas and Loughran Neil and Josko Bernhard and Häusler

Stefan and Dierks Henning, 2010) as well as the Object Management Group (OMG)

SysML Requirements Diagrams (OMG, 2016a).

Scope is also a challenge. Mistakes when deciding on the complexity, depth and

intensity of requirements models can be costly; Mäder et al. (2009b) and Leffingwell

(1997) both explain that the wrong granularity of traces leads to overly complex or in-

adequate traceability graphs. During the design of TORUS, the scope of the traceability
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between the requirements model and the example nxtStudio application needs to be

defined clearly and justified. As stated earlier, knowing what to trace as well as how far

to trace is a crucial decision in a project.

Complexity and scalability are a core focus of the research. An ideal traceability

solution for a complex application that has a large number of requirements has to scale

well. It must demonstrate ways of detecting ambiguity and differentiate between correct

and incorrect trace information. The literature clearly shows that there is no simple,

all-encompassing solution that addresses cyber-physical systems.

The most appropriate abstractions to use for modeling cyber-physical systems also

remains an open question. Cyber-physical systems push the limits of the current abstrac-

tions we use to describe applications (E. A. Lee, 2008; Rajkumar et al., 2010). Later in

Section 8.1, during the discussion following the creation of the workpiece color sorter in

nxtStudio, the value of the SysML model created in Enterprise Architect is brought into

question. Is the nxtStudio application itself a more appropriate requirements modeling

environment? IEC 61499 is arguably an excellent abstraction for representing cyber-

physical systems. If we are to encourage practitioners to adopt Model-Based Systems

Engineering approaches, we have to be able to justify the cost and effort that will go

into creating models by facilitating excellent traceability, validation and verification.



Chapter 3

Research Methodology

This research seeks to identify techniques that deliver reliable requirements traceability

for large cyber-physical systems. TORUS splices are discrete structures that have been

proposed as a way of identifying and correlating the code that fulfills a requirement,

contained within an appropriate requirements model. Rather than being qualitative,

we have sought to build experimental frameworks and verify them with evidence from

example systems. Formal methods were used to better understand and attempt to verify

our models of requirements, function blocks and splices.

Sjøberg (2007) asserts that no matter what the form, the essence of empirical

research is to acquire knowledge by empirical methods. This section examines research

methodologies for running and evaluating controlled experiments on our example

requirement sets and the function blocks that satisfy them. It contrasts the two most

promising-looking approaches while considering some aspects of the methodological

pluralism and diversity that mixing these methods might achieve.

56
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3.1 Factors in choosing a research methodology

Selecting an appropriate research methodology is hard. Easterbrooke (2008) suggests

that the pros and cons of any particular method are not always well-documented in

the literature. Wohlin and Aurum explain that this is partially because the underlying

assumptions of the methods used are often not well understood by those using them

(Wohlin & Aurum, 2015). Since researchers often have little knowledge of alternatives

outside their field, there is little cross-pollination of ideas and techniques.

Both Easterbrooke and Sjøberg et al. (2007) provide broad guidelines for what

constitutes high-quality empirical research. Core to their thinking is the need to increase

the shared understanding of how to conduct empirical research because:

• Practitioners need to understand how the individual components of a research

methodology work together. For example, how do literature reviews influence the

design of later experimental work?

• It is important to report and understand the implications of assumptions that have

been made.

• Research results need to be presented appropriately and confidently. Tables,

figures and graphs are different approaches to presenting results that need careful

consideration to determine what works best in any particular situation. Infograph-

ics is an emerging, cognitive discipline that seeks to understand how graphical

representations of information can present difficult concepts quickly and unam-

biguously (Schoffelen et al., 2015; Siricharoen, 2013; Borkin et al., 2013).

• Original research needs to also be able to contrast and build on other researchers

work in context. Newton’s compliment to Robert Hooke in February, 1676 came

at the end of a long period of both conflict and collaboration between them:
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"What Descartes did was a good step. You have added much in several ways, and

especially in taking the colours of thin plates into philosophical consideration. If

I have seen further it is by standing on the shoulders of giants" (Maury, 1992;

Brewster, 1860).

• There is also a case for using more than one methodology. Purely empirical

research that generates quantitative results can be enhanced in some situations by

qualitative input from surveys and interviews later (Wohlin & Aurum, 2015).

3.2 Alternative Research Methodologies

One way of verifying the TORUS architecture and designing the metadata requirements

for the splices would be by the creation of representative cyber-physical system models

in a software tool. A prototype of TORUS would allow the different splice scenarios and

types to be examined in realistic scenarios. For example, the resultant splice metadata

that describes the state of the requirement that is not yet instantiated in code is expected

to be different from the scenarios of orphan code. Hence the scope of the methodology

exploration was narrowed to exclude those approaches or methodologies that did not

directly support experimentation via construction.

Easterbrooke et al. (2008) identify six research approaches that were examined

while considering how to design and evaluate the TORUS framework:

Action Research is characterized by the combination of theory and practice being

explored in a real-world practitioner scenario. Aviston & Lau (1999) state that it

is a quantitative method that is useful in explaining the behavior of software in a

particular organizational setting. In experimental settings, it can often help to format

and present evidence in ways that augment expert opinions (Dos Santos & Travassos,

2011). Runeson and Höst contrast it with other methodologies stating that it is primarily
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qualitative but offers flexible research design options (Runeson & Höst, 2009).

Ethnographies are similiar to Action Research in that they co-locate researchers

in the field with their subjects and examines all available data (Hutchins, 1995). Many

conclusions arise from observations and outlier data that might not have been captured

or seen as relevant in other methodologies. Ethnographic and Action Research would

be more applicable to our situation if the research was evaluating existing traceability

regimes that were already being used in the field.

Case Studies and Surveys were considered as a way of later determining what

would encourage practitioners to adopt TORUS as a traceability strategy. However,

surveys can be problematic if there are insufficient tangible results to propose. Runeson

and Höst caution that over-simplistic "toy studies" do not yield results that contribute

meaningful findings (Runeson & Höst, 2009, page 132). Client-focused case studies

and surveys will be considered for future work once TORUS is ready for field trials.

Controlled Experiments and Quasi-Experiments have more applicability in so-

cial science or medical randomized trials. A quasi-experiment is an empirical study

used to estimate the causal impact of an intervention on it’s target. It is not always

possible to demonstrate a causal link between a condition and observed outcomes.

This is particularly true if there are confounding variables that cannot be controlled or

accounted for.

Constructive Methods and Design Science are research approaches that embrace

aspects of behavioral science, the search for theories that predict or explain organiza-

tional or human behavior (Kukafka, Johnson, Linfante & Allegrante, 2003). However,

behavioral science in this field has seldom focused on evaluating iterative models; its fo-

cus is primarily on the use or acceptance of software artifacts" (A. Hevner & Chatterjee,

2010). In contrast, Constructive Methods and Design Science are methodologies that

"seek to extend the boundaries of human and organizational capabilities by creating

new and innovative artifacts" (A. R. Hevner, March, Park & Ram, 2004, page 75).



Chapter 3. Research Methodology 60

Piaget argued that humans generate knowledge and meaning from the interaction

between their experiences and their ideas (Wadsworth, 1996). Within Information

Science, Piaget’s constructivist and exploratory approaches often include the creation of

software and hardware systems that attempt to model one or more aspects of a research

problem.

Nunamaker et al. (1990) presented some of the earliest work done in the area of

design science. They proposed a multi-methodological approach to building information

systems where experiments, case studies, simulation and mathematical methods were

used iteratively:

1. In the Theory-Building Stage, new ideas and concepts are proposed and possible

frameworks are evaluated. Formal methods are encouraged since they allow

constraints to be modeled and assumptions to be tested more rigorously. Hevner

and March (2004) explain that formal methods allow quantitative rather than

just qualitative data to be gathered, allowing activities such as "optimization,

analytical simulations and quantitative comparisons to be performed" (page 77).

2. Experimentation can be performed not only under laboratory conditions but also

through limited and controlled user-participation trials.

3. Case Studies, Surveys and Field trials allow for a more extensive evaluation of

prototype artifacts, sometimes for extended periods. Nunamaker et al. describe

this as an observational phase whose analysis and outputs feed back into repeated

cycles as the design is refined iteratively.

Hevner and Chatterjee (2010) propose that Behavioral Science and Design Science

are actually complementary and effectively inseparable. They essentially draw from

a pragmatic philosophy which proposes that truth is theory that has been justified

while utility is evidenced when artifacts are deemed to be effective (Figure 3.1). The
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Design Science 
Research
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Information Science Artifacts Provide Utility

Information Science Theories Provide Truth

Figure 3.1: The Complementary Nature of Design Science and Behavioral Science
Research (A. Hevner & Chatterjee, 2010, page 11).

implication is that information science research should be evaluated in the light of its

practical outcomes. Easterbrook and Singer et al. take this further; "pragmatism adopts

an engineering approach to research - it values practical knowledge over abstract

knowledge, and uses whatever methods are appropriate to obtain it" (Easterbrook et al.,

2008, page 292).

3.3 A Framework for Design Science Research

Hevner and March (2004) present a framework for conducting design science research

shown in Figure 3.1. It proposes seven key aspects to focus processes and protocols

around.

Each of these recommendations were used to draw up guidelines and propose

tasks and activities for modeling the TORUS architecture. Prototypes were developed

iteratively in phases where creating part of a TORUS implementation would be relevant.

These guidelines support an iterative approach that was proposed and discussed in the



Chapter 3. Research Methodology 62

planning stages of the research that is shown in Figure 3.2:

Save as: Roopaks_Research_Methodology.pdf
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Figure 3.2: The TORUS Design Science Research Protocol.

Table 3.1: Design Science Research Guidelines

Guideline Description
Guideline 1: Design as an Artifact. Design Science research must produce a viable

artifact in the form of a construct, a model,
a method or an instantiation.

Guideline 2: Problem relevance. The objective of Design Science research is to
develop technology-based solutions to important
and relevant business problems.

Guideline 3: Design evaluation. The utility, quality, and efficacy of a design
artifact must be rigorously demonstrated via
well-executed evaluation methods.

Guideline 4: Research contributions. Effective Design Science research must provide
clear and verifiable contributions in the areas
of the design artifact, design foundations, and/or
design methodologies.

Guideline 5: Research rigor. Design Science research relies upon the application
of rigorous methods in both the construction and
evaluation of the design artifact.

Guideline 6: Design as a search The search for an effective artifact requires
process. utilizing available means to reach desired ends

while satisfying laws in the problem environment.
Guideline 7: Communication of Design Science research must be presented
research. effectively to both technology-oriented and

management-oriented audiences.
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3.3.1 Guideline 1: Design as an Artifact

Hevner and and March’s first guideline states that design science research must produce

a viable artifact. Deeper than that, design is concerned not only with the form of

the IT artifact but also with the creative processes, modeling techniques and formal

mathematics that underlie each instantiation. Research and development management

strategies are also a core component that evolves as new techniques and methodologies

are introduced as needed. Hence, design is manifested not just in the quality of the

resulting system artifact but also in the quality of the justified theory and processes that

produced it (Norman, 2013).

Figure 3.2 shows the research cycle steps, where the thinking and gaps uncovered

in the literature search result in an initial conceptual design. Our first iteration of this

loop is detailed in Chapter 4 where the requirements for the Workpiece Color Sorter are

refined and modeled. The resultant requirement’s set provides examples of the data that

need to be captured in our traceability structures as well as helping to identity potential

splice types and relationships.

Hollan defines this aspect of culture in the context of software development by view-

ing culture as the process that "accumulates partial solutions to frequently encountered

problems" (Hollan, Hutchins & Kirsh, 2000, page 178). Without this residue of previous

activity, we would all have to find solutions from scratch, re-inventing them each time

we encounter the same problem. In this context, Hollan and Hutchens both see culture

as a process rather than as a collection of things (Hutchins, 1995).

3.3.2 Guideline 2: Problem relevance

Hevner proposes that "A justified theory that is not useful for the environment con-

tributes as little to the IS literature as an artifact that solves a non-existent problem"

(A. R. Hevner et al., 2004, page 81). The literature search uncovered evidence that
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traceability in CPS’s is not a mature discipline yet. TORUS is also designed to investig-

ate aspects of complexity and scale that were identified as being important. Applegate

and King caution that there is a balance between the need for rigor discussed later

in Guideline 5 and the desire to only include experiments that are deemed relevant

(Applegate & King, 1999). They argue that there is a need for both.

It is to be hoped that the TORUS framework and the concept of splices will be seen

by practitioners as a viable traceability approach. However, if TORUS is not supported

by a strong underlying design framework, it will be difficult for other researchers

to extend it with their own contributions. Appropriate design documentation was

developed in addition to the material that was created specifically for this thesis. The

modeling and design of the classes and data structures in the prototypes reflects iterative

coding practices that are typical in Test-Driven Design environments (Diepenbeck,

Kühne, Soeken & Drechsler, 2014).

3.3.3 Guideline 3: Design evaluation

The quality and applicability of a design artifact must be demonstrated by well-defined

and rigorous methods. Our requirements set was used to create a formal Requirements

Model in Sparx Enterprise Architect (Architect, 2010). This process is documented

in Chapter 4 and includes a formal definition of what a requirement is. This led to

the creation of a prototype of the Workpiece Color Sorter in the nxtStudio IEC 61499

development environment (nxtControl GmbH, 2016a). This process was documented

in Chapter 5 and presents a formal definition of a function block. During this phase,

possible ways of tagging algorithms were investigated to determine if they could be

used to automatically identify traceability endpoints. Deliberate gaps exist in our

requirements model that were seeded there to see if evidence of their presence emerged

as particular classes of splices.
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Design Science result evaluations rely on the identification of metrics that demon-

strate the efficacy of the artifacts produced in an iteration (A. R. Hevner et al., 2004).

Our approach was to model both ends of the solution and determine how TORUS could

bridge the gap between our requirements model and our application solution.

Both Norman (2013) and Hevner (2004) assert that efficacy of design is not enough;

good designers incorporate both style and aesthetic’s in their artifacts. Gelernter

describes this as "machine beauty", the marriage between simplicity and efficacy that

drives innovation in science as much as it does in technology (Gelernter, 1999, page 3).

The quality of the underlying architecture of TORUS will contribute to supporting the

planned future research into cognition and visualization of large requirement sets. Part

of that will involve determining how easy it is for practitioners to make sense of the

results that traceability solutions such as TORUS present.

3.3.4 Guideline 4: Research contributions

This guideline was considered to be an extension of guideline two. Weber considers

the lifetimes of IT artifacts and their resultant cycles. Valuable research contributions

include software artifacts that inspire and motivate research by other practitioners

as well as wide-spread acceptance of novel solutions that extend the field (Weber et

al., 1997). Our contribution lies in both the instantiations of TORUS as well as the

introduction of the concepts of the Splice and the Skein of the application.

3.3.5 Guideline 5: Research rigor

Rigor in design science research is maintained by the careful design of both artifacts

and evaluation strategies. However, there is a fine balance to maintain since some

problems require serendipitous solutions. Buchanan and Brooks both argue that while

some technological advances are the result of creative and perhaps innovative design
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science processes, some solutions are arrived at via capricious or sometimes arbitrary

routes (Buchanan, 1992; Brooks, 1987). Those are the "ah ha!" moments that make

this sort of research so rewarding.

3.3.6 Guideline 6: Design as a search process

Design is an iterative search to find an effective solution for a problem. Simon (1996)

describes this as a cyclic process of generating design alternatives followed by testing

each iteration against known requirements and constraints. However, when the range

of possible solutions or routes that could be followed is large, we cross into the space

described by Buchanan as "wicked problems" (Buchanan, 1992, page 15). These are

problems whose descriptions are extremely difficult to formulate and where the data

that accompanies them is confusing or indeterminate. While design science processes

through iterative phases, it is hard to predict the number of iterations that would

be needed to produce a solution. In such circumstances, the solution may emerge

unexpectedly.

Hevner and March (2004) suggest that one way of keeping such scenarios under

control is to continually attempt to determine how close the artifact, developed in an

iteration, is to being an optimal solution. This task is supported by the application of

Guideline 3 that addresses the methods for evaluating designs.

Following the first iterations that created the requirements model, a TORUS proto-

type was created. The formal definition of splices and skeins is presented in Chapter

6 in the context of the TORUS architecture. This prototype was first used to explore

the requirements model of the workpiece color sorter. A later iteration extracted the

splices from the IEC 61499 function blocks used to create the workpiece color sorter

application and linked them to the requirement model splices found in the first iteration.
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3.3.7 Guideline 7: Communication of research

TORUS was never intended to be an application that only existed within the confines

of a research environment. Such solutions mature when they are continually presented

with real-world scenarios that describe contemporary problems. When research is

published, there is a juxtaposition of fresh ideas from other researchers that can be used

to approach the problem in new ways. Hence, in future work, collaboration with other

researchers and examining TORUS in the wild remain as key aims.

3.4 Conclusions, Limitations and Assessing the Threats

to Validity

This section has explored alternative research methodologies to determine what would

best support the design and evaluation of TORUS. An experimental design-science

approach that first built the requirements model, then built a matching IEC 61499

application was chosen as the best way of getting to the point where evaluating splice

scenarios was possible.

While some aspects of the expected metadata structure of a splice had already been

worked out during the early research planning phase, a number of unanswered questions

remained about what the scope of possible splice types might be. It was determined

that some basic splice types were trivial to conceptualize; when there are no algorithms

in the code, then all splice statuses would show that the requirement existed but was

unfulfilled. As representative scenarios are explored more deeply, it is expected that

new splice classes that are more fine-grained and descriptive will emerge from the first

basic cases.

When evaluating the research methodology chosen, three threats to the validity of

our results and the limitations of this study were considered more deeply:
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1. The Limitations of Single-Outcome Studies. The objective of most case studies

is to discover something about the broader population of cases. While single-

outcome studies are often viable in medical research (Gerring, 2006), they can

pose problems during Design Science studies. There is a risk that the act of design

and construction can become an end in itself. Hence exemplars and cases need to

be convincing and representative, but not contrived. One approach is to ensure

that while the artifact can have a single, well-defined deliverable goal in each

phase, the aim of each iteration should be to realize different, evolving aspects

of the overarching need. The Workpiece Color Sorter is a simple example yet is

nonetheless valuable since it also embodies safety and performance requirements

which have only emerged during the subsequent requirement’s elucidation. These

were able to be identified by representative splice types and states. As such,

though we are examining only one application in this study, the splice concepts it

has led us to are arguably novel constructs.

2. Understanding the scope of prototypes. The prototypes produced from this

research are not fully-featured implementations. That is an expected condition

of typical design science projects; artifacts are categorized as innovations that

help to define ideas, theory and practices (Denning, 1997). The true value of

the TORUS framework would only be realized once it has been exercised in

a number of real-world scenarios. This maturing time for a prototype builds

application resilience by stressing it within a production environment and ensures

that it addresses real problems, not just academic ones. However, before such

field trials can begin, the prototype must reach a level of maturity in a laboratory

environment that takes it beyond the "toy" stage.

3. IEC 61499 alternatives within the context of the Internet of Things. IEC

61499 is not the only architecture currently being used to build modern cyber-

physical systems. Hence, the first iterations of TORUS have to be developed while
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remaining cognizant of the need to allow alternative requirements management

and development systems to be accommodated later. Function Blocks were

chosen since they lend themselves well to analysis by formal methods (Dubinin

& Vyatkin, 2008; Drechsler & Kühne, 2015). Within the IEC 61499 community,

there are also multiple competing development environments that store their

application metadata in different formats. The TORUS architecture is modular

and was designed to allow the system to be extended through interfaces to support

more function block development systems as well as alternative requirements

management systems. Extending TORUS to work with other cyber-physical

system architectures could be a worthwhile path to investigate in future research.
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Requirements Modeling

Requirements need to be organized in a systematic manner, especially when they rep-

resent large requirements sets. To study the nature of traceability within complex

cyber-physical systems, we need to gain an understanding not only of the needs ex-

pressed in the requirement statements but also of the context that the application will be

operating in.

This section explores the raw specification further and refines it through a series

of iterations to build a robust requirements model. The Sparx Enterprise Architect

Requirements Management system (Architect, 2010) was used to create a view of the

system using the SysML modeling language. The data held in this model was mined,

showing how trace footholds or hooks could be established for the splices to use later.

The Workpiece Color Sorter is a practical example of a cyber-physical system that

illustrates how the trace linkages from the requirements through to the implementation

could be constructed. While this device initially appears to be a trivial example, it

quickly becomes clear that the pre-RS descriptions of its anticipated behavior fail to

capture significant non-functional and safety-critical requirements. These classes of

requirements often only emerge as the specification is refined and analyzed in greater

depth.

70
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4.1 Gathering the initial pre-Requirements information

The first information about what the Workpiece Color Sorter was expected to be able to

do was gathered during an initial informal discussion. One of the supervisors for this

research was asked to act as a client and present a very rough outline of the device. The

hand-drawn sketch shown in Figure 4.1 was created during this discussion as well as a

simple, verbal description of the functionality. The client used the diagrams as a way of

both explaining and exploring their thinking rather than as concrete design objects that

they had prepared earlier:Save as: Initial_Diagram_1.pdf

Figure 4.1: The First Diagram Drawn by the Client Illustrating Some of the Functional-
ity.

The second sketch shown in Figure 4.2 was created during the same session. At the

time, the client was giving a free-form, natural-language explanation of the device’s

operations:

"The sphere moves into the workspace. The system checks the color of the workpiece. If
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the sphere is black, the horizontal piston moves it horizontally off of the workspace. If

the workpiece is red, the vertical piston moves it vertically. If it is any other color, the

direction the thing is moved in is exactly the same direction the last one was moved in."Save as: Initial_Diagram_2.pdf

Figure 4.2: The Second Diagram Drawn by the Client to Further Explain the Function-
ality.

The format of these early-stage requirements is typical of those found in real-world

projects. In this phase, the job of the requirements engineer is to translate the view

that the stakeholders have of their world, colored by their implicit domain knowledge,

into a view that the developers can comprehend (Sandhu, 2015). These statements

express intent without explaining how the piston or software is intended to implement
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the functionality. For example, no mention is made of safety constraints. Other Non-

Functional Requirements such as the number of spheres the device was expected to

handle per second or the physical size and weight of the spheres were not provided.

These are typically details that the requirements analyst would be expected to elicit as

their shared understanding of the client’s needs is built. Terminology such as workpiece

and workspace may later become elements of a glossary of shared terms or ontology

that describes the solutions knowledge environment. Note the ambiguity in sentences:

the terms sphere, thing and workpiece are used interchangeably. We can summarize

these abstractions as:

• Workpiece. The colored sphere that is going to be shifted or moved according to

the system’s rules.

• Workspace. The physical region within the bounds of the devices activities where

the Workpiece can be controlled.

• Piston. A device for moving a Workpiece horizontally or vertically within and

out of the Workspace.

These formalizations help to better define objects and remove ambiguity from the

descriptions given by the stakeholder. Gervasi and Zowghi (2010) cite such ambiguity as

the most significant cause of the later failure of traceability strategies to identify correct

linkages. However, the statements still miss one scenario related to the initialization

of the system; the first time the system becomes operational, there will have been

no previous workpiece. If the first workpiece presented is neither black nor red, the

direction to move it in is indeterminate. During the requirements refinement, additional

requirements will need to be created to handle this situation.
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4.2 Refining the requirements

The pre-RS natural language text can be made more formal by iterating each requirement

and expressing them in a notation that is more precise. The following sections examine

Requirements Specification Languages (RSL’s) including Template-Based Require-

ments Specifications and the use of the Systems Modeling Language SysML. SysML is

an extension of UML 2.0 that introduces diagrams more applicable to cyber-physical

systems design (OMG, 2016a).

4.2.1 Template-Based Requirements Specifications

Natural language requirements are typically influenced by implicit domain knowledge

but are not necessarily constrained enough by it (Kamsties et al., 2001). Using a guided

natural language template, a dictionary of prescribed words enables the requirements to

be expressed in a more regular, repeatable way. Boilerplates are templates, written in

the terminology of the RSL, that can be parameterized with objects and events. Events

are activities that the objects can either facilitate or participate in. Most specifications

require a minimal set of compatible templates to properly express the full range of

scenarios. We developed a draft set of three templates that are similar to Use Cases:

1. The <stakeholder> shall be able to <capability> within <performance> of

<event> while <operational condition>.

2. The <system> shall <action><entity> with <entity> when <operating condi-

tion>.

3. Whenever<event> occurs <condition> holds during the following <interval>.

Boilerplates such as these typically address one of three main categories of activities:

1. Capability Boilerplates detail tasks or activities that the system is capable of

performing.
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2. Requirement Boilerplates express both functional as well as non-functional

requirements. Non-functional requirements specify compliance with measurable

metrics such as speed or power usage. Functional requirements define expected

capabilities.

3. Constraint Boilerplates. Things the system should not do. In the scenarios

stated so far, there is no indication that the vertical or horizontal pistons will have

software checks or mechanical interlocks that stop one piston from starting to

move while the other piston is in motion.

4.2.2 Building the draft ontology

Ontologies are more systematic glossaries of terms that capture domain knowledge in

structured ways. They are often very fluid structures while they are being established,

explored and refined. This is their normal and expected behavior during requirements

elicitation (Noy, McGuinness et al., 2001). As the requirements become more con-

strained, ambiguous terminology is removed systematically as it is replaced with correct

classification elements, known as ontology classes. The category groupings that de-

scribe each activity or property may also change. During the first stages of the creation

of our post-RS, the following ontology classes emerged:

• Objects: SolidStateDetector, WorkpieceRed, WorkpieceBlack, WorkpieceOther,

Workspace, PistonHorizontal, PistonVertical, LastWorkpiece.

• Events: ColorDetected, Presents, Extends, Retracts, Reaches.

• Attributes: TopLimit, BottomLimit, LastWorkpiece, IsLocked, IsExtended, Is-

Retracted, IsLastUsed, IsBlack, isRed, isOther.
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4.2.3 Creating and Using the Boilerplate Templates

While the Boilerplates that follow in Table 4.1 were being refined, the idea of ex-

pressing the properties of the Workpiece as objects was considered. This would have

resulted in entities such as Workpiece.Red and boolean properties such as Workpiece-

Black.IsLastUsed. This became clumsy and convoluted initially but perhaps warrants

further investigation later. The initial concern was that it introduced concepts that were

too abstract for all stakeholders to comprehend.

Table 4.1: Boilerplate Templates

Name Format

BP-01
whenever <object> [not] <attribute> [and] <object> [not] <attribute>] then
<object><action> until <object> [not] <attribute>.

BP-02
whenever <object> [not] <action> [and while <object> [not] <action>]
then <object> <attribute>.

The first set of requirements shown in Table 4.2 describe the operation of the horizontal

piston. All black Workpieces are moved by this piston.

Save as: Horizontal_Piston.pdf

Figure 4.3: Operation of the Horizontal Piston
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Table 4.2: Requirements for the Operation of the Horizontal Piston

ID Requirement Boilerplate
R1 whenever Workpiece IsBlack then PistonHorizontal Extends until BP-01

PistonHorizontal isExtended.
R2 whenever PistonHorizontal isExtended then PistonHorizontal Retracts BP-01

until PistonHorizontal IsRetracted.
SR1 whenever PistonHorizontal not IsRetracted then PistonVertical BP-02

IsLocked.
FR1 whenever Workpiece IsBlack then PistonHorizontal IsLastUsed. BP-02

The operation of the vertical piston, which manages red workpieces is similar. Note the

additional functional requirements FR1 and FR2 that remember the colour of the last

workpiece that was moved. The safety requirements SR1 and SR2 ensure that a piston

can only move when the other piston is fully-retracted.

Save as: Vertical_Piston.pdf

Figure 4.4: Operation of the Vertical Piston

Table 4.3: Requirements for the Operation of the Vertical Piston

ID Requirement Boilerplate
R3 whenever Workpiece IsRed then PistonVertical Extends until BP-01

PistonVertical isExtended.
R4 whenever PistonVertical isExtended then PistonVertical Retracts BP-01

until PistonVertical IsRetracted.
SR2 whenever PistonVertical not IsRetracted then PistonHorizontal BP-02

IsLocked.
FR2 whenever Workpiece IsRed then PistonVertical IsLastUsed. BP-02
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The remaining requirements in Table 4.4 manage the cases when the Workpiece is

neither red nor black. Requirement R7 manages the case when no previous workpiece

has been moved. This scenario would occur if the first Workpiece encountered after the

system is initialized is neither red nor black.

Table 4.4: Requirements for Moving Workpieces of Indeterminate Colors

ID Requirement Boilerplate
R5 whenever Workpiece IsOther and PistonHorizontal BP-01

IsLastUsed then Workpiece IsBlack.
R6 whenever Workpiece IsOther and PistonVertical BP-01

IsLastUsed then Workpiece IsRed.
R7 whenever Workpiece IsOther and PistonHorizontal not BP-01

IsLastUsed and PistonVertical not IsLastUsed then Workpiece
IsBlack.

Table 4.5: Requirements for Detecting the Color of the Workpiece

ID Requirement Boilerplate
R8 whenever SolidStateDetector ColorDetected IsRed BP-01

then Workpiece IsRed.
R9 whenever SolidStateDetector ColorDetected IsBlack BP-01

then Workpiece IsBlack.
R10 whenever SolidStateDetector ColorDetected not IsBlack BP-01

and SolidStateDetector ColorDetected not IsRed
then Workpiece IsOther.

4.3 Modeling the Requirements in SysML

The boilerplate-format requirements created so far define some of the capabilities of

the system. However, each requirement as written here exists as a single, independent

and unconnected statement. A list of requirements is not a Requirements Model; there

are implicit interdependencies between the actions that must be reflected or expressed

through the creation of appropriate model views.

The Unified Modeling Language (UML) is a general-purpose modeling language

that is used to describe software applications and their components in a systematic
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way (Pooley & Stevens, 1998). Modeling languages are semi-formal languages that

define the kinds of symbolic elements that can be used to describe a system (Delligatti,

2013). They formalize the allowable relationships between the models elements by

using notations to link the graphical parts of the model. Sets of rules, constructed with

elements of the standard UML grammar, ensure that models can be verified as being

syntactically-correct or well-formed.Save as: OMG_1_3.pdf

Figure 4.5: The SysML Modeling Language Extensions to the UML (OMG, 2016a,
page 167).

The Systems Modeling Language or SysML is an extension of the UML created by

the Object Management Group (OMG, 2016a). SysML introduced diagrams that are

more suitable for describing the characteristics of cyber-physical systems. Figure 4.5

illustrates the Requirement Diagram used in our models to describe the workpiece color

sorter in the context of other key diagram types available in SysML.

4.3.1 Characteristics of the SysML Requirement Diagram

A Requirements diagram describes a single requirement, expressed as a Use Case.

In its simplest format, the diagram consists of a rectangle with the UML stereotype

«requirement». Each requirement is defined by two primary properties:
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Save as: SysML_Requirement_Diagram.pdf

Figure 4.6: SysML Requirements
Diagram

The id is a unique string identifier which

carries the primary reference to this requirement.

Naming rules are not mandated in SysML but are

usually conventions agreed upon by the modelers

themselves.

The text carries the free-form description of

the requirement. The model constructed for use

in TORUS also includes the full boilerplate text that expresses the capabilities and

constraints that the requirement imposes on the named objects.

EA_Requirement_R1.pdf

Figure 4.7: Specifying Requirement R1 in Sparx Enterprise Architect.

The Requirements diagram also contains attributes to detail how a requirement is

derived from or relates to another requirement, how elements verify each other and how

they can be nested to contain each other. Requirements can also trace each other and

other types of SysML artifacts by specifying a «trace» relationship between themselves.

However, the scope of such trace elements is constrained to be within the model itself.
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They cannot reach out dynamically to verify the existence of concrete application

artifacts. As a consequence, trace elements within requirements models are limited to

being design or historical records of what is believed to be within the application system.

They must be updated manually or by importing external information from another

traceability system. In contrast, TORUS establishes an external repository which can

mine both the requirements model and the application artifacts. Hence, in the models

profiled here, no use has been made of the «trace» capabilities of Enterprise Architect.

Figure 4.7 shows the data captured for requirement R1 in our model. The stereotype

of this SysML element is «requirement». The Alias attribute contains our unique

requirements identifier. Each requirement has been assigned to one or more requirement

sub-groups. The Keywords attribute has been used to assign this requirement to the

horizontal piston hence its sub-group is PistonHorizontal. The complete SysML model

for the workpiece color sorter is shown in Figure 4.9. Constraining the group identifiers

to be valid ontology classes will improve the integrity of our later trace analysis when

the TORUS view is focusing only on requirements and function blocks that manage a

section of interest, such as a single piston.

4.3.2 Requirements and Unit Tests

Test-Driven Design is a natural complement for MBSE. During the creation of the work-

piece color sorter later, unit tests were created for each requirement and documented

within Enterprise Architect to keep the model up-to-date.

Since the unit tests exist in a natural hierarchy within the requirements model, there is an

implicit link to the requirement they are designed to test. Jamro (2014) details a similar

approach, developing a Structured Text language extension for unit tests applicable to

earlier IEC 61131-3 function blocks. Within our model, each unit test also specifies the

objects that it wishes to instantiate during the test. Figure 6.4 shows the code used to
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«requirement»
R10 Solid State Detector

«UnitTest»
UT1 Unit Test for R10

A

«UnitTest»
UT2 Unit Test for R10

<<verifies>>

<<verifies>>

Figure 4.8: Unit Tests for Requirement R10 within the Requirements Model.

implement two unit tests. Chapter 5 explains the object-orientated nature of function

blocks in more detail.

The Unit Tests therefore present a way of creating and updating traceability linkages

automatically by facilitating a way to analyze the function blocks at a code level.

Figure 4.8 illustrates the hierarchy of unit tests within SysML. These traceability hooks

are explored in more detail in Chapter 6.

4.3.3 Exchanging Data Using XMI

TORUS mines the data in our requirements model by using the exported XMI (XML

Metadata Interchange) file that Enterprise Architect creates (OMG, 2016b). This is an

XML-compliant data exchange standard that defines the metadata attributes that are

able to carry SysML model data out of the requirements modeling environment for use

by other systems.
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«requirement»
R1 - Horizontal Piston 

Extension

«requirement»
R3 - Vertical Piston 

Extension

Specifications: Workpiece Color Sorter

«requirement»
R2 - Horizontal Piston 

Retraction

«requirement,P...
SR1 - Horizontal 

Piston Safety

«requirement»
R4 - Vertical Piston 

Retraction

«requirement,P...
SR2 - Vertical Piston 

Safety

«requirement,F...
FR1 Horizontal Piston 

IsLastUsed

«requirement,F...
FR2 Vertical Piston 

IsLastUsed

«requirement»
R5 Horizontal Piston 

Last Used

«requirement»
R6 Vertical Piston 

Last Used

«requirement»
R7 Workpiece Color is 

indeterminate

«requirement»
R8 Solid State 

Detector

«requirement»
R9 - Solid State 

Detector

«requirement»
R10 Solid State 

Detector

Figure 4.9: The Complete Workpiece Color Sorter SysML Requirements Model.
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The schema for this file was studied to determine how Enterprise Architect encodes

the data in the XMI file. Key to relating all the fields for a requirement is a unique

GUID (Globally-Unique Identifier). Changing any data within an existing Requirements

Diagram preserves this GUID. TORUS imports this GUID and uses it to determine

if any attributes have changed. Tests showed that deleting a requirement completely

in Enterprise Architect and then re-creating an identical one correctly results in the

creation of a new GUID.

4.4 The Formal Definition of a Requirement

The requirements of the workpiece color sorter are not independent. There is a degree

of interrelation between them due to necessary dependencies that logically express

functionality needed to make the requirements complete. For example, while SR1 and

FR1 were not presented by the original stakeholders, their existence was justified by

later analysis. However, these requirements are secondary to the primary requirement

R1 and they imply a degree of hierarchy.

In addition to boilerplate requirements, we may add requirements specified in

other languages, Unit Tests, Use Cases, Scenarios, and Acceptance Tests. Also, in

many cases, there may be a need for requirement-to-requirement traces, especially for

historical linkages. It is therefore assumed that all requirements engineering artifact’s

are contained in the set SE of system elements.

Many requirement modeling strategies, including the CESAR Requirements Man-

agement Model, organize requirements into hierarchical Requirements Trees. The

requirements tree defined in Definition 4.4.1 RT expresses the complete workpiece

color sorter requirements set shown in Figure 4.9. The formalism we use to express our

requirements tree is a directed graph (Mäder, Gotel & Philippow, 2009a).
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Definition 4.4.1 (RT ) A Requirements Tree RT is a tuple RT = ⟨R, r0,ER⟩ where:

1. R is a set of vertices’s requirements.

2. r0 is the root requirement.

3. ER is a set of edges which are ordered pairs of elements of R.

The finite set RF = {RT1, . . .} of all requirements trees is called the requirements

forest, and represents the requirements organization for a system. Later chapters present

the formal definitions of function blocks and splices that build on this definition of a

requirement.

4.5 Discussion and Concluding Remarks

This section has shown how free-form initial text of the user’s needs can be formalized

into models that are more precise, richer in content and expose deeper relationships

between the requirements. By identifying unique identifiers for each requirement, hooks

that were later exploited by TORUS provided ways of building traceability pathways.

Delligatti sounds a note of caution about how easy it is for stakeholders to place too

much emphasis on the value of models (Delligatti, 2013, page 9). There is a perception

that Model Based Systems Engineering (MBSE) somehow simplifies the task of creating

software deliverables, that it makes each task easier and reduces cost. In reality, scaling

models to cope with thousands of requirements and creating views of systems that have

many distributed components is not easy. For organizations that are beginning to adopt

MBSE, startup costs can be high (Estefan, 2010).

However, models whose construction time and cost is appropriate for the project do

yield quantifiable benefits (Haskins, 2011). Automated traceability cannot be achieved

without a reference source model as a destination to sink traces to and from. Part
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of the solution to managing complexity and scale arises from the ability to partition

requirements and focus traces on identified trouble spots. The ability to repeatable

generate traces with little effort as problems are addressed also relies on the ability of

the model to remain in-step with all changes. Managing this information in the context

of a model is the surest way to maintain and refine changes that impact hierarchal

requirements.

Conway’s hypothesis states that an organization’s design for a system will inevit-

ably realize an entity whose structure is a copy of the organization’s communication

structure (Conway, 1968). The implication is that models that accurately represent the

desired system and create identifiable silos of activity should promote and facilitate

communication between stakeholders who have an investment in that area of the system.

However, the corollary is that if the model does not sit comfortably alongside the teams

current culture, it will neither find acceptance nor be used. The literature suggests

that many, highly-detailed initial specifications cease to be kept up-to-date during the

lifetime of a project and quickly become obsolete (Brooks, 1975).

The next section, Chapter 5, details the construction of the workpiece color sorter,

showing the use of the different types of function blocks that can be created and

connected to craft the complete application. In the same way we did during the creation

of the requirements model, potential traceability hooks are identified in the algorithms

and entities within nxtStudio that were later used within TORUS.
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Modeling Cyber-Physical Systems in

IEC 61499

IEC 61499 is a highly modular and compositional architecture, allowing efficient reuse

and reconfiguration (Dubinin & Vyatkin, 2008). Applications are constructed by

connecting different types of function blocks together typically using Model-Driven

Development and Test-Driven Design approaches (Hametner, Kormann, Vogel-Heuser,

Winkler & Zoitl, 2013). Software applications are sliced and deployed onto available

hardware devices and the communication between slices is carried out via standard

interfaces.

This chapter profiles the creation of the workpiece color sorter within the nxtStudio

Integrated Development Environment (IDE) (nxtControl GmbH, 2016a). The previous

chapter confirmed that there were hooks within the requirements model that our traces

could connect to. While building the workpiece color sorter, similar connection points

within nxtStudio were identified.

Formal definitions of IEC 61499 Basic Function Blocks, Function Block Networks

and Composite Function Blocks in the context of the workpiece color sorter application

are presented. This provides a robust system topology that TORUS can exploit to

87
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facilitate requirements traceability. The work focuses on the structure and syntax of the

applications themselves rather than their execution semantics. Formalizations of the

execution models and semantics for IEC 61499 can be found in other works such as

Vyatkin (2013), Vyatkin (2009), Sinha (2016) as well as Lindgren and Linder (2015).

5.1 IEC 61499 Function Blocks

IEC 61499 function blocks are objects. As such, they demonstrate the most important

aspects of object-orientation; information hiding through encapsulation and instantiation

of multiple, discrete named instances from pre-defined object types. This is in contrast

to the previous standards including IEC 61131 (TC65, 1993) which did not encourage

the rigor that object-orientation demands.

5.1.1 Basic Function Blocks

The Basic Function Block or BFB is the fundamental unit that is used to construct all

other function blocks from. Figure 5.1 shows one of the workpiece color sorter Piston

Controllers that has been constructed from a nxtStudio Basic Function Block template:

INPUT EVENTS

INPUT VARS

OUTPUT EVENTS

OUTPUT VARS

Save as: Basic_Function_Block.pdf

Figure 5.1: Interface to the PistonController Basic Function Block.

Each function block is an autonomous device that manages its own set of inputs and

outputs which have been configured to support the custom behavior of that component.
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These connections are used to exchange control signals and data with the other function

blocks that they are connected to. Input Events are command channels that inform

the block that new data is now present on its own inputs that is ready to be sampled.

In Figure 5.1, the REQ input event is used to inform the internal logic of the Piston

Controller block that new data is available on the CYCLE input. Input connections are

instantiated internally at the module-level within the function block as data variables

whose types include integers, real numbers and strings. Within algorithms, private

variables whose scope is restricted to that algorithm can also be created.

Each function block is a finite state machine that maintains its own state transition

logic, expressed in a diagram known as the Execution Control Chart or ECC. Figure

5.2 illustrates the ECC for the Piston Controller. Each state transition is managed by

software algorithms that are able to evaluate the new data, take decisions and update

internal variables. The algorithms are also responsible for presenting new data on the

Output Variables of the function block and triggering the control signal to the other

function blocks whose Input Events are are connected to the blocks Output Events.

Figure 5.1 shows the ECC for the Piston Controller.
Save as: ECC.pdf 

TICK AND NOT CURRENT_POS = EXTEND_LIMIT
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Figure 5.2: Execution Control Chart or ECC for the Piston Controller Function Block.

The blue rectangles represent finite states that the function block can transition to. The

grey rectangles represent each states’ Action Function, identified by the name of the
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algorithm that will be executed when the function block transitions to that state.

5.1.2 A Formal Model for a Basic Function Block

Since each function block is a state machine, function blocks are very amenable to

formal verification (Guessi, Oliveira et al., 2015). We can define the prototypical Basic

Function Block formally as:

Definition 5.1.1 (BFB) A Basic Function Block BFB is a tuple BFB = ⟨I, V,AG,ECC⟩

where:

1. I = ⟨EI,V I,EO,V O,WI,WO⟩ is a function block interface where EI,V I,EO

and V O are finite sets of input events, input variables, output events, and output

variables respectively. WI ⊆ EI × V I and WO ⊆ EO × V O are sets of input

and output associations.

2. V is a finite set of internal variables.

3. AG is a finite set of algorithms that operate over variables Vall = V I ∪ V O ∪ V .

4. ECC = ⟨S,T,A⟩ is an execution control chart where:

(a) S is a finite set of states with s0 ∈ S as the initial state.

(b) T ⊆ S ×C × S is the set of transitions where C ⊆ (EI ∪ ∅) × B(V) is a set

of conditions.

(c) C is the set of conditions that define what causes a state transition defined

in the ECC to occur such that:
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C = EI where the transition occurs solely because of an input event.

or

EI ∧ [ cond( vars) ] because of an event and because of the value

of one of more variables.

or

cond( vars) because one or more variables have reached pre-defined values.

(d) A ∶ S → (AG ∪EO)∗ is the state action function.

Figure 5.3 shows two instances of the PistonController type that are instantiated to

control the horizontal and vertical pistons separately. Each PistonController instance

implements exactly the same logic; they differ only in the name of the object that is

instantiated and the orientation of the physical piston they control.

Definition 5.1.2 (FB Instance) An FB instance fb is a pair (FB,name) where:

1. FB is a function block type and

2. name is a user-defined name for the instance.

5.1.3 Composite Function Blocks and Networks

A Composite Function Block (CFB) is an encapsulation of two or more function blocks

that are connected to each other internally. This is the fundamental methodology

used for encapsulation and re-use of Basic Function Blocks within the IEC 61499

standard. IEC 61499 encourages the creation of re-usable customized building blocks

and implements this as a practical mechanism for inheritance.
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Save as: Named_Basic_Function_Block_Instances.pdf

Figure 5.3: Named Instances for the Piston Controller Basic Function Block

True object-orientated polymorphism is not supported but this is deemed to be an

advantage in terms of the clarity that this brings to the current encapsulation mechanism.

While the topology of a CFB is similar to that of a basic function block, a CFB presents

a single interface to the rest of the system, hiding the implementation of the individual

function blocks that it is constructed from:

Figure 5.4: The Encapsulation of Function Blocks within a Composite Function Block.
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Hence complete applications are built by logically connecting the inputs and outputs

of instances via their interfaces to form function block networks, consisting of both

simple basic function blocks and more complex composite entities. The workpiece

color sorter is implemented as such a network, defined as follows in Definition 5.1.3:

Definition 5.1.3 (FB Network) A FB network is defined as the tuple FBNetwork =

⟨FB,Conn⟩ where:

1. FB is a finite set of function block instances

2. Conn ⊆ (FB.EI ×FB.EO)∪(FB.V I ×FB.V O) is a set of event and variable

connections in the network.

3. FB.EI refers to the set of all input events of each instance in FB.

4. FB.V I refers to the set of all input variables of each instance in FB.

5. FB.EO refers to the set of all output events of each instance in FB.

6. FB.V O refers to the set of all output variables of each instance in FB.

The ColorDetector block controls a ENV-RGB Solid-State Detector (SSD) camera

to sample the color of a workpiece when it is present (Scientific, 2016). The Sorter

block triggers either the horizontal or the vertical piston controller blocks that actuate

their corresponding pistons.

A CFB allows connections between the elements of its interface and the FB network

contained within it. Figure 5.4 shows how the various inputs and outputs of the top-level

composite block, such as INIT , WP_IN , INITO and CMD are connected to the

inputs and outputs of the network contained within it.
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5.1.4 A Formal Model for a Composite Function Block

Definition 5.1.4 (CFB) A composite function block is a tuple:

CFB = ⟨I,FBNetwork,ConnCFB⟩ where:

1. I is as defined in Definition 5.1.1, and

2. FBNetwork is a FB network as per Definition 5.1.3, and

3. ConnCFB ⊆ (EI×FB.EI)∪(FB.EO×EO)∪(V I×FB.V I)∪(FB.V O×V O).

5.1.5 Function Block Topologies

The topology of a function block application can be derived as a tree, shown in Fig-

ure 5.5:

CFB1

Connections

Algorithms

Events

Interface

Initial state

Internal vars

Name

...

Transitions

Instance2

Actions

Instance1

ECC

Instances

States

Network

Outputs

Name

BFB1

InputsConnections Vars

Interface

Vars

Connections

FB Appl (CFB)

Events

Interface

Network

...

...

Figure 5.5: The Generic Topology of a Function Block Application.

The topology can be obtained by simply traversing the elements of each tuple starting

from the top-level composite function block which represents the application. The

topology is useful in creating links between requirements and individual elements in

the system. This tree is denoted with the symbol FBT = ⟨SE, fb0,ESE⟩ where SE is

the set of all design elements in the topology (function blocks, instances, connections,

etc.), fb0 is the top-level application and serves as the root node of the tree, and ESE

models the contains relationships between the various elements of the application.
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5.2 Crafting the Workpiece Color Sorter in nxtStudio

During the early planning for this research, a number of alternative IEC 61499 In-

tegrated Development Environments (IDEs) were examined. The Function Block

Development Kit FBDK (J. Christensen, 2016) was one of the first implementations of

IEC 61499 and has been widely cited in research publications (Vyatkin & Chouinard,

2008; J. H. Christensen et al., 2012; Tranoris & Thramboulidis, 2003). The alternative

ISaGRAF Workbench was last updated in 2010 but is still widely used by organizations

including Schneider Electrical (ISaGRAF, 2010).

The nxtStudio system stood out since it has a strong commercial focus and deploys

to a wide range of platforms. The version available to the research community is fully-

functional and provides extensive examples and tutorials. It is a complex yet feature-

rich development and deployment environment that allows applications to be designed,

created and tested on multiple asynchronous IEC 61499 virtual devices, referred to as

SoftPCs. It also features a comprehensive graphical visualization module that allows the

application to be viewed running in real-time. These visualization features allow highly

realistic simulations to be built with powerful animation techniques. In production

environments, the nxtHMI components created for SCADA PLC’s can be deployed

directly to compatible visual control consoles (nxtControl GmbH, 2016b). Ultimately,

the most compelling reasons for adopting nxtStudio were its stability and that it exposes

more promising opportunities to create the traceability hooks that TORUS needs.

5.2.1 Interfaces and Algorithms for the Color Detector

The completed Workpiece Color Sorter is shown in Figure 5.10. The nxtStudio IDE

provides different views of the attributes of the function block that is under development.

A set of pre-built basic function block templates are available within nxtStudio that are

used to clone new function blocks from. The Color Detector function block illustrated
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here was based on the simplest of these templates. It was customized to build the

interface to the solid-state camera. This section shows the creation of this function

block and the potential traceability links that were established within nxtStudio during

development.

Save as:   ENV-RGB_Specification.pdf

Figure 5.6: The Atlas Scientific ENV-RGB Solid-State Camera Module Data
Sheet (Scientific, 2016).

ColorDetector_Interface.pdf

Figure 5.7: The Interface to the Color Detector Function Block.
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The color sampled by the camera is transmitted via a serial data link as a comma-

delimited string in the format described in Figure 5.6. This data is received into the Input

Variable RGB_IN via the SAMPLE event. Figure 5.7 shows the nxtStudio Interface

properties page where each of the function blocks variables, input and output events and

associations are specified. An internal variable RequID was defined as a string which

holds the identifier for one or more of the requirements that this function block helps

to fulfill. This traceability artifact provides the most granular link to a requirement

since it references the entire function block rather than a specific piece of code. Links

such as these are useful when the intellectual property encapsulated within a Composite

Function Block is protected and hidden. In these scenarios, the trace cannot penetrate

any deeper into the resource.

FB_INIT_Algorithm.pdf

Figure 5.8: Trace References within the INIT Algorithm of the Color Sorter Function
Block.

The nxtStudio XML-format used to store function block algorithm source code contains

a number of predefined XML attributes. Additional attributes cannot be modified or

persisted except for the Comment attribute. Example traceability references are shown

in Figure 5.8 for the INIT and Figure 5.9 for the SAMPLE algorithm. The requirement

ID’s are shown circled in red.
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FB_SAMPLE_Algorithm.pdf

Figure 5.9: Trace References within the SAMPLE Algorithm of the Color Sorter
Function Block.Save as:    Workpiece_Color_Sorter_Controller_v2.pdf

Figure 5.10: The complete Workpiece Color Sorter Controller.
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5.3 Conclusions and Further Questions

This chapter on the development of the workpiece color sorter has described the ar-

chitecture of a typical IEC 61499 cyber-physical system. The formal definition of the

function blocks, coupled with the definition of a requirement from Chapter 4 lay the

foundation for defining what data a splice needs to acquire to be able to connect these

artifacts together in a meaningful way.

It was reasonable to assign unique requirement identification codes during the

creation of the requirements model; that is an expected part of the requirements man-

agement process. However, ensuring that each function block and algorithm in the

workpiece color sorter gets tagged with those same ID codes during development is

difficult, time-consuming and error-prone. While it is desirable for developers to do

that, nothing in the nxtStudio IDE enforces or encourages such behavior.

In the literature review, the need to manually create and manage traceability linkages

was identified as a barrier to the adoption of traceability solutions. In Chapter 4, the

use of Unit Tests as pathways to code artifacts was proposed as a way of automatically

creating trace linkages. In Chapter 6, the use of both the tagged function blocks as

well as code mining within these algorithms is demonstrated during the creation of the

TORUS splices.
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Building TORUS

The scope of a traceability initiative should span from the requirements model through

to the implementation of application algorithms in both directions. This bi-directional

nature of traceability is especially important in safety-critical systems, where regulatory

compliance mandates deep traceability. This can include traces that span from require-

ments to design, design to code and code to test cases in both directions (Cleland-Huang,

Gotel & Zisman, 2012). Relationships between artifacts, no matter where they reside

in the system, should be navigable. Omoronyia and Sindre (2010) demonstrated how

automated trace capture and maintenance using ontologies reduced trace creation effort.

Facilitating such capabilities using the TORUS framework has been a key focus of this

research.

Traceability within highly complex systems presupposes the existence of suitable

information at both the requirements and the implementation level that can be mined

for matching. Chapter 4 presented a case study of such a requirements model while

Chapter 5 described the application that was created from that specification. While

unique, systematic identification codes were created for each requirement in the mod-

eling environment, not all entities in the code carried requirement ID’s created by the

developer. Few application development tools support room in the metadata beneath
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the code layers that could accommodate such references. Any structured metadata

that is created usually resides in external source code change management repositories

(Ying, Murphy, Ng & Chu-Carroll, 2004). Its purpose is most often to facilitate version

control rather than traceability. In-situ contextual metadata that does get created by

developers is often stored as semi-structured or free-form comment lines adjacent to the

function code itself, one of the approaches we used. Maletic et al. propose an approach

where visible source code within the development system is actually stored in an XML

document behind the scenes (Maletic, Collard, Marcus et al., 2002). Their concepts

mirror the structure of the IEC 61499 XML standard used by nxtStudio. The nxtStudio

development system augments the IEC standard with additional XML attributes that

can carry a range of data. These tags are fine-grained and can be created down to the

individual Event Control Charts (ECCs) algorithm level. However, we showed that

nxtStudio does not allow designers to create their own custom attributes that can be

persisted.

TORUS proposes a novel way to create metadata in its own external repository

that facilitates the traceability we desire. It exploits our ability to mine both the

requirements model and the source code and then uses that information to create

persistent linkages. These linkages are designed to survive the inevitable changes that

occur during development. This chapter describes the first versions of TORUS and the

way the splices capture the information they need to create traceability links. Novel

ways for using Unit Tests to automatically create some of this data demonstrate how

the requirements model can help to facilitate linkages down to the algorithm code level

without requiring the developers to maintain them manually.
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6.1 TORUS, Requirements Models and Systems

TORUS is intended to sit between a requirements model and the IEC 61499-compliant

XML data structure of the application. The IEC 61499 Function Block standard defines

an XML schema that is the mechanism for storing the Function Blocks, their ECC and

algorithm code. This data structure is later compiled to create the distributed function

block application. The way TORUS bridges these entities is shown in Figure 6.1:

Requirements Model

Requirement

Acceptance 
tests expressed 

as Use Cases

derived 
from

TORUS

Splice 
Traceability link 
data structure

IEC 61499-compliant XML 
representation of 

application

Algorithm

Documentation

ECC

XML Function Block

Function Block 
Application

compiles 
to 

Save as: Torus_Interactions.pdf 

Unit Test Code
Unit Test Code

Figure 6.1: TORUS Interactions within the Design Environment.
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TORUS operates by mining data from both the requirements and the function block

models. The trace linkages TORUS persists are known as splices since they join or

splice together virtual threads to connect each requirement to one or more algorithms

that implement them. TORUS builds a structure we have referred to as the Skein. This

is the set of splices that describes the state of all the requirements found within the

system. The Skein allows us to visualize the linkages between entities as if they were

the warp and weft of the threads woven into a tapestry. The pattern that emerges when

the complete set of discrete statuses is analyzed presents metrics which measure how

closely the software implements the stated requirements. Skein metrics are discussed

further in Chapter 7.Visualizing_the_Skein.pdf 
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Figure 6.2: Visualising the Skein.

Splices are created automatically during the primary and subsequent analysis passes

when a new requirement is encountered. One of the most significant features of TORUS

is that the Skein is persistent. Each time the TORUS model is refreshed, new traces are
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reconciled with previous historical data about that requirement that have been preserved

by each splice during previous scans. In Figure 6.2, the splice structures are shown as

blue rectangles in the center of the diagram. Green lines reaching back to the left show

the pathway to the original requirement stored in the requirements model. Green lines

reaching forward to the right indicate that a splice has been able to create a linkage to

a function block. TORUS uses evidence such as code ID’s or unit test information to

make its decisions. Lines that are red indicate that either no artifact could be traced to or

that a problem has been identified along the way. Requirement R-12 is shown in-context

with its splice S-001. The dotted blue trace reaches back to the pool of historical splices,

showing in this case that requirement R-12 was once known as R-09 in an earlier model.

The pattern that emerges helps to ascertain how faithfully the requirements are

currently implemented within the application code and how they have changed over

time. TORUS does not expect either the requirements management system or the XML

function block data structures to be able to store significant amounts of traceability in-

formation within themselves. Any non-ambiguous trace information that those systems

can provide will obviously be used. However, TORUS expects that a lot of the traceab-

ility activity will involve intelligent data mining rather than relying on TORUS-specific

metadata that can be created and saved within those external systems.

6.2 The TORUS Interface to Enterprise Architect

TORUS was implemented using a set of Java classes that manage the storage of inform-

ation captured by analyzing the requirements model and the IEC 61499 application

source. The first analysis pass focuses on requirements, creating a linked list of Require-

ment instances, each carrying the status of a single requirement. Unit Tests for those

requirements, if found, are stored in a separate linked list of UnitTest instances. Figure

6.3 shows the TORUS class hierarchy for the Sparx Enterprise Architect interface.
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Figure 6.3: The TORUS Class Hierarchy for the Sparx Enterprise Architect Interface.
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6.2.1 Abstracting the Requirements Information

The SparxEA class has been designed to decode and analyse the Document Object

Model (DOM) that Sparx have used to encode the model data into the XML-format

XMI file they export. An identical requirements model created in another requirements

management system such as IBM Rational Rhapsody will not necessarily encode the

data in the same way.

The XMI-format Enterprise Architect requirements model contains a pre-defined

set of XML attributes to carry a set of requirements and their unit tests. When updating

the properties of the Requirement instance, a unique model element identifier GUID

is saved so that subsequent changes to the model can be identified. Unit Tests are also

carried in the XMI file and these are stored in a separate linked-list with the unit test

identifiers and their model element GUID’s. Each UnitTest class instance holds a

single unit test with its source code. A model attribute called Alias in the XMI file

carries the ID of the parent requirement that this unit test exercises. By the end of this

first analysis pass, a set of splice instances will have been created as a linked-list held

within the Skein class, each one tracing to a distinct requirement within the Enterprise

Architect model.

To enable TORUS to support multiple requirements management systems, a generic

set of classes were created to store the splice and skein information. A separate

Sparx-specific class SparxEA implements instances of these generic objects, storing

information that is important to TORUS in a standardized format. The SparxEA

class therefore encapsulates implementation details peculiar to Enterprise Architect

that TORUS abstracts into a single, generic model. Figure 6.3 shows the interfaces to

the reusable Requirement and UnitTest classes. SparxEA uses these and presents

a common, abstracted interface to the main Torus class that instantiated it originally.

This instance supplied the name of the Sparx requirements repository file and its location



Chapter 6. Building TORUS 107

when it triggered the analysis pass initially.

Once the SparxEX instance has processed and stored the requirements and unit

tests, it reports the results to the main Torus process. TORUS could just as easily have

processed an IBM Rational Rhapsody model by instantiating an appropriate handler

class. From that point on after the first analysis pass is complete, the requirements are

available to be processed further via common methods. Abstractions such as these allow

the TORUS framework to be extended easily.

6.2.2 Unit Tests as Traceability Hooks

Automating the creation of traces has remained a key focus of this research. Engineers

expect to have to update the requirements model manually when design changes occur

in their solution. Having the additional burden of manually re-linking traces is an

unwanted task.

Unit Tests offer a unique opportunity to automate trace creation. At present, nxtStu-

dio does not support unit testing within itself so the Structured Text Language that is

used for coding function block algorithms in nxtStudio was used as a model for what

they might look like. Structured Text Language (STC) is a popular language used

for programming Programmable Logic Controllers and is one of the five languages

supported by IEC 61131 (TC65, 1993). This is discussed further in the Future Work

section of the Conclusions in Section 8.

The UnitTest class was created to analyse and store unit tests that were created in

Enterprise Architect. This was used to model unit tests as shown in Figure 6.4. The

example sets a value on the input to the camera detector that is black and then performs

a JUnit-style Assertion Test on the data output from the function block.

While we cannot actually run these unit tests, they serve as an example of what is

possible. The analysis algorithms within the SparxEX class detect the presence of
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Unit_Test_01_02.pdf 

Figure 6.4: Example Unit Tests for the Solid State Camera Detector Function Block.
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objects by parsing the code of the unit tests. In the example shown, the function block

SSC_DETECTOR is referenced. Since each unit test references its parent require-

ment using an Alias attribute in Enterprise Architect unit test diagram, TORUS is able

to infer that the function block SSC_DETECTOR is responsible for at least partially

fulfilling requirements R9 and R10. Figure 4.8 in Chapter 4 shows the requirements

hierarchy of unit tests in more detail.

6.2.3 Creating the TORUS Skein

The second phase of the analysis iterates through each of the requirements stored in

the SparxEA object to create the Skein structure. Within the Skein class, an indexed

linked list of Splice objects is maintained. During this phase, a new splice is created

only when a new requirement is identified. The status of the splice at this initial stage

reflects only that the requirement exists and the number of unit tests found for that

particular requirement. A similar method could be adopted for tracking User Acceptance

Tests but that has not been implemented in the current version.

The requirements model provides unique identifiers for each entity that it contains.

These are retrieved when creating the splices via the interface to SparxEA. Later, these

will be used to detect and report historical changes in the requirements model since they

are also stored as Splice objects. In this way, a splice provides a map that allows later

analysis methods to retrieve information about requirements and their relationships to

other entities present in the model. In a similar way, subsequent analysis passes will

attempt to locate the function blocks that fulfill this requirement.

6.3 The Formal Definition of a Splice

A Splice defines the relationship between a requirement, its use cases, its unit tests and

one or more Function Blocks that implement it. The following generalized definition of
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a splice, illustrated in Figure 6.5, assumes the existence of a set of requirements R and

a set SE of existing or planned system elements. The abstraction of the topology of the

requirements model discussed previously ensures that this definition of a splice can be

used without needing to know the specifics of the system that created it.

Save as: Generalized_Splice.pdf 
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Figure 6.5: An Illustration of a Generic Splice.

Given a CESAR requirements forest RF = ⟨R, r0,ER⟩ and an IEC 61499 system

topology FBT = ⟨SE, fb0,ESE⟩, we can define a splice as follows:

Definition 6.3.1 (Splice) Given sets R and SE of system requirements and system

elements respectively, a splice is defined as a tuple sp = ⟨R,MD,SE⟩ where:

1. R is a subset of system requirements where R ⊆ R,

2. MD is a metadata object, further explained in Definition 6.3.2,

3. SE is a set of linked system elements where SE ⊆ SE.

A set of splices that make up the system Skein is denoted by SK.

6.3.1 Adapting TORUS with Customized Metadata

The concept of a trace as we have proposed it here was discussed by Ramesh and

Jarke (2001). They noted that traceability strategies often require customizing the

solutions since the data needs are not always similar in different industry sectors.

The splice structures we have presented employ the metadata MD to provide specific

information about a splice such as its type and status. The information can be specified



Chapter 6. Building TORUS 111

manually by the user but it is more efficient when it can be generated automatically.

Definition 6.3.2 shown here was designed specifically for use with function blocks.

During TORUS design and performance evaluations, this structure helped to optimize

access to the model artifacts when analyzing large requirement sets.

Definition 6.3.2 (Splice Metadata) The MD = ⟨Pr,Tp,Ss,Ds⟩ is a metadata object

where:

1. Pr is the set of parent splices,

2. Tp is the type of the splice,

3. Ss is the status of the splice,

4. Ds is a free-form, textual description of the splice.

Since requirements can themselves be seen as elements produced during the design

of a system, or R ⊂ SE, Definition 6.3.1 also allows splices between requirements sets.

Such splices can be useful in organizing requirements, especially to create historical

linkages between requirements and storing the reasons for changes in requirements.

6.3.2 Splice Types for Function blocks

The splice type Tp is the property of the splice which describes the nature of the

relationship between the requirement that is being traced and the other artifacts including

unit tests, acceptance tests, function blocks and code algorithms that fulfill it. Table 6.1

lists the splice types currently supported within the TORUS framework for function

blocks:
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Table 6.1: Enumerated Splice Types of TORUS Entities for Function Blocks.

Splice Type Description of Entity being Traced To
IS_UNDEFINED The splice type is undefined.

IS_REQUIREMENT A requirement in the Requirements Model.

IS_FUNCTION_BLOCK_ALGORITHM An algorithm within a Function Block.

IS_UNIT_TEST A Unit Test stored within the
Requirements Model.

IS_FUNCTION_BLOCK_FOR_UNIT_TEST A target Function Block that has been
located that matches the one cited in
the referenced Unit Test stored within
the Requirements Model.

6.3.3 Splice Statuses

The status of a splice Ss defines how complete the trace is considered to be by reporting

if the entity specified in the Tp can be successfully found. Table 6.2 lists the splice

statuses currently supported within the TORUS framework. It is expected that as

TORUS evolves, the status types will remain a single set but will partition naturally into

classifications more suited to a particular class of systems.
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Table 6.2: Enumerated Types of TORUS Splice Trace Statuses

Trace Status Description of Trace Status
UNFULFILLED No application entities have been found that

satisfy this requirement.
FOUND_REQUIREMENT The link traces to the requirement in the

Requirements Model that has been
identified as being related to the
other entities this splice is
connected to.

USE_CASES_EXIST Both a primary requirement and at least
one Use Case for it has been located
within the Requirements Model.

UNIT_TESTS_EXIST Both a primary requirement and at least
one Unit Test exists within the
Requirements Model.

FUNCTION_BLOCK_EXISTS One single Function Block or
Composite Function Block has
been located that matches
the requirement in the
Requirements Model.

MULTIPLE_FUNCTION_BLOCKS_EXIST This requirement is fulfilled by
more than one Function Block or
Composite Function Block.

6.4 The TORUS Interface to nxtStudio

The second analysis pass scans the IEC 61499 application model created within nxtStu-

dio. This is a multi-part XML-format file that holds a primary definition of all the

objects created for the application. Where an artifact is an instance of a pre-defined

class, the source for the parent object is stored in a separate XML-format file within the

folder hierarchy.

A linked list holds a set of FunctionBlock objects, with one entry for each func-

tion block found in the application source code. The FunctionBlock class also

maintains a linked list of all the algorithms within that function block. The list of

FunctionBlockAlgorithm objects can be iterated via the methods provided by the

FunctionBlock class that exposes properties for the number of algorithms found, their
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Figure 6.6: The TORUS Class Hierarchy for nxtStudio.



Chapter 6. Building TORUS 115

names and any requirements information they may have been tagged with when they

were created in nxtStudio. The code for each algorithm is also extracted from the

application and stored within the FunctionBlock object.

6.4.1 Abstracting the Function Block Information

Alternative IEC 61499 development systems such as FBDK (J. Christensen, 2016) and

4DIAC (Strasser et al., 2008) do not store their application information in exactly the

same XML file structure. While the IEC 61499 standard (IEC, 2013) provides extensive

information defining all the entities required, there are subtle differences in the way each

development system persists its data. For this reason, in the same way the SparxEA

class abstracts the requirements presented in Enterprise Architect, so the nxtStudio

class encapsulates a set of FunctionBlock and FunctionBlockAlgorithm classes to

abstract nxtStudio-specific application information.

This ensures that the central TORUS classes are able to maintain a common, clearly-

defined set of methods to retrieve and match information from both the requirements

model and the application. Implementing a complementary 4DIAC, IsaGraf or FBDK

helper class would use the same generic classes but process the application source

according to its own particular Document Object Model.

6.5 Defining the Splice Metadata

The abstractions described so far have allowed a generic, system-agnostic splice struc-

ture to be defined that is expected to work equally well with other requirements manage-

ment and development systems. Table 6.3 details the data attributes that can be stored

in each splice.
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Table 6.3: Splice Data Attributes

Attribute name Data Type Description
primaryID String The unique identifier for this Splice within TORUS. This is

an incrementing number that is used
as a pointer to this primary record by another object.

description String Textual description of the requirement this Splice is linked
to. Extracted from the requirements management system.
This is stored because if the parent requirement is later
removed, TORUS will be able to determine what it was
called the last time it was found. This is important for
the history analysis.

modelID String Unique Requirements Model ID (often a GUID).
Extracted from the requirements management system.

Link Table Linked-List A linked list of traces, one for each relationship that
this splice is currently maintaining:

traceID String Unique identifier for the entry in the linked-list that this
trace points to.

traceType SpliceType One of the enumerated splice types of TORUS Entities.

traceStatus SpiceStatus One of the enumerated types of splice trace statuses.

6.6 Examining TORUS

The latest version of TORUS including all source code is available from this link:

https ∶ //dl.dropboxusercontent.com/u/168752514/Torusv2.zip

6.7 Conclusions

This section detailed the creation of the first TORUS prototype and its architecture. The

iterative design science methodology used provided a lot of much-needed flexibility

to try out different splice and skein storage mechanisms. The checklist proposed in

Table 3.1 was useful for evaluating progress day-by-day and retaining focus on what

was important. Stopping and reflecting, iterating designs and running experimental data

exposed a number of alternative ways of traversing the linkages. A number of potential
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constraints related to scalability were considered as well as examining some issues

that might later impact the performance of the visualization strategies that are planned.

These are discussed further in the analysis and future research sections of Chapter 8.



Chapter 7

Analyzing the Skein

The previous chapters detailed the refinement of the requirements set, the building of

the workpiece color sorter and finally the creation of the TORUS prototypes. During

the test runs of TORUS, the skein of splices was created as it probed the requirements

model and the source code of our application.

This chapter explores what the skein tells us about the state of our requirements,

our application, and how complete we should consider them to be. The status of each

splice was determined partially by being able to create traceability pathways between

the requirements and the code. However, that is only part of the answer. The formalisms

and definitions created previously now allow us to perform mathematical operations on

the splices to reveal deeper implications. By applying a more rigorous, formal treatment

to the data they contain, we are able to extract metrics that help us to estimate the

completeness of our applications. By understanding what the combined statuses of all

the individual splices tells us, the scope and possible limitations of what the TORUS

approach can deliver become clearer.

118



Chapter 7. Analyzing the Skein 119

7.1 Analyzing the First Model and Application Code

Each TORUS prototype was tested against a range of requirement and function block

model data sets that were created for the workpiece color sorter. Table 7.1 shows the

first trace results:

Table 7.1: Traces Returned in Data Set 01

Requirement ID Splice ID Traced to Function Block Implied Splice Status
FR2 SP00 Requirement is not fulfilled.
R1 SP01 FB2

COLOR_BASED_CONTROL
of type Sorter

Requirement is fulfilled by
a single function block FB2
traced using RequID
attribute in the block Sorter.

FR1 SP02 Requirement is not fulfilled.
R2 SP03 FB2

COLOR_BASED_CONTROL
of type Sorter

Requirement is fulfilled by
a single function block FB2
traced using RequID
attribute in the block Sorter.

SR1 SP04 Requirement is not fulfilled.
R10 SP05 FB3

SSC_DETECTOR
of type ColorDetector.

Requirement is fulfilled by
a single function block FB3
traced to ECC algorithms
AG1 SAMPLE, AG2
RESET and unit test
UNIT_TEST_02.

R3 SP06 Requirement is not fulfilled.
R4 SP07 Requirement is not fulfilled.
SR2 SP08 Requirement is not fulfilled.
R5 SP09 Requirement is not fulfilled.
R6 SP10 Requirement is not fulfilled.
R7 SP11 Requirement is not fulfilled.
R8 SP12 FB3

SSC_DETECTOR
of type ColorDetector.

Requirement is fulfilled by
a single function block FB3
traced to ECC algorithm
AG2 SAMPLE.

R9 SP13 FB3
SSC_DETECTOR
of type ColorDetector.

Requirement is fulfilled by
a single function block FB3
traced to ECC algorithms
AG1 SAMPLE and Unit
Test UNIT_TEST_01.
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The Enterprise Architect requirements model Specifications_Model_02.xml contains

fourteen requirements. TORUS ran this data set against the nxtStudio application

Workpiece Color Sorter_v1 which contains four function blocks. This data set is

referred to as Data Set 01. The code in the Requirement ID column is the unique

identifier to the requirement assigned within Enterprise Architect. The splice identifiers

in the Splice ID column were assigned automatically by TORUS during its first analysis

phase which begins by probing the requirements model. TORUS always attempts to

build the forward traceability pathways first since backwards traceability emerges as

a natural consequence of reaching a function block. A deeper trace is established if a

pathway can be found to an algorithm within a function block. The granularity of these

traces was chosen to be the function block ECC algorithm level since using clues from

the unit tests was expected to yield greater accuracy at that depth.

In a similar way, the nxtStudio IDE generates unique identification codes for each

of the entities that it contains. Each function block is automatically assigned a system-

generated function block number, such as FB2. The descriptive names of function blocks

such as COLOR_BASED_SORTER were chosen and assigned by the designers.

7.1.1 Analyzing Requirements that are Not Fulfilled

The simplest splices are those that capture requirements that are not yet fulfilled by any

code found within the application. Often, these are early-stage requirements present

in the model whose acceptance or unit tests have not yet been created. Figure 7.1

visualizes two splices for requirements FR1 and FR2 from Data Set 01 that have been

identified as being unfulfilled. The set of unfulfilled splices SPunfulfilled is defined as:

SPunfulfilled = {sp0, sp1, ...spn} ∶ SPunfulfilled ∈ SP
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Figure 7.1: The Splices that Capture Unfulfilled Requirements.

where for each of the splices spi ∈ SPunfulfilled = ⟨R′, Tp′, Ss′, FB′⟩ ∋ FB′ = ∅ since

no function blocks have been created or found that implement this requirement. The

overall splice status Ss′ = UNFULFILLED, was determined by evaluating the set of all

splice statuses contained within the list of traces. The complete list of enumerated types

of TORUS entities and trace statuses were summarized previously in Tables 6.1 and 6.2.

7.1.2 Analyzing Requirements that are Correctly Fulfilled

Requirements R8 and R9 were correctly identified as being fulfilled by the function

block SSC_DETECTOR. TORUS was able to trace the appropriate function block

algorithms since the correct ID codes for the requirements were manually added during

development. Figure 7.2 shows the requirement IDs in the header section of the code

for the function SAMPLE. In this visualization the green connecting threads indicate

a trace that has connected to both the requirement and one or more application artifacts.

The splice data structure contains a primary record that uniquely identifies the splice

with a field called spliceID, assigned by TORUS. The current TORUS model holds

information about the single requirement it is tracing that will be important later if the

original requirement can no longer be located in the model. The historical aspects of

TORUS splices are discussed further in Section 7.2.

Traces are stored as a series of linked records within each splice. Figure 7.3 shows

the trace to requirement R8 as the first record. It is classified as being a link to an entity

of type IS_REQUIREMENT. The status of this link is FOUND_REQUIREMENT. The
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Figure 7.2: Requirements Classified Correctly Using Function Block Algorithms.

second record contains a trace to the SSC_DETECTOR function block, classified as

type IS_FUNCTION_BLOCK_ALGORITHM with status FOUND_REQUIREMENT.

R8

Splice_Linkages_R8.pdf 

traceID R8

traceType IS_REQUIREMENT

traceStatus FOUND_REQUIREMENT

traceID FB3

traceType IS_FUNCTION_BLOCK_ALGORITHM

traceStatus FOUND_REQUIREMENT

spliceID SP12

primaryID R8

description Solid State Detector

Figure 7.3: Linkage Information Recorded for the R8 Splice.

When analyzing the skein of an application, TORUS navigates between entities using

these traces, always using the splice trace link tables as the starting point. The display

and measurement functions also rely on this map since the traceType unambiguously

identifies the generic type of the entity that is located at the end of a trace. The type

also helps to determine which part of the data store holds the full entity record while



Chapter 7. Analyzing the Skein 123

the traceID provides the unique look-up key to the record in that list.

7.1.3 Analyzing Requirements using Unit Tests

Requirements R9 and R10 were traced using unit tests as well as information supplied

by the developers in algorithms. The first two linkages shown in the trace link tables in

Figure 7.4 are similar to those discussed earlier. They established linkages first to the

primary requirement and then to the function block algorithm using tags in the code

documentation. The third link was established by recognizing that there was a unit test

stored in the requirements model under the hierarchy for requirement R10. The fourth

link is the trace from the splice to the function block referenced in the unit test.

Splice_Linkages_R10.pdf 

Figure 7.4: Linkage Information for the R10 Splice Established from the Unit Tests.

Using unit tests as traceability hooks has significant advantages over the use of tags

such as the RequID and requirement references stored in the function block algorithms:

1. Unit Tests have to correctly instantiate the objects they test. The object refer-

ences specified are therefore real entities that TORUS can expect to find in the

application code. This implies that both finding and failing to find matches are
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highly accurate indicators of how well the requirement has been fulfilled. TORUS

uses a code-parsing algorithm that allows it to identify lists of object names that

are referenced in each unit test. This implies that when a requirement is designed

to be fulfilled by more than than one function block, TORUS can establish splice

linkages to each and every function block that is cited in the unit test code.

2. The object references are unique with the application. Using requirement

references in algorithms or by tagging interfaces in the way that the RequID

attribute did only succeeded in marking the parent type of the object, not the object

instance itself. In contrast, unit tests can reference specific and distinct objects by

name. The implication of this is that requirements such as R1, R2, SR1 and FR1

can be associated directly with the object H_PISTON_CONTROL. In the

same way, requirements R3, R4, SR2 and FR2 can be associated unambiguously

with the instance of the same type V _PISTON_CONTROL.

3. Unit tests are a well-established software engineering best-practice. Since

they are useful throughout the entire development cycle, they are significant

contributers to the integrity and reliability of Model Based Systems Engineering

and Test-Driven Design approaches. Since they have to run successfully to pass,

unit tests have to capture the object names of real entities that they are testing.

The traceability overhead of creating traces in this way is effectively zero.

4. Unit Tests have to be refactored to keep in-sync with application code changes.

As such, the traceability maintenance overhead of this practice is also effectively

zero.

5. The number of trace linkages established in this way can be significantly

large. Once each of the matching entities, including the set of unit tests and

each of the function blocks referenced has been traced, this section of the skein

achieves a much finer degree of granularity. The implication of this is that there

is a lot more information available to analyse when TORUS is reporting issues.
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When an activity such as refactoring has broken something the unit tests, in

conjunction with the splice history, can be used to quickly locate and classify

such problems automatically. The implications of this for historical analysis is

discussed further in Section 7.2.

7.1.4 Requirements that Were Not Classified Correctly

R2 is an example of a requirement that TORUS thinks it has traced correctly using

evidence available from the models. However, Figure 7.5 shows that what the trace has

really uncovered is an incorrectly-classified requirement:Missclassified_Requirement_R2.pdf 

R2 SP03 nxtStudio
interface
to the Sorter 
Function Block

Figure 7.5: Requirement R2 that is Not Classified Correctly.
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The TORUS trace has been shown in-context with the original requirements Use Case

that relates to the movement of the horizontal piston. This is identified within the model

as PistonHorizontal. TORUS established a trace from R2 by creating splice SP03

and then building a forward trace to the COLOR_BASED_CONTROL function

block. This function block was identified as fulfilling R2 because the function block

interface attribute RequID contained a reference to this requirement, shown circled in

red in the diagram. The interface also contains a reference to requirement R2.

Clearly, the COLOR_BASED_CONTROL function block does not fulfill either

of those requirements. Its role is to determine what the color of the workpiece is

and make that data available to the piston controllers H_PISTON_CONTROL and

V _PISTON_CONTROL. It could be argued that this function block indirectly ful-

fills the requirements but that is a tenuous assumption. It is more likely that the attribute

RequID was incorrectly coded during development. This class of TORUS result would

be most useful during a requirements review. However, since the statuses of the TORUS

splices are not reporting any issues, the problem would not trigger any warning alerts.

If it had, then the engineers could re-classify the COLOR_BASED_CONTROL as

being responsible for fulfilling requirements R8, R9 and R10 instead.

This technique of using a tagged attribute such as RequID is fundamentally flawed.

In the first instance, it has demonstrated that the practice of manually updating the

requirement ID within the correct nxtStudio object is not reliable. The function block

was probably re-factored a number of times during its design and it is easy to leave

obsolete or incorrect free-form comment data within the source code. However, there

is a deeper issue here. The block COLOR_BASED_CONTROL is an instance

of the prototype block Sorter. The Interface properties of this function block are

editable but all instances, as is true of all object-orientated artifacts, share the same

property values at design-time. While that would work well for single-instance objects,

those that are based on the same instance type such as H_PISTON_CONTROL
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and V _PISTON_CONTROL would report the same value of their RequID attribute

when TORUS probes them. This is the normal, expected behavior of objects so this

technique for identifying function blocks has limited value. Note that this issue has

also caused requirement R2 to be misclassified for the same reason. A similar issue

could have arisen for requirements R8 and R9 discussed previously however, since this

function block is instantiated only once, there is no ambiguity about which instance is

being referred to.

A more promising approach would be to rationalize the naming of the object in the re-

quirements model. Rather than referring to the horizontal piston as PistonHorizontal

it would be more consistent to name it H_PISTON_CONTROL. This would allow

the text of the requirement to be analyzed formally in conjunction with the domain

ontology. In this case, TORUS could have identified that the trace destination was to a

function block that was not mentioned in the requirements statement. This is a similar

approach to what was taken to use information from unit tests to create traceability links

in Section 7.1.3.

7.1.5 Extending the Scope of the Analysis

To further demonstrate the potential of TORUS, two additional scenarios were intro-

duced. The first examined the results of correcting some of the requirements errors

present in Data Set 01 and comparing the Data Set 02 skein it generated to that of

the previous historical Data Set 01 skein. At the same time, additional errors were

introduced by refactoring both the requirements model, the unit tests and the application

function blocks that deliberately caused existing, fulfilled requirements to be broken.

The second scenario scaled the requirements of Data Set 01 to iteratively increase

the number of requirements in the model. The aim was to determine if the time required

for TORUS to analyze increasingly larger requirements sets became unreasonably long.
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If TORUS can scale comfortably to manage a model with 1,000,000 requirements in it

such as the one outlined by Alford and Lawson (1979), then the methodology shows

great promise.

7.2 Splice History within the Skein

Each splice persists data about the artifacts it is tracing. During a refresh after the

requirements model is maintained or after development work on the function block

application, historical splices are re-evaluated. Problem scenarios emerge that are

similar but more complex than those discussed previously. For example, a splice that

can no longer locate it’s primary requirement indicates that a feature has been deprecated

or re-written; what it points to is no longer recognized as being the original requirement.

If the algorithms and unit tests linked to that splice still exist, they are recognized as

orphans that are candidates for removal. If they could be successfully re-linked to a

different or refactored requirement, the integrity of the splice would be re-established

and its status would reflect that accordingly. Data Set 02 was obtained after making

changes to both the requirements model and the application. Table 7.2 shows only those

traces that have changed.

Storing historical changes has similar advantages to that obtained from a source

control system. When a change has occurred, the history of that artifact can often be

used to help make sense of what has happened. Any piece of code, algorithm or ECC

that cannot be traced back to a parent requirement is an orphan. In the case of code, this

indicates a possibly unacceptable risk scenario. There is no rationalization for code that

cannot justify its existence by referring back to the requirement that it fulfills. Within

an algorithm that does link to a requirement, any piece of code that is not executed by a

unit test is by definition unreachable or at least untested. Unreachable code often results

from incorrectly implementing a requirement. There should also be code within each
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algorithm created by the ECC to respond to each of its state changes.

Table 7.2: Traces Changed in Data Set 02

Requirement ID Splice ID Traced to Function Block Implied Splice Status
FR2 SP00 FB0

V_PISTON_CONTROL
Requirement is fulfilled by a
single function block FB0.
Traced via UNIT_TEST_03.

R1 SP01 FB1
H_PISTON_CONTROL

Requirement is fulfilled by
a single function block FB1
Traced via UNIT_TEST_04.

R2 SP03 FB1
H_PISTON_CONTROL

Requirement is fulfilled by
a single function block FB1
Traced via UNIT_TEST_05.

SR1 SP04 Original requirement can no
longer be located.

R10 SP05 FB3
SSC_DETECTOR
of type ColorDetector.

Requirement is not fulfilled.
Function block can no longer
be located.

SR12 SP14 Requirement is not fulfilled.

7.2.1 Analyzing Requirements That Have Changed

When new or corrected information is added to either the requirements model or

the application, TORUS detects that the refreshed trace information does not match

the historical skein from a previous probe. In Data Set 01, requirement FR2 was

not fulfilled but the subsequent probe has established a new traceability pathway via

UNIT_TEST_03 to the V _PISTON_CONTROL function block. The first three new

splices from the most recent probe correctly trace the requirement to its fulfillment. The

original trace record, shown in the separate partition at the bottom of the list, illustrates

how the splice has captured this change.

Subsequent redesign and development can also break requirements that were

formerly fulfilled successfully. Requirement R10 was originally traced to the function

block SSC_DETECTOR in the first analysis. By the time Data Set 02 was probed,

the function block could no longer be found, as shown in Figure 7.7.
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Fulfilled_Requirem
ent_FR2.pdf 

FR2 traceID FR2

traceType IS_REQUIREMENT

traceStatus FOUND_REQUIREMENT

traceID FB0

traceType IS_FUNCTION_BLOCK_ALGORITHM

traceStatus FOUND_REQUIREMENT

spliceID SP00

primaryID FR2

description Vertical Piston IsLastUsed

traceID UNIT_TEST_03

traceType IS_UNIT_TEST

traceStatus FOUND_REQUIREMENT

traceID FB0

traceType IS_FUNCTION_BLOCK_FOR_UNIT_TEST

traceStatus FOUND_REQUIREMENT

UNIT 
TEST 
03

traceID FR2

traceType IS_REQUIREMENT

traceStatus UNFULFILLED

Historical trace

Figure 7.6: Current and Historical Traces for Requirement FR2.

In this splice, the first traces shown at the top of the list are new. They identify that

UNIT_TEST_03 and the requirement R10 are still traceable in the current models. The

historical traces shown in the lower box report that the requirement was successfully

traced in a previous probe to a function block that is no longer able to be located within

the current model. The red resultant overall status shown for the current probe indicates

that TORUS has evaluated this hierarchy and determined that the current status of this

requirement has now moved backwards to become UNFULFILLED.

Note that the current status of the system is always evaluated by using the most

recent splices from the current probe. This is because the newest or the most up-to-date

linkages are those established to the entities that are currently accessible in the models.

All other historical traces are exactly that; they are deemed to be historical because they

capture a system state that no longer exists. The value of historical splices lies in their
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R10

Broken_Splice_Linkages_R10.pdf 
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traceID UNIT_TEST_02
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Figure 7.7: Analysis of the Current and Historical Linkages for Requirement FR2.

ability to provide ways of seeing what the system was like previously when trying to

analyze current issues.

7.2.2 Detecting Orphans and Going Backwards

SR1 and SR12 illustrate a similar change. Requirement SR1 was originally unfulfilled

but TORUS is now no longer able to locate it in the model. The designers possibly

intended Requirement SR12 to supersede SR1 but since SR12 is still unfulfilled by

either unit tests or locatable function blocks, they cannot be reconciled automatically to

each other.

It is not reasonable for TORUS to just stop warning about orphan requirements

after a certain number of probes have failed to locate them. The better approach is to
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use these alerts to deprecate requirements properly by setting their status appropriately

within Enterprise Architect. Figure 4.7 in Section 4.3.1 shows the Status attribute for

that requirement set to Implemented. Enterprise Architect also allows this attribute to

be set to Deprecated. However, the correct process for managing orphan artifacts from

these models automatically is not clear-cut and remains a topic for future research. It is

coupled with the issues concerning how the skein should best be visualized and includes

questions of how orphan code found within function blocks should be reported.

7.3 Operations on Splices

By defining the TORUS entities formally, it is then possible to analyze them using

formal methods. One of the most important outcomes of this is that it allows us

to implement constraints into the requirements models and the TORUS framework.

Mathematical constraints allow TORUS to determine deeper aspects of how complete

and consistent our applications currently are.

7.3.1 Detecting Singleton Constraints

A splice can trace either a single requirement or a group of aggregated requirements.

Each requirement can in turn be implemented by either a single Basic or Composite

function block or by a group of collaborating function blocks. Singleton Design Patterns

are used in IEC 61499 systems where only a single function block or single composite

function block is responsible for managing a particular task.

In our model, only the V _PISTON_CONTROLLER is allowed to move the

vertical piston. Other sub-systems can participate in the request to actuate the piston but

it cannot be moved directly by any other sub-system. H_PISTON_CONTROLLER

is constrained in the same way and cannot fulfill any of the requirements R3, R4, SR2

and FR2. Figure 7.8 illustrates a situation where this constraint would be violated.
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Singleton_Requirements.pdf 
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Figure 7.8: Violation of a Many-to-One constraint on a Singleton Function Block.

Definition 7.3.1 (Singleton) A Singleton or One-to-One constraint exists when:

sp′ = ⟨R′, Tp′, Ss′, FB′⟩ where:

1. R′ ∈ RM and

2. Tp′ ≠ IS_UNDEFINED and

3. Ss′ ≠ UNFULFILLED and

4. | FB’ | = 1 since only one BFB or one CFB may implement the requirement.

7.3.2 Extending the Scope of Splice Types

We can also consider an extended class of splice types that refine the status to be tested

or untested. A tested splice means its requirements have been tested on the system

elements the splice traces to. Untested splices model the opposite condition when

requirements are found to be traced to elements but not tested. A superseded splice
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links a trace to a replacement trace, and can be useful when additional information such

as unit tests are added for given requirements.

Splice types capturing relationships between requirements and system elements

include:

• satisfy when requirements must be satisfied by linked system entities,

• constrain when requirements constrain linked entities such as in our Singleton

example,

• dissatisfy when requirements represent mis-use cases or undesired behaviors

that cannot be satisfied by the entities that the requirement is traced to.

7.3.3 Arithmetic Operations on Splices

Arithmetic operations on splices allow us to combine and compare them as ways

of exploring the relationships between system entities more fully. For example, the

addition operation of two splices fuses their information:

Definition 7.3.2 (Splice Addition) The addition of two splices f3 = f1 + f2 is defined

as follows:

In the case of splices with the same types and statuses. if f1.Tp = f2.Tp and

f1.Ss = f2.Ss, we can fuse splices under further conditions, described as follows:

• If f1.R = f2.R, then f3 = ⟨f1.R, ⟨{f1, f2}, f1.Tp, f1.Ss,Ds⟩, f1.SE ∪ f2.SE⟩. Here,

Ds = f1.Ds ⊕ f2.Ds and ⊕ is the string concatenation operator. This case of

addition depicts the condition in which the same requirements are linked to two

different sets of system artefacts and we can aggregate them into a single splice.

• If f1.SE = f2.SE, then f3 = ⟨f1.R∪f2.R, ⟨{f1, f2}, f1.Tp, f1.Ss,Ds⟩, f1.SE⟩. Here,

Ds = f1.Ds⊕ f2.Ds. This depicts the condition in which the same components
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must satisfy two different sets of requirements and we can aggregate them into a

single splice.

Otherwise: f3 = ⟨∅, r2r, ⟨{f1, f2}, untested,Ds⟩,∅⟩.

Here, Ds = “Addition ∶ ” + f1.Ds⊕ f2.Ds.

When two splices have the same metadata, except their free-text description fields,

their addition results in an integrated splice containing all the requirements and system

entities from both splices. Otherwise, the addition results in a new splice that supersedes

the two previous splices. When considering large requirements sets that have undergone

extensive changes, this operation can effectively compact the skein by removing du-

plicate splices which represented the same data in different ways. Without these types

of constrained, formally-defined arithmetic operations, such optimizations would be

extremely hard to identify manually or implement automatically via simple comparison

algorithms. Subtraction can be defined in a similar way:

Definition 7.3.3 (Splice Subtraction) If two splices f1 and f2 have the same types,

statuses and link to the same set of system artifacts, their subtraction:

f3 = f1 − f2

retains these elements. The set of requirements:

f3.R is f1.R/f2.R and the f1 and f2

are retained as the parents of f3. Symmetrically, if f1 and f2 have the same types,

statuses and link to the same set of requirements, their subtraction:

f3 = f1 − f2

retains these elements, the set of system artifacts f3.SE is f1.SE/f2.SE and the f1 and f2

are retained as the parents of f3.

In all other cases, f3 = ⟨∅, r2r, ⟨{f1, f2}, untested,Ds⟩,∅⟩. Here, Ds = “Subtraction ∶

” + f1.Ds⊕ f2.Ds.
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7.3.4 Applying TORUS Algorithms During System Testing

Splice operations are especially useful during the system testing phase. As testing

progresses from the component level, through sub-systems and then to the system

level requirements, splice statuses are changed to tested from untested. Often, it is

possible to use the organization of splices to create a testing strategy where lower-level

splices are tested first followed by higher-level requirements. Algorithm 1 traverses

the system topology downwards to find if all splices linked to component c or one of

its descendants that remains untested. For the workpiece color sorter case study, the

top-level function block network cannot be considered tested until all splices related to

H_PISTON_CONTROL and V _PISTON_CONTROL) have been flagged as

tested.

Input: Component c ∈ SE, topology FBT , all splices SP
Result: Splice set SP ′ ⊆ SP

1 SP ′ = ∅;
2 while c ≠ null do
3 SP ′ = SP ′ ∪ {f ∈ SP ∣ c ∈ f.SE ∧ f.Ss = untested};
4 c = FBT.getChild(c);
5 end
6 return SP ′;

Algorithm 1: Finding Untested Splices.

TORUS enables a number of additional operations and algorithms that are extremely

useful during system development. We can traverse the splices to find missing accept-

ance tests for requirements or find orphan pieces of code that cannot be traced back to

any requirement during the development phase. Historical linkages of splices allow us

to backtrack and attempt to discover the rationales for those changes.

During development, we can further refine splices to link requirements to specific

states or algorithms in the ECC of a basic function block or to connections in the

networks of composite function blocks. Algorithm 2 shows how we can find all splices

that apply to component c being developed, either directly, or indirectly through a parent
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component. We can further refine this algorithm to create separate sets of splices based

on their types or statuses. We can also partition the requirements belonging to the

set of splices returned by Algorithm 2 into functional requirements, non-functional

requirements and unit tests. For example, the component H_PISTON_CONTROL

analyzed in the algorithm found splices linked to all the requirements shown in Table

4.2:

Input: Component c ∈ SE, topology FBT , all splices SP
Result: Splice set SP ′ ⊆ SP

1 SP ′ = ∅;
2 while c ≠ null do
3 SP ′ = SP ′ ∪ {f ∈ SP ∣ c ∈ f.SE};
4 c = FBT.getParent(c);
5 end
6 return SP ′;

Algorithm 2: Finding Direct or Inherited Splices.

7.4 Splice Metrics

Each splice can be thought of as carrying part of the truth within its metadata about

the current state of the system. There will always be an inherent margin of error in

what the splices have inferred about what they have gathered. That information can be

aggregated and analyzed statistically in the same way that any data set that embodies

known types of errors can.

7.4.1 Precision and Recall

When considering the data TORUS has retrieved from the models, we need to apply

appropriate formal techniques to the data to create our analysis metrics.
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Figure 7.9: Identifying Cone Colors.

Figure 7.9 presents a scenario that is

typical of the tasks that cyber-physical

systems are called upon to perform. If the

Solid-State Camera from our workpiece

color sorter was focused on this scene, its

ability to discriminate between the orange

cones and the red cones would depend on

a number of environmental factors. The

brightness of the lighting, cones that obscure other cones from view and shadows all

play a part in how reliably the camera could see the cones.

The Precision of a sample is defined as the fraction of retrieved instances that are

accurately identified. A high-precision or relevant result is one that returns significantly

more correctly-identified results than irrelevant ones. Suppose our detector returned a

result that said there were seven orange cones found in a scene where there were actually

ten orange cones present. Amongst that sample, by checking the spatial position of the

cones the camera had detected, only four were found to really be orange cones. Three

of those locations were found to contain red cones. The Precision of this sample is

defined as:

Precision =
Number of Orange Cones really in the sample

Size of the sample returned
=
4

7
= 57%

This means that of the seven cones recognized within the scene, only four were really

orange.

In contrast, Recall is defined as the fraction of relevant instances that are retrieved.

It can also be thought of as the sensitivity of the analysis:

Recall =
Number of Orange Cones identified in the sample

Number of Orange code really there
=

4

10
= 40%

In our sample, the Solid-State Camera reported that it only detected seven cones in total

and within that sample, only four were identified correctly or recalled out of a total
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field of ten that were actually there. A perfect precision score of 1.0 would imply that

every result returned was relevant. In our case, that means that it would have correctly

identified seven cones that were really orange in a sample size of seven. However,

precision says nothing about how many additional orange cones there were in the entire

scene that it has missed. In contrast, a perfect recall of 1.0 implies that all the orange

cones were retrieved amongst a sample that also returned all the red cones.

7.4.2 Applying Recall and Precision within TORUS

We can apply a similar approach to calculate the recall and precision of the skein that

TORUS has returned from our data sets. A perfectly-formed system would have all

its requirements correctly traceable, by one or more correctly-applied techniques, to

the application entities that are present. Figure 7.10 illustrates the Perfect Skein. In

this example, each requirement has been correctly traced to the function block that

implements it using just one unit test. The order of the requirements in this diagram

more closely matches the layout of the original requirements model presented earlier in

Figure 4.9. The splice primaryID′s shown still match those returned in the data sets.

Every requirement has been found so both the precision and recall for this "Perfect"

Skein is 1.0. This implies that in this system:

• All the requirements returned in the sample were traceable to an application

artifact.

• While no requirements are reported as being unfulfilled, there may still be other

requirements in the model that were missed because their attributes were not

tagged appropriately. That is less likely since Enterprise Architect elements are

unambiguous and unit tests are intrinsically linked to their parent requirements.

TORUS reports when it has found part of a requirement that it determines it does

not have information to classify correctly.
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• High precision means that TORUS has returned mostly correctly-classified traces

and few incorrectly classified ones. The precision would be lower if like the

Solid-State Camera, TORUS returned traces that mis-connected requirements to

artifacts.
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Figure 7.10: The Perfect Skein.
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• High recall implies that TORUS returned a larger proportion of all the possible

traces. The recall would be lower if TORUS failed to identify traces using the

available information. In other words, it would fail to create splice linkages to

elements that were there.

However, this ideal system is very different from that reported by the real skein for

Data Set 02, shown in Figure 7.11. The green links again show that the traces reached a

verified destination while the red links indicate that the requirements remain unfulfilled.

The red dashed traces indicate that the splice was created in a previous probe and that

the destination of the original link can no longer be found. In the case of SR1, the

requirement no longer exists in the model and for R8 and R10, the function block can

no longer be reached.

In this non-perfect scenario, precision and recall do not necessarily provide a more

informative measure of completeness than they do for the perfect skein discussed

previously. The precision is a measure of the true positives returned in the sample

divided by the number of elements that belong to the class. This is a concept from

Information Retrieval Theory as applied to traceability that defines recall as the measure

of the number of traces correctly assigned to the correct target artifact (Cleland-Huang,

Gotel & Zisman, 2012). Hence recall is a measure of the quality of the traces returned.

In Data Set 02, all function blocks that can be traced back to a requirement that they

belong to are reasonable. This is in contrast to the case in Data Set 01 where requirement

R2 was traced incorrectly to the COLOR_BASED_CONTROL. The recall for Data

Set 02 is therefore:

Precision =
Number of traces to valid artifacts

Number of traces returned
=

9

24
= 37%

The recall is defined in terms of the traces that should actually be there. TORUS

can only estimate this based on the number of requirements that exist and the number
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of function blocks that can be counted. If we define a minimum best-count in the same

way as shown in the perfect skein but excluding the count of the unit tests, at least 30

trace links should have been established. This is based on 15 requirements being linked
Precision_Recall_02.pdf
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Figure 7.11: The Skein for Data Set 02.
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through 15 splices to at least one artifact:

Recall =
Number of traces to valid artifacts
Number of traces that should exist

=
9

30
= 30%

Egyed and Biffl (2005) discuss the use of precision and recall as ways of evaluating

automatically generated traces. They measured the strength of each trace generated and

calculated a ratio based on the number of code functions implementing a requirement

and the number of functions that two requirements share. This was used to determine

the threshold of what they defined as a weak or untrusted trace. These were deemed

false-positives. Overall, they found that the weakest 10% of trace links contained only

1% of true traces.

7.4.3 Skein Contours as Alternatives to Precision and Recall

While precision and recall provide a measure of the quality of traces, they do not

necessarily provide a useful measure of how complete the system is. Cleland-Huang

and Heimdahl (2012) comment that precision and recall often exist in a state of tension.

100% recall can be achieved by capturing all possible links. However, this results in a

low precision that does not really convey anything useful.

In the TORUS approach, the unit tests clearly provide a much higher level of

confidence that the trace pathways to a function block or code artifact are accurate. The

hierarchy established between the requirement and the unit test within the requirements

model implies that when a match is found to a function block instance, then it is more

likely that the trace has been established reliably. Given that, we can establish a new

concept called the Skein Contour. The Skein can be visualized as having a terrain or

landscape that is populated by artifacts from the requirements model, the unit tests, the

TORUS splices, the function blocks and the code algorithms. How many of each type

that can be traced to each other can be thought of as establishing contours that map the

elevation or height of the landscape, as shown in Figure 7.12.
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Figure 7.12: The Contour of the Skein for Data Set 02.

Each green block on the diagram represents an artifact that has been traced-to

successfully. These highlight the parts of the application and requirements model that

are more complete. A perfect skein, shown as the dotted blue line, would not have the

bellcurve contour of the real skein shown here. Instead, the path would describe a level

plane from the top of the requirements which would be at the same height as the splices

column. We can evaluate the proportion of each completed artifact by adding them:

Contour =

Traced Requirements
Total Requirements

+

Traced Unit Tests
Total Unit Tests

+

Traced Function Blocks
Total Function Blocks

Number of Categories

=

3
15
+

4
15
+

3
4

3
= 40%

While for Data Set 02 this figure is similar to that obtained for the precision and

recall, it represents a totally different concept. The Skein contour has effectively added
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a weighting to each group of artifacts and then totaled their contribution. In this case, it

means that it has been possible to trace 40% of the artifacts present in the system. If the

number of ECC algorithms was factored in, the proportion of untraced orphan code

could also help shape the skein contour.

We can also propose that the skein has a weight. Each splice can be thought of as

having a density defined by the number of entities it traces to. Where a requirement

has a large number of unit tests and the splice is able to reach successfully to all the

function blocks and algorithms that fulfill those requirements, then that part of the

system weighs more. The density of each splice is a measure of how complete that

section of the system is. This has implications for the types of views of the skein that

should be implemented to help teams visualize and understand the state of their system

better.

7.5 Scaling TORUS

Section 7.1.5 proposed extending the scope of the analysis of the data sets to iteratively

increase the number of requirements and function blocks in the models. TORUS is

designed to be able to scale and work reliably on large, complex requirements sets

and applications. How well do the different parts of TORUS perform under load? A

three-phase approach was designed to look at how the different sections of the TORUS

framework perform:

7.5.1 Analyzing a Large Requirements Model

The requirements model from Data Set 02 was used to clone a new XMI-format model

with one million unique requirements in it. As TORUS loaded it, the time taken to

process and classify each section was measured to see how quickly TORUS could

extract and store 1,000,000 distinct requirements.
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Figure 7.13: Time to Load 1,000,000 Requirements into TORUS

Each requirement was given a unique primaryID during the creation of the test XMI-

format file. Figure 7.13 shows that the load time, sampled after every block of 100

requirements was processed, is essentially linear. The performance of this phase is

influenced by two main factors:

• The XMI is an XML-format, ASCII-sequential file. Accordingly, the reading

time to traverse the entire requirement set in a forwards direction just once is

linear with respect to the number of requirements.

• A Java HashMap is used to store the linked list of Requirement objects in

the SparxEA class. HashMap indexing is inherently very efficient. Since the

release of JDK version 8, local binary trees are used to file items with similar index

keys, allowing them to bucket or hash together in optimal ways. Since TORUS is

inserting each Requirement object into the list in-sync with the reading of the
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XMI-file, only one pass is required to populate the list. All operations are indexed

insertions and additions rather than requiring a re-ordering to the structure after

changes.

Hence this operation should show O(n) linear complexity and this is borne out by the

results. They show a consistent linear increase in the time required to load progressively

larger requirement sets.

7.5.2 Analyzing a Large Function Block Application

The loading and storage of the nxtStudio application code in the nxtStudio class

was studied in a similar way. Each application is stored as a single XML-format file.

Access to secondary object type-definition files is made to retrieve and store its ECC

algorithms when inspecting each function block instance.

As expected, the overall load time for the sample application containing one million

function blocks is considerably longer than the time to one million requirements. The

IEC 61499 nxtStudio file contains a large amount of IDE-specific data that is not

related to the function block information TORUS is interested in. However, like the

requirements implementation, the load time for the function blocks also demonstrates

O(n) linear complexity.

In practical terms, it is unlikely that there would be one function block per require-

ment in a typical cyber-physical system application. The number of function blocks

required is highly dependent on what the application does and how highly-optimized

the design is. It is also important to remember that unlike requirements, function blocks

are abstractions that will later generate differing amounts of object code. Depending on

their complexity, the relationship between the eventual code line count and the number

of function blocks is not a simple relationship. The workpiece color sorter demonstrates

a 4:1 ratio of requirements to function blocks that may or may not be typical of other
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applications. What is hoped is that the more detailed and refined the requirements are,

the higher the quality of the application should be.
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Figure 7.14: Time to Load 1,000,000 Function Blocks into TORUS

7.5.3 Analyzing the Creation of the Skein

The final phase of any TORUS probe is the creation or refreshing of the Skein. TORUS

always generates one splice for each requirement with one primary trace linkage to it.

This results in a minimal 1:1 ratio of requirements and splices in the current TORUS

implementation. Then the function block application is probed via the nxtStudio

repository of function blocks, building up traces within the splice that reach out to each

application entity based on each trace relationship that has been uncovered.

Our cloned requirements and function block models are of necessity randomized.

The 4:1 ratio of requirements to function blocks ratio exhibited in the workpiece

color sorter was chosen as an appropriate ratio. Each requirement and function block

was given a unique primaryID to ensure that in our proposed example, for one

million unique requirements there will be 250,000 possible, unique function blocks they
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Figure 7.15: Time to Trace 1,000,000 Requirements and 250,000 Function Blocks.

could trace to. To create traceability hooks, each splice was first linked to its parent

requirement. A randomized number of n function blocks were then traced to by first

extracting n function blocks index keys from the available pool. This yielded a list of

function block instance names just as if they had been identified through the analysis

of the requirement’s own unit tests. Each of these function blocks were then retrieved

from a list using the normal function block lookup methods available in the nxtStudio

class. This ensured that we were testing the proper methods TORUS would use in a real

scenario. For practical purposes, the maximum number of traces that any single splice

would establish was limited to six.

Figure 7.15 shows that the skein creation also demonstrates (O(n)) complexity. This

is expected since the creation of each trace requires the function block information to be

retrieved from a HashMap that has unique indexes. The traces themselves are created

with composite index keys so their later retrieval times will also be linear. The complete

set of tasks to create the skein are therefore a series of steps, each one demonstrating

linear complexity:
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Input: Requirements Model RM , Function Blocks FB;
Result: Skein SK consisting of all SP ;

1 foreach R ∈ RM do
2 Create a splice sp ∈ SP linked to R ;
3 foreach fb ∈ FB referenced by R do
4 sp.SE = sp.SE ∪ {fb};
5 end
6 end

Algorithm 3: Creating the Skein.

7.5.4 Practical Time Considerations

For most practical situations, a requirements set of one million items will be rare.

During our most extreme trial, TORUS took 125 minutes to create one million splices

and establish 3,232,017 traces to a pool of 250,000 possible function blocks. With

a smaller model consisting of 100,000 requirements, TORUS established 1,117,227

traces to a pool of 10,000 function blocks in 6.7 minutes. This suggests that even with

the current prototype, TORUS demonstrates acceptable performance for medium to

large requirements models and applications.

7.6 Strengths, Weaknesses and Limitations

Is this workpiece color sorter a representative example of a typical cyber-physical

system? Data Set 01 only contains thirteen requirements but these emerged iteratively

during the elucidation performed on the initial pre-RS statements first presented in

Section 4.1. Is the scale and complexity of this example significant enough to be

representative of real-world cyber-physical systems? Given what TORUS has been able

to trace within this requirements model and the resultant application, we would argue

that it is representative for the following reasons:

New requirements emerged that were not present in the pre-RS. Refinement of

this apparently trivial example and modeling it within Enterprise Architect demonstrated
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the need to create extra safety and functional requirements to ensure that the application

would operate in a more consistent and safe manner. Hence, what may at first appear

to be a trivial requirement specification quickly becomes much more complex. The

literature review has already examined safety-critical situations that clearly did not

address the risks they embodied adequately (Ho, 2015; Docrill, 2015).

TORUS presented a representative range of trace statuses. This simple model

produced the full range of splice types possible at this stage of TORUS’s evolution,

including multiple traces from a single requirement to application entities. The historical

analyses that follow will demonstrate how requirements such as R10, which initially

produced five traces, increase their complexity and value as they effectively capture the

changes that occur over time.

Unit Tests have been shown to be very significant. Scale and complexity have

been profiled previously as barriers to the adoption of traceability. In this example,

it was demonstrated that unit tests required little or no manual effort to create traces

from. Further, they retain their integrity during re-factoring. This reinforces the value

of Model-Based Systems Engineering and Test-Driven Design as methodologies that

actively contribute to the quality of traces within frameworks such as TORUS without

significantly raising the trace creation and maintenance overheads.

The example chosen to model incorporates many of the most important traceability

scenarios encountered in cyber-physical system design. Coupled with the results of

the scalability testing, TORUS shows great promise. The limitations that are now

apparent relate mostly to how cleverly and accurately TORUS can mine code in the

application. While the Enterprise Architect requirements model created has been shown

to be hierarchal with tightly-linked secondary artifacts such as unit tests, the application

code model is far less heterogeneous. TORUS has been shown to work well with a

well-structured requirements model but it is clear that its performance would degrade

significantly when asked to mine models of lower quality. To address that, the formal
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methods profiled already suggest that they would be a viable route to create more

innovative capabilities. The next section examines the future directions that the analysis

presented here suggests.



Chapter 8

Conclusions and Further Research

The original question that motivated and drove this research was: "How do we use

formal methods to facilitate the traceability of large, complex requirement sets for

safety-critical Cyber-Physical Systems?" During all of the time spent thinking, reading

and experimenting, it has clearly been important to stay cognizant of the need to keep

any proposed solution grounded in the real-world.

Therefore it felt right to present each of the conclusions in this final section side-

by-side with the implications for the future research directions that they point towards.

While this first phase of the research has proposed the TORUS framework as a novel

and promising way of facilitating traceability, traceability alone is not enough of an

answer. The immediate goal of the research has been to demonstrate that automating

trace creation and maintenance through this formal framework is both feasible and

delivers immediate benefits. However, without rich-enough models for requirements

and robust cyber-physical system architectures to tether those traces to, the long-term

goal of being able to accurately gauge the completeness of an application cannot be

met. The research challenge was always to provide a compelling enough motivation for

adopting Model-Based Systems Engineering practices that outweigh the cost and time

required to build rich-enough models.

153
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Here_there_be_Dragons.pdf 

Figure 8.1: "Here there be Dragons..." (Zell-
Ravenheart, Oberon, 2016)

Future versions of TORUS could arguably

get a little nearer to that goal by incor-

porating validation and verification meth-

ods into the TORUS framework. Coupled

with delivering sound metrics such as

those presented earlier, we are also com-

ing closer to understanding how develop-

ment teams can comprehend and manage

large, complex system requirements. Be-

ing confident that you know where you

are along a project’s development path is knowledge beyond price. Tools and frame-

works that support such a voyage are like the instruments of a navigator; in skilled

hands, they help make the passage safer. However, wherever people, software and great

expectations are involved, the maps all too often say "Here there be dragons..."

8.1 Abstraction Reconsidered

Earlier in this research, a requirements model was created manually using CESAR

boilerplates. Sparx Enterprise Architect was then able to visualize it as a set of SysML

Requirements Diagrams. Creating the model in Enterprise Architect was painless due

to the extensive tutorial support available from Sparx as well as the ease-of-use of the

application. The IDE provides ways of quickly extracting high-quality Acrobat Portable

Data Format (PDF) images of the model views which were used extensively within

Chapter 4.

After completing the Function Block application in nxtStudio, the nxtStudio HMI

Visual Interface Environment provided a way of creating an animated view of the

pistons moving under the control of the application. The end result was a functioning
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prototype that was later used when exercising the TORUS application.

However after getting this far, a deep time of reflection and doodling on white boards

ensued. Three primary questions emerge from the diagrams shown here in Figure 8.2.Research_Diagrams_on_Abstraction.pdf

Figure 8.2: Are we Abstracting Too Far Away From Where Engineers Wish to Work?

1. In what ways did the effort expended to create the SysML model affect the design

choices made in nxtStudio as function blocks were prototyped, connected to each

other and algorithms were designed and coded?

2. Did the effort expended in Enterprise Architect produce anything more than a

connected list of interrelated requirements, use cases and acceptance tests?

3. More importantly is the IEC 61499 abstraction, presented so powerfully in nxtStu-

dio, a better, richer and more useful requirements model that the SysML model

created earlier?

If we are to encourage practitioners to adopt Model-Based Systems Engineering

approaches, we have to be able to justify the cost and effort that will go into creating

models by facilitating excellent traceability, validation and verification. The Function

Block abstraction does not imply a direct one-to-one code-level mapping between
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algorithms in the compiled application and their representation within the IEC 61499

compositional architectural model. What it has done is provide an excellent way of

modeling functionality that represents concepts such as data, input and output channels,

in the context of their role in fulfilling requirements. The nxtStudio model has effectively

allowed us to build an Executable Specification. We were able to use it to simulate our

solution without having to deploy it on specialized hardware. We were also able to build

the functionality iteratively, exploring technical problems as we refined the design.

This approach is very close to the way engineers work within real projects, pro-

totyping parts of the solution to address open questions about the design choices that

need to be made. Performing this sort of iterative modeling and design directly in

nxtStudio has the advantage that the model is continually being refined in a much

more tangible way. In contrast, the model created in Enterprise Architect would need

to be updated separately to keep it in-step with the nxtStudio model. While SysML

Block, State Machine and Sequence diagrams can be used to model function blocks, are

they abstracted too far away from the application compared to what nxtStudio models

capture and present?

Once the development work was under-way in nxtStudio, the SysML diagrams were

not used extensively. Rather, the CESAR requirement statements became a checklist of

specified functionality. In this respect, an Excel spreadsheet could just have easily been

used instead of Enterprise Architect. Clearly modeling solutions have a place; IBM

Rational Rhapsody has extensive code-generation capabilities and built-in emulators,

supporting Model Based Systems Engineering and Test-Driven Design. However, by

the time the function blocks were being created, details of the various inputs, outputs

and algorithms not captured in the SysML diagrams became far more important design

questions. Modeling directly in nxtStudio is an attractive and viable alternative. The

prototypes produced in Enterprise Architect and Rational Rhapsody can be made into

very functional simulations. The issue remains to be answered if what they produce
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currently is still too abstract for engineers to use effectively. This research suggests

that they are and that nxtStudio and TORUS together with a simple requirements

management tool is an ideal tool chain to support Model Based Systems Engineering

and Test-Driven Design.

8.2 Using Splices During Modeling and Development

We observed that the most effort in understanding what the trace model splices presented

was localized within the initial requirements engineering and design phases. There,

requirements were refined many times. On the other hand, the most value from splices

was reaped in the development and testing phases as a means to see how many require-

ments were covered and to identify untested requirements. Hence, the automation of

the splice creation focused on the initial requirements engineering and design phase.

Visualization support in the later phases is highly desirable.

The exponential increase in requirement numbers and consequently splice numbers

was not unmanageable. While the tool scaled easily to the various variants of the

workpiece colour sorter, all of whom have a high degree of reuse of the piston controller

function block, there is a need to test it more widely on systems with different degrees

of reuse of blocks and higher heterogeneity.

8.3 Unit Tests as Facilitators of Traceability

Unit Tests emerged as a powerful tool to facilitate traceability. Their ability to allow

traces to be created automatically and remain up-to-date with little effort is a significant

contributor to the success of the TORUS approach. While nxtStudio does not support

unit testing as a built-in part of its environment, other IEC 61499 development systems

such as 4DIAC and IsaGraf do.
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JUnit-style unit tests work by instantiating objects and exercising their properties.

This allows single function blocks to be tested but the paradigm does not work when

trying to test requirements deployed across heterogeneous distributed applications.

Developing a unit test framework that allowed timing constraints to be exercised

across distributed IEC 61499 sub-applications would be a worthwhile future project.

Integrating that with subsequent versions of TORUS would build upon the work already

done and explore additional ways of creating richer trace pathways, delving deep into

function block algorithms.

8.4 Validation, Verification and Formal Methods

The term "completeness" has been used extensively in this thesis however the techniques

required to determine this characteristic of the system are complex. The scope of the

present work has been constrained to show that requirements that can be traced to

artifacts are in some way more complete than those that cannot. A fuller evaluation

of a system should encompass aspects of both validation and verification. To do that

requires both analysis of the way the code is structured and concepts such as coupling

and cohesion. Since IEC 61499 function blocks are truly object-orientated, they yield

well to such measures of code quality. Formal methods were presented as ways of

evaluating traces and exposing deeper aspects of the information they provide. Future

research should include allowing TORUS to mine what is out at the edges of those

traces to search for orphan and unreachable code. This would include reaching beyond

the end of the trace to see if what it is connected to does indeed fulfill the requirements

it is bound to.
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8.5 Visualizing the Skein and its Contours

Visualizing large requirement sets is an extremely hard task. Traditional paper-based

specifications cannot capture the very dynamic nature of development. The literat-

ure section discussed keeping trace history up-to-date as a barrier to the adoption of

traceability tools and the use of Model Based Systems Engineering.

Throughout this work, the splice has been presented as a thread that connects

simple boxes containing requirements on the left and function blocks on the right.

This simple representation has proven to be highly-effective during discussions with

colleagues about this work. The rational behind the terminology used to describe a

splice’s characteristics became very easy to explain. The simplistic green and red trace

statuses were perceived to be both evocative and simple to understand. The number of

traces that emanate from a splice conveys a rich message about how well-fulfilled or

complete the requirement might be.

The purpose of such visualization is to allow teams to comprehend and discuss their

system during development reviews. For that to be effective when the requirements

model is large needs all the more stronger and richer exemplars. At this stage, TORUS

only provides the basic information that is needed to represent the current state of a

requirement. Going beyond this to produce more compelling views is a challenging

topic that needs further research:

Managing scale by focusing on sections of the requirements is one approach.

Many avionics and automotive systems organize their systems into broad sub-systems

such as braking, navigation, engine management and environmental control. Within

our workpiece color sorter, the horizontal and vertical piston controllers form natural

sub-system divisions. The ability to hide splices that are not relevant to a discussion and

focus only on complete sub-systems alone would declutter the view presented. Further

refinements could allow only problem areas to remain visible or to highlight patterns
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exposed through the formal analysis TORUS performs on the entities. However, the

sheer number of traces created in even small models hints at the graphic rendering

challenges this problem presents. The refresh performance when changing views would

have to be significant to ensure that it can keep pace with discussions going on within the

teams during meetings, especially if these views are being shared in real-time between

remotely-distributed teams. The success of the simple box and line paradigm adopted

here suggests that developing more intuitive representations for splices and the skein

would be a valuable contribution.

In the research methodology section, the works of Norman (2013) and Hevner

(2004) were discussed. They asserted that efficacy of design was not enough; good

designers have to incorporate both style and aesthetic’s in their artifacts. Gelernter’s

description of "machine beauty" was touched upon, the marriage between simplicity and

efficacy that drives innovation in science as much as it does in technology (Gelernter,

1999, page 3). Extending the visualization capabilities of TORUS would be fascinating

and challenging research that would need some wicked thinking to tackle something

that surely qualifies as one of Buchanan’s "wicked problems" (Buchanan, 1992, page

15).

Using Splice History more constructively would bring a new depth to the analysis

of problems. Examples were given of requirements that were complete that moved back

to an uncompleted stage as function blocks were re-factored. The history aspects of

splices were only explored briefly in this research but they present significant opportun-

ities for future research. Each historical splice captures a snapshot of part of the system

from a previous time. Such information would be invaluable when trying to determine

how an implementation or requirement has evolved and changed. Formal methods can

operate on historical splices as easily as they work on current ones, exposing deeper

patterns and constraint violations to support design and diagnosis.
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8.6 Final Thoughts

The introduction to this chapter mentioned dragons. So often, when mariners or ex-

plorers of the past were describing what they encountered on their journeys, they

anthropomorphized their fears or challenges through tales of fearsome dragons. In

so much of the academic literature presented during this thesis, traceability within

large cyber-physical systems has been portrayed as an intractable, dragon-like prob-

lem. TORUS presented a novel way to explore potential solutions in a space that

Finkelstein (2012) asserts is much in need of sound practices and tools.

However, in this work, I hope I have also conveyed my fascination with this chal-

lenge and the opportunities that further research in the area would present. If these

wicked problems are indeed dragons, then they certainly have enticing personalities.
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