
Mojgan Kamali | Luigia Petre

Modelling Link State Routing
in Event-B

TUCS Technical Report
No 1154, January 2016





Modelling Link State Routing
in Event-B
Mojgan Kamali

Åbo Akademi University, Faculty of Science and Engineering,
the Agora building, 3rd floor, room 341A, Vesilinnantie 5, 20500 Turku, Finland
mojgan.kamali@abo.fi

Luigia Petre
Åbo Akademi University, Faculty of Science and Engineering,
the Agora building, 3rd floor, room 340I, Vesilinnantie 5, 20500 Turku, Finland
luigia.petre@abo.fi

TUCS Technical Report

No 1154, January 2016



Abstract

In this paper we present a stepwise formal development of the Optimised Link
State Routing (OLSR) protocol in Event-B. OLSR is a proactive routing protocol
which finds routes for different destinations in advance. As a consequence, when-
ever a data packet is injected into the network, aiming for a certain destination, it
can be delivered immediately. To achieve this, routing tables in OLSR are continu-
ously kept up-to-date, by following a rather complicated algorithm. By modelling
OLSR in Event-B, we structure the OLSR complexity in five distinct abstraction
layers that are manageable to understand and verify and are linked to each other
by refinement. As Event-B is supported by a theorem proving platform (Rodin),
we model and prove properties about OLSR in an automated and interactive man-
ner, at a highly general level. Our approach can serve as a proof-of-concept to be
adapted to other routing protocols for large-scale networks.

Keywords: Formal Analysis, Refinement, Event-B, link state routing

TUCS Laboratory
Distributed Systems Laboratory



1 Introduction

Wireless technologies are on the rise, ranging from laptops and smart phones that
make work and connections easier, to sensor networks that produce and manipu-
late large amounts of data. In this study, we focus on contemporary wireless net-
works, in particular Wireless Mesh Networks (WMNs). WMNs are self-healing
and self-organising wireless technologies supporting broadband communication
without requiring any wired infrastructure. These networks are employed in a
wide range of application areas such as emergency response networks, communi-
cation systems, video surveillance, etc. Due to these critical applications, correct
behaviour and functioning of such networks should be guaranteed. One of the
key factors determining the performance and reliability of WMNs is their routing
protocols.

The fundamental role of (WMN) routing protocols is to provide routes be-
tween nodes for communication. These protocols disseminate information through
the network in order to select such routes and thus enable nodes to send data pack-
ets to arbitrary destinations in the network. Routing protocols for WMNs are ei-
ther proactive or reactive. Proactive protocols attempt to select routes in advance,
by exchanging control messages about all the other nodes of the network. Conse-
quently, an injected data packet can be delivered to the destination immediately.
Examples of such protocols are Optimised Link State Routing (OLSR) protocol,
Better Approach To Mobile Ad hoc Networking (BATMAN) routing protocols,
etc. Reactive protocols search for routes to destination nodes on demand, when-
ever a data packet is injected into the network. Examples of reactive protocols are
Ad hoc On-Demand Distance Vector (AODV) protocol, Dynamic Source Routing
(DSR) protocol, etc.

In this paper we focus on the OLSR protocol [9]. We formally model this
protocol through incremental stepwise refinements in Event-B [2], a formal mod-
elling approach which provides automatic tool support for modelling and proving
various properties.

OLSR is a rather complicated protocol. This is mainly due to its proactive
nature, requiring it to keep up-to-date information about routes to all destina-
tions from any node. Assumed to work in the WMN setup, this implies that all
routes are checked periodically, to prevent the case of various links going down.
Indeed, the OLSR specification [9] prescribes certain routines to be performed
every 2 seconds, and some other every 5 seconds. There are two kinds of control
messages exchanged by nodes for updating the complex structure of the routing
tables. By stepwise modelling OLSR in Event-B we gain a deep understand-
ing of the OLSR mechanisms at five different layers of abstraction. The first
two layers simply model a routing protocol, first more abstractly and then more
concretely, modelling only very abstractly the proactive OLSR behaviour. The
following two layers add the infrastructure necessary for modelling the proactive
behaviour, again in a more abstract manner first and somewhat more concretely

1



in layer four. In the final layer we add the defining characteristic of OLSR, of
selecting only specific nodes to broadcast control messages, so as not to strangle
the network traffic. These layers are related by refinement: this means that the
properties and the behaviour of any model are kept in all its subsequent refine-
ments. Hence, we can prove certain properties in a more abstract layer (when the
property is simpler to prove) and then develop the models in the more concrete
layers so that they do not break those proven properties. Our main contribution is
to demonstrate the management of complexity in an elegant manner and to offer
our solution as a proof-of-concept for other routing protocols. As a consequence
of the specific properties we prove, we discover that OLSR does not find optimal
routes to all the destinations, while also proving that it indeed discovers routes to
all the destinations as well as it delivers data packets on these discovered routes.

We proceed as follows. In Section 2 we briefly overview the OLSR protocol
and in Section 3 we outline our modelling framework Event-B. In Section 4 we
present our formal development of the OLSR protocol. Verification results and
the impact of our paper are described in Section 5. We discuss related work in
Section 6 and draw some conclusions in Section 7.

2 Overview of the OLSR protocol

Optimised Link State Routing (OLSR) is a proactive routing protocol adapted for
WMN applications. (Data) packets need to be transmitted from certain sources to
their destinations in a WMN, and as a routing protocol, OLSR has to find routes
for these packets. OLSR has all the routes available (in its constantly updating
routing tables of all nodes) when required. This is achieved by exchanging con-
trol messages among nodes. The OLSR protocol is an optimisation over other
proactive routing protocols, as it decreases the traffic in the network by selecting
some nodes as the so-called MultiPoint Relays (MPRs); only these nodes are then
able to transmit control messages. Every node a has a set of one-hop neighbour
nodes as MPRs, connected to the two-hop neighbours of node a.

This protocol does not depend on any central entity for coordination and is
working in a completely distributed manner. The OLSR protocol broadcasts two
types of control messages, HELLO messages and TC (Topology Control) mes-
sages, to distribute information about the nodes of the network. A HELLO mes-
sage is broadcast every 2 seconds on single hops (to one-hop neighbours and not
forwarded). It is used to detect one-hop and two-hop neighbours of every node
and, based on this, to select MPR nodes. A TC message is broadcast every 5 sec-
onds to build and update topological information. The TC messages are broadcast
and forwarded via MPRs only.

Each node has a routing table to store and keep the information about all the
other destinations in the network. When a node receives HELLO or TC messages,
it updates its routing table based on the information in the control messages. As a

2



consequence, the topological information about different destination nodes is con-
tinuously updated in the routing tables, making it feasible to deliver data packets
to arbitrary destination nodes.

3 Overview of Event-B

Event-B [2] is a formal method based on the B-Method [1] and on the Action
Systems [5] framework for modelling and analysing distributed, parallel and re-
active systems. Automated support for modelling and verification is provided by
the Rodin Platform [3]. Event-B uses context and machine modules to define sys-
tem specifications (models) and to express behaviour and properties of systems.
An Event-B context contains constants and carrier sets, whose properties are ex-
pressed as a list of axioms for the model. Thus, a context contains the static part of
the system. A machine contains the dynamic part of the system. The relationship
between a machine and its context is defined by the keyword Sees showing that
the machine can have access to the contents of the context.

A machine describes the state of the model with variables that are updated by
events. Events may contain guards: these are logical properties linking constants,
variables and potentially local variables of the event. The guards must evaluate
to true for the event to be enabled. If several events are enabled simultaneously,
only one event is chosen for execution, non-deterministically. An Event-B ma-
chine also contains invariants. These are expressed in terms of constants and
variables of the context/machine. Invariants are properties that need to hold for
any reachable state of the model. This means that invariants must hold before and
after any occurrence of any event.

The main development strategy in Event-B is that of refinement. A machine
A can be refined by a machine B (denoted A v B) when A’s behaviour is not
altered by B in any way and new variables are added in B, together with new
events for updating these variables. Events in machine A can also be refined in
machine B, by enriching their behaviour with behaviour of the new variables, for
instance. This type of refinement is called superposition refinement. Other types
of refinement also exist, for instance data refinement, where some variables in
the more abstract machine are replaced by other variables in the refined machine;
in this case, a so-called gluing invariant is specified, that describes the relation
between the old and the new variables. All the occurrences of the old variables
are replaced in events in the refined machine by the new variables; the only place
where the old variables still appear is in the gluing invariant. To prove that ma-
chine A is refined by machine B, a set of so-called proof obligations is generated
by the Rodin platform. Some are discharged automatically by Rodin and some
need to be discharged interactively with help from the modeller.

All events in the abstract model are kept through in the refinement chain. Some
events are refined, and then the refined event replaces its more abstract counter-

3



part. Even if we do not show the abstract events from previous levels in the paper
(due to lack of space) they are still part of the refined model.

4 Event-B Model of OLSR
In this section, we express the OLSR protocol development at five different layers
of abstraction, overviewed below. We summarise our development of the OLSR
model in Fig. 1, where we illustrate the five abstraction layers containing the cor-
responding five machines as well as two contexts.

C0	  
Sets	  
MSG	  
NODES	  
Constants	  	  
source	  
des0na0on	  
closure	  
n	  

M4	  
Variables	  
hello_onehop_array	  
f_mpr_status	  
node_one_hops	  
f_processed_onehop	  
node_mpr_array	  
hello_mprs	  
Events	  
determine_onehop_neighbours	  
receive_hello_onehops	  
receive_hello_update_two_hops	  

M3	  
Variables	  
rt_sqn	  
local_sqn	  
Events	  
remove_outdated_tc1	  
remove_outdated_tc2	  

M2	  
Variables	  
broadcast_hello	  
got_hello	  
hello_storage	  
deleted_hello	  
broadcast_tc	  
got_tc	  
tc_storage	  
deleted_tc	  
tc_hops	  
tc_sender	  
tc_0me_to_live	  
rt_hops	  
rt_next_hops	  
Events	  
broadcast_hello	  
receive_hello	  
delete_hello	  
broadcast_tc	  
receive_tc	  
forward_tc	  
remove_outdated_tc	  

M1	  
Variables	  
packet_hops	  
travelling_packet	  
packet_loca0on	  
Events	  
forward	  

M0	  
Variables	  
sent_packet	  
got_packet	  
lost_packet	  
links	  
Events	  
ini0aliza0om	  
packet_sending	  
packet_receiving	  
packet_losing	  
links_adding	  

C1	  
Sets	  
Hello	  
Tc	  
Constants	  
source_hello	  
source_tc	  
node	  
local_hops	  
tc_sqn	  

Extends	  

Sees	  
Sees	  

Refines	   Refines	  

Refines	  

Refines	  

Figure 1: Overview of model development

Initial Model (M0): Basic routing protocol behaviour, i.e., sending, receiving,
and losing data packets, is specified, together with an abstraction of proactive
routing behaviour.
Refinement 1 (M1): A storing and forwarding architecture for data packets from
a source node to a destination node is modelled in this step.
Refinement 2 (M2): The basic behaviour of route discovery is introduced in this
refinement. This level describes the essential OLSR behaviour for sending and
receiving control messages based on which each node updates its routing table.
Refinement 3 (M3): More detailed information about the route discovery proto-
col and how to process new control messages are provided in this level of refine-
ment.
Refinement 4 (M4): Selection of MPR nodes and how they help to decrease the
traffic in the network are introduced in this step.

4



The refinement relation between machines is emphasised in Fig. 1 and we
illustrate the new variables and events in all the machines, together with constants
and carrier sets in the contexts. In the following sections we describe these entities
in detail. The reader can also consult our models in Event-B or in pdf format at
http://users.abo.fi/mokamali/ICFEM_2016.

4.1 The Context C0 and Initial Model M0
In context C0 we define two carrier sets NODES and MSG and four constants
source, destination, closure, and n. The carrier set NODES models the nodes in
the network; this set is finite and non-empty (modelled by axm1 and axm2, respec-
tively). The number of elements in NODES is equal to n (axm3) which is larger
than 1 (axm4). In axioms axm5 and axm6, we define the carrier set MSG as a finite
and non-empty set, modelling the set of all (user) data packets. In axioms axm7
and axm8, we define the type of the constants source and destination, modeling
the source and, respectively, the destination of all data packets; these are total
functions mapping MSG to NODES. The constant closure models the transitive
closure of binary relations between nodes (NODES) in axioms axm9–axm12. The
sets, constants and axioms belong to the context C0, seen by our initial model M0.

AXIOMS

MSG

NODES

CONSTANTS
source

destination

closure
n

AXIOMS

axm1 : finite(NODES)

axm2 : NODES 6= ∅
axm3 : card(NODES) = n

axm4 : n > 1

axm5 : finite(MSG)

axm6 : MSG 6= ∅
axm7 : source ∈MSG→NODES

axm8 : destination ∈MSG→NODES

axm9 : closure ∈ (NODES↔NODES)→ (NODES↔NODES)

axm10 : ∀r·r ⊆ closure(r)

axm11 : ∀r·closure(r); r ⊆ closure(r)

axm12 : ∀r, s·r ⊆ s ∧ s; r ⊆ s⇒ closure(r) ⊆ s

In M0, we model an abstract version of the OLSR protocol. We have four vari-
ables, namely sent packet, lost packet, got packet and links. Variable sent packet
is a subset of MSG (inv1) modelling the packets actually sent through the network

5

http://users.abo.fi/mokamali/ICFEM_2016


(injected). Lost packets and received packets in the network are modelled by vari-
ables lost packet and got packet, respectively. The set of lost packets (lost packet)
and received packets (got packet) are subsets of the set of all injected packets
(sent packet); this is a safety property modelled by invariants inv2 and inv3. A
data packet cannot be received and lost at the same time as modelled in inv4. Vari-
able links models the current links in the network (inv5). No node is connected to
itself, as modelled by invariant inv6.

INVARIANTS

inv1 : sent packet ⊆MSG

inv2 : lost packet ⊆ sent packet

inv3 : got packet ⊆ sent packet

inv4 : got packet ∩ lost packet = ∅
inv5 : links ∈ NODES↔NODES

inv6 : (NODES C id) ∩ links = ∅

There are four simple events in our abstract model in addition to the initialisa-
tion event where all variables get value ∅. The event packet sending models the
sending of a data packet msg not yet injected from a source node s to a destina-
tion node d (grd1–grd3). The main guard of this event ensures that there is a path
from s to d (grd4). If theses conditions hold, then msg can be sent (injected in the
network to eventually make its way to d).

Event packet sending =̂

any
s, d, msg

where
grd1 : msg ∈MSG ∧msg /∈ sent packet
grd2 : source(msg) = s ∧ destination(msg) = d
grd3 : s 6= d
grd4 : s 7→ d ∈ closure(links)

then

act1 : sent packet := sent packet ∪ {msg}
end

Event packet receiving models the successful receiving of the data packet msg
by a destination node. The guard of this event (grd1) models that msg has not
been received or lost yet.

Event packet receiving =̂

any
msg

where
grd1 : msg ∈ sent packet \ (got packet ∪ lost packet)

then
act1 : got packet := got packet ∪ {msg}

end

Event packet losing models loss of data packets. The guard of this event (grd1)
models that msg has not been received or lost yet.

6



Event packet losing =̂

any
msg

where
grd1 : msg ∈ sent packet \ (got packet ∪ lost packet)

then
act1 : lost packet := lost packet ∪ {msg}

end

Event links adding models that some arbitrary links not yet in the network
(grd1) may come up; these new links are added to the set links.

Event links adding =̂

any
s, d

where
grd1 : s 7→ d /∈ links
grd2 : s 6= d

then
act1 : links := links ∪ {s 7→ d}

end

We note here that the first three events of M0, packet sending, packet receiving
and packet losing are events common to any routing protocol. The specific proac-
tive feature that routes to destinations are continuously updated in the routing
table, i.e., the valid links are continuously updated, is modelled in M0 abstractly,
with our fourth event link adding. Later in the refinement chain, adding links in
the network will be replaced by updating routing tables based on the information
received from HELLO and TC messages. At this abstract level however, we only
have data packets as messages. Control messages are introduced in M2. We also
note that receiving data packets is magical, with having no intermediate nodes in
between the source and the destination of a data packet. A sent data packet can be
either received or lost in a non-deterministic manner. We add intermediate nodes
in between sources and destinations in M1.

4.2 First Refinement M1: Storing and Forwarding Architec-
ture

In the initial model, data packets are received in an atomic magical step from a
source node to a destination node. This is of course not the case in a real pro-
tocol. Data packets are transferred using multi-hop communication and they are
forwarded hop by hop from a source node s to destination node d. Hence, in this
refinement step, we model the storing and forwarding architecture of data pack-
ets when not all the nodes are directly connected and the data packet has to be
forwarded by several intermediate nodes before being delivered at the destination
node. For this, we define three new variables and one new event. The new vari-
able travelling packet is a subset of sent packet (inv1), modelling the packets that
are sent but not yet received or lost. If we study M0, we note that there are data

7



packets in sent packet that are not lost nor received: we refer to them in the guards
of events packet receiving and packet losing. In M1 this set of messages is made
concrete by the new variable travelling packet.

Invariant inv2 states that a data packet can either be travelling, received or lost
(sets travelling packet, got packet and lost packet do not have any elements in
common). Invariant inv3 models that the sent packet set is partitioned into the sub-
sets travelling packet, got packet and lost packet. Related to travelling packet,
variable packet location is a binary relation between sent packet and NODES
(inv4). This variable models the node in the network where a data packet is cur-
rently located at. If a data packet is not sent, then it cannot be received by or
located in any nodes of the network (inv5). If a data packet is received, the lo-
cation of the packet must be the destination of that packet (inv6). A node cannot
have contradictory information about a data packet, i.e., a data packet cannot be
located at two different nodes (inv7).

INVARIANTS

inv1 : travelling packet ⊆ sent packet

inv2 : travelling packet ∩ got packet ∩ lost packet = ∅
inv3 : travelling packet ∪ got packet ∪ lost packet = sent packet

inv4 : packet location ∈ sent packet↔NODES

inv5 : ∀m·m ∈MSG ∧m /∈ sent packet⇒ (m /∈ got packet
∧ (∀s·s ∈ NODES⇒m 7→ s /∈ packet location))

inv6 : ∀m·m ∈ got packet⇒m 7→ destination(m) ∈ packet location

inv7 : ∀m, s, r ·m 7→ s ∈ packet location ∧m 7→ r ∈ packet location⇒ s = r

inv8 : packet hops ∈MSG→ N
inv9 : ∀m·m ∈ sent packet \ (lost packet ∪ got packet)⇔m ∈ travelling packet

inv10 : dom(packet location) = sent packet

inv11 : sent packet \ lost packet = got packet⇔ travelling packet = ∅

The third new variable in M1, packet hops, is described by inv8: it models
the number of hops a data packet is forwarded and is another element of proac-
tive routing added here as a natural companion to the packet location variable.
Invariant inv9 models that a sent packet that is not lost and not received must be
travelling (and vice versa). This is a reformulation of invariants inv2 and inv3, use-
ful for proving various obligations. Invariant inv10 guarantees that all the packets
located at different nodes have been sent already. Invariant inv11 describes the
essential liveness property of the routing protocol: when all the sent (and not lost
packets) are received, then there is no travelling packet in the network and vice
versa. This means that eventually all non-lost packets reach their destinations.

The new event forward of M1 models the transfer of the data packets between
two connected nodes. The first guard states that a data packet (msg) is travelling
through the network. The second guard models that the destination node of data
packet msg is d. The last three guards, i.e., grd3–grd5, introduce the intermediate
node a, that is not the destination node, but the data packet is stored at a, and not
in the intermediate node b. There is a route from the current intermediate node a

8



to destination d (grd4) and node b is a neighbour of a (grd5). Then, the number
of hops of the packet is increased by 1 and the data packet is forwarded to node b.
Notation C− denotes the relation overriding (r C− t = t ∪ (dom (t) C− r).

Event forward =̂

any
d, a, b, msg

where
grd1 : msg ∈ travelling packet
grd2 : destination(msg) = d
grd3 : a 6= destination(msg) ∧msg 7→ a ∈ packet location

∧msg 7→ b /∈ packet location
grd4 : a 7→ d ∈ closure(links)
grd5 : a 7→ b ∈ links

then
act1 : packet location := (packet location \ {msg 7→ a}) ∪ {msg 7→ b}
act2 : packet hops := packet hops C− {msg 7→ packet hops(msg) + 1}

end

There new actions act5, act6 and act7 are added in the initialisation event to
assign values MSG× {0}, ∅ and ∅ respectively to the new variables packet hops,
travelling packet and packet location. Three new actions act2, act3 and act4 are
added in packet sending event, to add msg 7→ 0 to packet hops, msg to travel-
ling packet and msg 7→ source(msg) to packet location.

Guard grd1 in M0 is modified in M1 with respect to packet receiving event
to msg ∈ travelling packet: this expresses exactly that msg is sent but not yet
received nor lost (as deducible from inv9 or invariants inv2 and inv3). New guards
grd2 and grd3 are added: guard grd2 models that the destination of the message
(msg) is d and grd3: msg 7→ d ∈ packet location, models that only a data packet
located already at its destination can be received. Corresponding action act2 is
added in this event to remove msg from travelling packet. Thus, the receiving is
not magical anymore, but only when the data packet has arrived at its destination.
At that moment, the data packet changes its state from travelling (i.e., sent but not
yet received nor lost) to received.

Guard grd1 in M0 is modified in M1 with respect to event packet losing, ex-
actly similar to the modification in packet receiving explained above. Four new
guards grd2–grd5 are added in packet losing to model the location s where the
data packet currently is. While in M0 the packet losing was non-deterministic,
now it is for a certain reason captured in these new guards:

• destination (msg) = d

• msg 7→ s ∈ packet location

• s 6= d

• s 7→ d /∈ closure (links)

9



Hence, in M1 we lose a message where there is no route from its current location
s to its destination d. The extra act2 is added in the event to remove msg from
travelling packet since the data packet msg will not be travelling anymore.

We also note that when forwarding a message (event forward) we do not check
that a 7→ b belongs to a proper route from a to d; b only has to be a neighbour of
a but it can well be in the wrong direction.

4.3 Second Refinement M2: Route Discovery Protocol
The route discovery protocol is the most important and complicated refinement
step of this model. In this level of refinement, we investigate whether or not nodes
can find optimal routes to different destination nodes. We add OLSR control
messages (HELLO and TC) and model the routing tables of every node. In this
step, we replace the centralised functioning of the routing protocol in models M0
and M1 with a distributed functioning by data refinement. We explain all these
steps in detail in the following.

We extend the context C0 to context C1 that adds two carrier sets Hello and
Tc for modelling the control messages of OLSR, i.e., HELLO and TC messages,
respectively. Two additional constants source hello and source tc are modelled as
total functions mapping respectively sets Hello and Tc to the set NODES. These
constants model the source nodes of all these control messages (axm1 and axm2).
The constant node denotes an imaginary node, not in NODES (axm3). It is used
to denote initially the next node to take for any route. Constant tc sqn models the
sequence number of each TC message used for denoting the freshness of the mes-
sage; tc sqn must be a natural number larger than 0 (axm4 and axm5). Constant
tc sqn is only used in M3.

AXIOMS

axm1 : source hello ∈ Hello→NODES

axm2 : source tc ∈ Tc→NODES

axm3 : node /∈ NODES

axm4 : tc sqn ∈ Tc→ N
axm5 : ∀tc·tc ∈ Tc⇒ tc sqn(tc) > 0

Thirteen new variables are defined to model the behaviour of the OLSR proto-
col. As mentioned in Section 2, nodes broadcast HELLO messages in the network.
The broadcast HELLO messages are denoted by variable broadcast hello and are
a subset of all HELLO messages (inv1). Some broadcast messages are deleted,
denoted by deleted hello and some broadcast messages are received, denoted by
got hello (inv2 and inv3). HELLO messages can be located at various nodes in the
network; the relation between a HELLO message and its current location is mod-
elled by variable hello storage (inv4). Similar sets of variables are introduced for
TC messages, namely broadcast tc, got tc, deleted tc and tc storage, respectively
(inv5, inv6, inv7, inv8). Invariants inv16 – inv19 model that broadcast hello and

10



broadcast tc are partitioned into sets got hello, deleted hello, ran(hello storage)
and got tc, deleted tc, ran(tc storage), respectively. Invariant inv20 models that if
a TC message has been broadcast and it is not located at some intermediary nodes
and it does not belong to the deleted tc set, then it is received.

Information in the TC messages is modelled by variables tc hops, tc sender
and tc time to live showing how many times a TC message has been forwarded,
the sender of the TC message, and how many hops a TC message can be for-
warded, respectively. Invariants inv9 – inv11 model the types of these variables.
Invariants inv12 and inv13 model the routing table of each node in the network
containing the distance to other nodes of the network (rt hops) and the next nodes
along the paths to different destination nodes (rt next hops). As we have reasons
to believe that OLSR is a best-effort protocol, we have added invariant inv14 to
our M2 model. This essentially describes the existence of non-optimal deliveries
of data packets: the actual number of hops that msg passed through is bigger than
what the routing tables would have recommended. In other words, data packet
msg arrived on a longer path to its destination. This happens due to the distributed
nature of OLSR: in event forward we forward a data packet to any neighbour,
not checking if this neighbour is in the suitable direction toward destination. To
be able to check that, one would need a global view about the network, i.e., a
centralised approach.

If a TC message from one originator is received by a node and the hops of the
TC message is 0, then the originator and the sender of the message are the same
and the originator and the receiving node are one-hop neighbours (inv15).

The functioning of the routing protocol in M0 and M1 is centralised because
we check in various events’ guards, conditions about paths among any two nodes
in the network (using the closure property). Only a centralised algorithm, that has
access to all the network nodes, can calculate the closure of any link. OLSR is,
however, a distributed algorithm based on nodes exchanging (HELLO and TC)
messages among each other, in order to find out about active links. We have now
modelled these messages, so all the guards referring to links and closure(links) in
M0 and M1 are replaced in M2 with guard expressed in terms of the routing table.
This operation is a data refinement, and to be able to perform it, we need some
gluing invariants relating variable links in M1 to variable rt next hops in M2. The
variable links thus appears in M2 only in the gluing invariants inv21 and inv22. If
two nodes a and b are connected (a 7→ b ∈ links), this means that the next node
in the routing table of b for node a is a itself (inv21). Invariant inv22 states that if
there is a path from one node to the destination node, then the routing table entry
corresponding to the next node along the path to the destination node of that node
must have been updated (rt next hops(s)(destination (m) 6= node). Invariant inv22
thus models route discovery, essentially expressing that, if there is a path from
source to destination, then the protocol discovers it.

The last invariant inv23 deals with the data packet loss, meaning that if a data
packet is located at a node and that node has not updated the information about

11



the destination node of the data packet, then the data packet is not received and it
will be lost.

INVARIANTS

inv1 : broadcast hello ⊆ Hello

inv2 : got hello ⊆ broadcast hello

inv3 : deleted hello ⊆ broadcast hello

inv4 : hello storage ∈ NODES↔Hello

inv5 : broadcast tc ⊆ Tc

inv6 : got tc ⊆ broadcast tc

inv7 : deleted tc ⊆ broadcast tc

inv8 : tc storage ∈ NODES↔ Tc

inv9 : tc hops ∈ Tc→ N
inv10 : tc sender ∈ Tc→NODES

inv11 : tc time to live ∈ Tc→ N
inv12 : rt hops ∈ NODES→ (NODES→ N)
inv13 : rt next hops ∈ NODES→ (NODES→NODES)

inv14 : ∃msg, s·s = source(msg) ∧msg ∈ got packet⇒
packet hops(msg) > rt hops(s)(destination(msg))

inv15 : ∀a, tc·a 7→ tc ∈ tc storage ∧ tc hops(tc) = 0⇒
source tc(tc) = tc sender(tc) ∧ rt hops(a)(source tc(tc)) = 1

inv16 : got hello ∪ ran(hello storage) ∪ deleted hello = broadcast hello

inv17 : got hello ∩ ran(hello storage) ∩ deleted hello = ∅
inv18 : got tc ∪ ran(tc storage) ∪ deleted tc = broadcast tc

inv19 : got tc ∩ ran(tc storage) ∩ deleted tc = ∅
inv20 : ∀tc·tc ∈ broadcast tc ∧ tc /∈ ran(tc storage) ∧ tc /∈ deleted tc⇒ tc ∈ got tc

inv21 : ∀a, b·a 7→ b ∈ links⇔ rt next hops(b)(a) = a

inv22 : ∀s,m·s 7→ destination(m) ∈ closure(links)⇔
rt next hops(s)(destination(m)) 6= node

inv23 : ∀s,m·m 7→ s ∈ packet location ∧ rt next hops(s)(destination(m)) = node⇔
m /∈ got packet ∧m ∈ lost packet

We define seven additional events to model the basic behaviour of OLSR. The
first event broadcast hello is used to model the broadcasting of HELLO messages
in the network. This event is similar to the packet sending event in M1.

Event broadcast hello =̂

any
grd1 : s ∈ NODES
grd2 : hello ∈ Hello
grd3 : hello /∈ broadcast hello
grd4 : source hello(hello) = s
grd5 : s 7→ hello /∈ hello storage

then
act1 : broadcast hello := broadcast hello ∪ {hello}
act2 : hello storage := hello storage ∪ {s 7→ hello}

end

Event receive hello refines event links adding and models receiving of HELLO
messages.While similar to the packet receiving event in M1, here we also model
the specific role of the HELLO messages in the OLSR protocol. Upon receiving a

12



HELLO message, the receiving node updates the corresponding routing table for
the message originator and adds the HELLO message to the got hello set.

Event receive hello =̂

extends links adding

any
s, d, hello

where
grd1 : hello ∈ broadcast hello \ (got hello ∪ deleted hello)

∧ source hello(hello) = s
grd2 : s 6= d
grd3 : d 7→ hello ∈ hello storage

then
act1 : rt hops(d) := rt hops(d) C− {s 7→ 1}
act2 : rt next hops(d) := rt next hops(d) C− {s 7→ source hello(hello)}
act3 : got hello := got hello ∪ {hello}

end

Event delete hello removes HELLO messages from both sets got hello and
hello storage and adds it into the set deleted hello. Removing messages from
got hello and hello storage is a feature of the OLSR protocol.

Event delete hello =̂

any
d, hello

where
grd1 : d ∈ NODES
grd2 : d 7→ hello ∈ hello storage
grd3 : hello ∈ got hello

then
act1 : deleted hello := deleted hello ∪ {hello}
act2 : got hello := got hello \ {hello}
act3 : hello storage := hello storage \ {d 7→ hello}

end

The next event broadcast tc models the broadcast of TC messages through the
network. This event adds the required information in the corresponding variable
(tc sender) and then broadcasts the message.

Event broadcast tc =̂

any
s, tc

where
grd1 : s ∈ NODES
grd2 : tc ∈ Tc
grd3 : tc /∈ broadcast tc
grd4 : source tc(tc) = s
grd5 : s 7→ tc /∈ tc storage

then
act1 : tc sender := tc sender C− {tc 7→ s}
act2 : tc storage := tc storage ∪ {s 7→ tc}
act3 : broadcast tc := broadcast tc ∪ {tc}

end

When a node receives a TC message from a node, it updates its routing table
for the originator of the message and adds the messages into got tc set. This is
modelled by event receive tc which also refines links adding.

13



Event receive tc =̂

extends links adding

any
s, d, tc

where
grd1 : tc ∈ broadcast tc \ (got tc ∪ deleted tc)
grd2 : source tc(tc) = s ∧ source tc(tc) 6= d
grd3 : s 6= d
grd4 : d 7→ tc ∈ tc storage

then
act1 : rt hops(d) := rt hops(d) C− {s 7→ tc hops(tc) + 1}
act2 : rt next hops(d) := rt next hops(d) C− {s 7→ tc sender(tc)}
act3 : got tc := got tc ∪ {tc}

end

As mentioned in Section 2, TC messages can be forwarded: event forward tc
models the forwarding of TC messages in the network. If the guards of this event
evaluate to true, then the TC message can be forwarded. When a TC message is
forwarded, its corresponding variables tc hops, tc sender, and tc time to live are
updated.

Event forward tc =̂

any
a, b, tc

where
grd1 : tc ∈ got tc ∧ source tc(tc) 6= a
grd2 : b ∈ NODES ∧ a ∈ NODES ∧ a 6= b
grd3 : a 7→ tc ∈ tc storage ∧ b 7→ tc /∈ tc storage
grd4 : tc time to live(tc) > 1

then
act1 : tc storage := (tc storage \ {a 7→ tc}) ∪ {b 7→ tc}
act2 : tc hops := tc hops C− {tc 7→ tc hops(tc) + 1}
act3 : tc sender := tc sender C− {tc 7→ a}
act4 : tc time to live := tc time to live C− {tc 7→ tc time to live(tc)− 1}

end

The last event (remove outdated tc) models the removal of old TC messages
from the network. The guards of this event model that if a message has been
received before and it is in the tc storage of some node, then it can be deleted from
the network. In M3, we refine this event to more precisely model the behaviour of
OLSR w.r.t. when some TC messages must be removed from the network.

Event remove outdated tc =̂

any
tc, a

where
grd1 : a ∈ NODES
grd2 : tc ∈ got tc
grd3 : a 7→ tc ∈ tc storage

then
act1 : deleted tc := deleted tc ∪ {tc}
act2: tc storage := tc storage \ {a 7→ tc}
act3 : got tc := got tc \ {tc}

end

14



In addition to all these new variables and events, the old events are slightly
modified. Namely, we send and forward data packets (events packet sending and
forward, respectively) only if information in the corresponding routing table is
recent, i.e., rt next hops (s)(d) 6= node. This is because of the data refinement:
we replace the guards expressed in terms of link and closure(links) by guards
expressed in terms of the routing table variables. We also observe that event
links adding from M0 and M1 is now replaced by events broadcast hello and
broadcast tc. Likewise, losing a data packet (event packet losing) happens if the
information in the routing table is not recent, i.e., rt next hops (s)(d) = node.

4.4 Third Refinement M3: Sequence Numbers

In this level of refinement, we define new variables to model sequence numbers
and to avoid processing TC messages with old information. In machine M2, when-
ever a node receives a TC message, it just processes it without considering if the
message has some new information or not. However in this model, we define
sequence numbers to avoid this. When a node receives a TC message from an
originator node, it stores the TC sequence number to the corresponding routing
table so that whenever it receives another TC message from that originator, it
compares the sequence number of the new TC message and the sequence number
stored in the routing table; it thus figures out if the TC message must be processed
or not. Invariant inv1 is defined to model the routing table entries for sequence
numbers (in variable rt sqn). Invariant inv2 models the local sequence number of
each node in variable local sqn. Whenever a TC message is broadcast, the node
increases local sqn by 1.

Invariant inv3 checks if the sequence number of a TC message flooded in the
network and located in a node is smaller than the sequence number of TC message
originator in the routing table of the receiving node; in that case, the TC message
must not be processed and it must be removed from the network.

INVARIANTS
inv1 : rt sqn ∈ NODES→ (NODES→ N)
inv2 : local sqn ∈ NODES→ N
inv3 : ∀tc, d·tc ∈ broadcast tc ∧ d 7→ tc ∈ tc storage ∧

tc sqn(tc) ≤ rt sqn(d)(source tc(tc))⇒ tc /∈ got tc ∧ tc ∈ deleted tc

We define a new action in event braodcast tc which increases the value of
local sqn of each node after a TC message is broadcast. The sequence number of
a TC message is checked upon receipt by a node (event receive tc, grd5) to see if
the TC message has been processed before or not. If not, then a new action act4
is added to this event, that updates the routing table entry for sequence numbers
w.r.t. the destination d.

15



Event receive tc =̂

extends receive tc

any
s, d, tc

where
grd1 : tc ∈ broadcast tc \ (got tc ∪ deleted tc)
grd2 : source tc(tc) = s ∧ source tc(tc) 6= d
grd3 : s 6= d
grd4 : d 7→ tc ∈ tc storage
grd5 : tc sqn(tc) > (rt sqn(d)(s))

then

act1 : rt hops(d) := rt hops(d) C− {s 7→ tc hops(tc) + 1}
act2 : rt next hops(d) := rt next hops(d) C− {s 7→ tc sender(tc)}
act3 : got tc := got tc ∪ {tc}
act4 : rt sqn(d) := rt sqn(d) C− {s 7→ tc sqn(tc)}

end

We should note here that we refine event remove outdated tc by event re-
move outdated tc1 and remove outdated tc2. Event remove outdated tc1 removes
an out-dated TC message from the network checking TC message sequence num-
ber, while event remove outdated tc2 removes a TC message if it is not allowed to
be forwarded in the network anymore (tc time to live <= 1 based on the OLSR
specification [9]).

Event remove outdated tc1 =̂

extends remove outdated tc

any
tc, a, s

where
grd1 : a ∈ NODES
grd2 : tc ∈ got tc
grd3 : a 7→ tc ∈ tc storage
grd4 : tc sqn(tc) ≤ rt sqn(a)(s)
grd5 : s = source tc(tc)

then
act1 : broadcast tc := broadcast tc \ {tc}
act2 : tc storage := tc storage \ {a 7→ tc}
act3 : got tc := got tc \ {tc}

end

Event remove outdated tc2 =̂

extends remove outdated tc

any
tc, a

where
grd1 : a ∈ NODES
grd2 : tc ∈ got tc
grd3 : a 7→ tc ∈ tc storage
grd4 : tc time to live(tc) ≤ 1

then
act1 : broadcast tc := broadcast tc \ {tc}
act2 : tc storage := tc storage \ {a 7→ tc}
act3 : got tc := got tc \ {tc}

end

16



4.5 Fourth Refinement M4: MPR Selection

In machine M3, all nodes were broadcasting TC messages through the network;
in this machine we restrict this by determining so called MPRs. Here, only MPR
nodes are able to broadcast TC messages in the network, which helps reducing
the traffic in the network. We define six new variables to model MPR selec-
tion. Every node broadcasts HELLO messages which contain the message origi-
nator (source hello) as well as the one-hop neighbours of the message originator
(in variable hello onehop array, shown in inv1) and its MPR nodes (in variable
hello mprs, shown in inv6). Variable f mpr status (inv2) indicates whether or not
a node is an MPR. If it is true, then it is able to broadcast and forward TC mes-
sages through the network. Variable node one hops in inv3 models the one-hop
neighbours of each node. Variable f processed onehop (invariant inv4) is intro-
duced to check whether or not a node has updated its one-hop neighbours (used as
a guard when broadcasting HELLO messages). Nodes keep track of their MPRs,
modelled by variable node mpr array in inv5. Invariants inv7 and inv8 model
that only MPR nodes broadcast TC messages. In this refinement, we refine some
previous events and also introduce new events.

INVARIANTS
inv1 : hello onehop array ∈ Hello→ (NODES→BOOL)

inv2 : f mpr status ∈ NODES→BOOL

inv3 : node one hops ∈ NODES→ (NODES→BOOL)

inv4 : f processed onehop ∈ NODES→BOOL

inv5 : node mpr array ∈ NODES→ (NODES→BOOL)

inv6 : hello mprs ∈ Hello→ (NODES→BOOL)

inv7 : ∀s·s ∈ NODES ∧ f mpr status(s) = FALSE⇔
(¬∃tc·tc ∈ broadcast tc ∧ source tc(tc) = s)

inv8 : ∀s·s ∈ NODES ∧ local sqn(s) 6= 0⇔ f mpr status(s) = TRUE

We define new event determine onehop neighbours to model selection of one-
hop of neighbours of every node. When this event is executed the node determines
its one-hop neighbours which is then used in HELLO messages.

Event determine onehop neighbours =̂

any
s, d

where
grd1 : s ∈ NODES ∧ d ∈ NODES ∧ rt next hops(s)(d) = d
grd2 : rt hops(s)(d) = 1
grd3 : f processed onehop(s) = FALSE

then
act1 : node one hops(s) := node one hops(s) C− {d 7→ TRUE}
act2 : f processed onehop := f processed onehop C− {s 7→ TRUE}

end

17



Event broadcast hello is slightly modified to consider one-hop neighbours of
the HELLO message originator as well as the MPR nodes of the HELLO message
originator.

Event brodcast hello =̂

extends brodcast hello

any
s, hello

where
grd1 : s ∈ NODES
grd2 : hello ∈ Hello
grd3 : hello /∈ broadcast hello
grd4 : source hello(hello) = s
grd5 : s 7→ hello /∈ hello storage
grd6 : f processed onehop(s) = TRUE

then
act1 : broadcast hello := broadcast hello ∪ {hello}
act2 : hello storage := hello storage ∪ {s 7→ hello}
act3 : hello mprs(hello) := node mpr array(s)
act4 : hello onehop array(hello) := node one hops(s)
act5 : f processed onehop := f processed onehop C− {s 7→ FALSE}

end

We also refine event receive hello by two events receive hello onehops and
receive hello update two hops. We add two guards grd4–grd5 into the event re-
ceive hello onehops stating that if the HELLO message does not have any infor-
mation about the one-hop neighbours of the originator, then the actions of this
event are the same as the actions in event receive hello.

Event receive hello onehops =̂

extends receive hello

any
s, d, hello, a

where
grd1 : hello ∈ broadcast hello \ (got hello ∪ deleted hello) ∧

source hello(hello) = s
grd2 : s 6= d
grd3 : d 7→ hello ∈ hello storage
grd4 : a ∈ NODES
grd5 : hello onehop array(hello)(a) = FALSE

then

act1 : rt hops(d) := rt hops(d) C− {s 7→ 1}
act2 : rt next hops(d) := rt next hops(d) C− {s 7→ source hello(hello)}
act3 : got hello := got hello ∪ {hello}

end

Event receive hello update two hops is used to update the MPR nodes of the
HELLO messages receiver and MPR status of the HELLO message receiver (if
the receiving node is an MPR or not).

18



Event receive hello update two hops =̂

extends receive hello

any
s, d, hello, a

where
grd1 : hello ∈ broadcast hello \ (got hello ∪ deleted hello) ∧

source hello(hello) = s
grd2 : s 6= d
grd3 : d 7→ hello ∈ hello storage
grd4 : a ∈ NODES
grd5 : hello onehop array(hello)(a) = TRUE
grd6 : a 6= d

then

act1 : rt hops(d) := rt hops(d) C− {s 7→ 1}
act2 : rt next hops(d) := rt next hops(d) C− {s 7→ source hello(hello)}
act3 : got hello := got hello ∪ {hello}
act4 : f mpr status := f mpr status C− {d 7→ TRUE}
act5 : node mpr array(d) := node mpr array(d) C− {s 7→ TRUE}

end

We also modify events broadcast tc and forward tc. Guard f mpr status(s) =
TRUE in event broadcast tc restricts the broadcasting of TC messages to only spe-
cific nodes (MPR nodes) so that only MPRs increase their local sequence number
in event braodcast tc.

Event broadcast tc =̂

extends broadcast tc

any
s, tc

where
grd1 : s ∈ NODES
grd2 : tc ∈ Tc
grd3 : tc /∈ broadcast tc
grd4 : source tc(tc) = s
grd5 : s 7→ tc /∈ tc storage
grd6 : f mpr status(s) = TRUE

then

act1 : tc sender := tc sender C− {tc 7→ s}
act2 : tc storage := tc storage ∪ {s 7→ tc}
act3 : broadcast tc := broadcast tc ∪ {tc}
act4 : local sqn := local sqn C− {s 7→ local sqn(s) + 1}

end

Guard f mpr status (a) = TRUE in event forward tc also restricts the broad-
casting of TC messages by all nodes (only MPR nodes forward TC messages
through network).

Event forward tc =̂

extends forward tc

any
a, b, tc

where
grd1 : tc ∈ got tc ∧ source tc(tc) 6= a

19



grd2 : b ∈ NODES ∧ a ∈ NODES ∧ a 6= b
grd3 : a 7→ tc ∈ tc storage ∧ b 7→ tc /∈ tc storage
grd4 : tc time to live(tc) > 1
grd5 : f mpr status(a) = TRUE

then

act1 : tc storage := (tc storage \ {a 7→ tc}) ∪ {b 7→ tc}
act2 : tc hops := tc hops C− {tc 7→ tc hops(tc) + 1}
act3 : tc sender := tc sender C− {tc 7→ a}
act4 : tc time to live := tc time to live C− {tc 7→ tc time to live(tc)− 1}

end

5 Verification and Impact
Figuring out from which level of abstraction to start modelling and what details
to add at every step of the refinement is a challenging task. We model our system
in order to address modelling/proving complexity and to preserve reusability of
models. In order to check if our models satisfy their correctness properties we
need to prove that the invariants are preserved. In our case, correctness of packet
delivery after injecting a data packet to the system, optimal route finding, and route
discovery are investigated. In order to prove these, we used the Rodin platform
tool to generate the proof obligations for all the models. The summary of proof
statistics is displayed in Table 1 consisting of the number of proof obligations gen-
erated by Rodin platform, number of proof obligations discharged automatically
and number of proof obligations discharged interactively.

Table 1: Proof Statistics

Model Number of Proof Automatically Interactively
Obligations Discharged Discharged

C0 4 4 0
M0 13 13 0
M1 51 47 4
C1 1 1 0
M2 102 95 7
M3 17 16 1
M4 34 23 11

Total 222 199 23

In addition to proving certain properties that hold for the OLSR protocol, our
main contribution consists in the unpacking of OLSR complexity into five ab-
straction layers, as illustrated in Fig. 1. The first two layers describe the abstract
behaviour of a routing protocol; the following two add the needed infrastructure to
model proactive routing behaviour; and the last layer only introduces the specifics
of OLSR, that of MPR-based working. Hence, our modelling is highly reusable:
routing protocols can be developed based on the first two abstraction layers, even
reactive routing protocols; other proactive routing protocols can be developed
based on abstraction layers three and four, for instance the BATMAN routing
protocol. Hence, we have presented a case study that emphasises the power of

20



refinement-based methods as well as their reusability and adaptability. Reusing
our models M0 – M3 in modelling other routing protocols is left for future re-
search.

6 Related Work
Formal specification and analysis techniques have been used for investigating the
correctness and performance of different wireless networks and their routing pro-
tocols such as OLSR, DSR, etc. In the following, we review samples related to
model checking and theorem proving.

In [13], we used model checking techniques, namely Uppaal [7], to model,
analyse and verify the OLSR protocol for different properties, e.g., route establish-
ment, packet delivery, route optimality, etc, based on the OLSR specification [9].
Our verification was performed for static and dynamic network topologies up to
5 nodes. Our investigation of the OLSR behaviour was performed for small net-
works; nevertheless, we were able to report some problems of the protocol and to
sketch some modifications [14] to fix these problems and to improve the perfor-
mance of OLSR. In our current paper, the analysis scale is significantly different:
by applying theorem proving techniques, we are not restricted by the number of
nodes and can verify our system for realistic, large-scale networks.

Steele and Andel [16] analyse the OLSR protocol using the model checker
Spin [11]. They model OLSR and use Linear Temporal Logic (LTL) in order to
investigate the correct functionality of OLSR. They verify their model for different
properties such as route discovery, MPR selection, etc. Their analysis is limited
to networks with at most 4 nodes due to the state space explosion of SPIN. When
taking symmetries into account they analyse 17 topologies.

Kamali et al. [12] apply refinement techniques to model and analyse wire-
less sensor-actor networks. They proved that failed actor links can be temporarily
replaced by communication over the sensor infrastructure, when certain assump-
tions hold. They employ the Event-B formalisation (based on theorem proving)
and use the Rodin tool to carry out their proofs. While there is a strong similar-
ity between the nature of distributed sensor-based recovery and that of distributed
OLSR, the focus in their study is different.

Méry and Singh [15] present a stepwise development of the DSR protocol
using Event-B to analyse and reason about the behaviour of this protocol. They
refine their abstract model in 5 refinement steps and define invariants to verify
their system for safety and liveness properties. These properties are established
by proof of defined invariants, refinement of events, etc, using the Rodin platform.
It is interesting to note that our initial models are quite similar, as both start from
the basics of routing protocols. However, while DSR is a reactive protocol, OLSR
is proactive, so our developments start to differ significantly from our third layer
on.

21



Somewhat older related work [10] discusses the modelling of topology dis-
covery in Event-B. This is quite interesting, as proactive behaviour does, in fact,
(continuously) construct for each node a certain view of the rest of the network.
When comparing our approach to the topology discovery [10], we observe ours to
be developed more from the routing protocol’s perspective and hence more prac-
tical: we can use it to analyse the properties of a specific protocol with it. Never-
theless, theirs [10] is a very elegant conceptual development, taking explicitly into
account the failed and non-failed links, safety properties, as well as liveness prop-
erties defining the notion of a stable system (one where the view of the network
in the model is the accurate one). In our paper, we abstract away from failed links
and assume that the protocol continuously learns about links until they are all dis-
covered. At that point we would have a stable system, but we do not focus on it
here. In fact, in future work we aim at also modelling the failing of links (as in
WMNs this continuously happens) and build our protocol so that it continuously
verifies that it has the newest information on its connectivity. However, that will
not be a stable system, as links may go up and down continuously, it would be
just a best effort of topology discovery. The fact that the topology discovery [10]
is developed some years ago is visible in their ratio of automatic vs interactive
proofs: roughly half of their proofs are interactive, probably due in large part to
the preliminary version of the Rodin platform at the time.

7 Conclusions

Creating a model in Event-B for analysing the OLSR protocol was originally mo-
tivated by our previous work on creating an Uppaal model [13] for this protocol.
While we could experiment with Uppaal on various properties, the main draw-
back of the Uppaal model was its limitation to 5-node topologies. We needed to
understand whether OLSR works well for arbitrary topologies and thus, we cre-
ated the Event-B model in this paper. This model also has some limitations, such
as abstracting away from the timing behaviour and not including the deletion (fail-
ure) of links. We believe that the former drawback simply needs a more involved
modelling approach, as we explain below. A deeper modelling approach is also
needed for addressing the latter drawback, with the additional comment that in
Uppaal we have studied what happens if a particular link in a particular 5-node
topology fails. Hence, while the current Event-B model is not complete yet, we
believe it demonstrates several achievements.

In this paper, we have modelled the correct behaviour of OLSR with respect
to finding routes to all destinations and delivering data packets along these routes.
We have also showed that OLSR does not find optimal routes for all the destina-
tions. These properties hold true also for our previous Uppaal model. However,
the greatest advantage of the Event-B model consists in generality and reusability.
Our proved management of OLSR complexity is a central contribution. The for-

22



mal development of the protocol is carried out in several layers: routing protocol,
proactive behaviour protocol, and OLSR. These layers are reusable and adaptable,
as argued in Section 5. The last layer elegantly shows how OLSR is a refinement
of proactive routing, delivering a more efficient algorithm: only the selected MPR
nodes are enabled to send and forward control messages, so as not to flood the
network.

We plan to continue the research reported in this paper in several directions.
First, we are working on the finishing touches of a companion paper where we
compare the Uppaal model with the Event-B model for OLSR; in that paper we
also discuss the relative advantages of using Uppaal and Event-B for analysing
protocols. Second, there is timing behaviour in OLSR [9] that we abstracted away
in this paper. By including it though, we would be able to reason about timing
properties of OLSR, hence we plan to employ an approach for time modelling in
Event-B, such as Hybrid Event-B [6] or [4] for instance. This would imply that
all variables except clocks are functions of time, so a slight change of perspec-
tive is needed here. Third, there is a remarkable resemblance between the basic
behaviour of data packets and the other control messages in the network: they
are all sent, received, locally stored. Hence, we plan to investigate a theory of
messages in connection with routing protocols in Event-B, much in the spirit of
other theories [8] already introduced in the Rodin platform. This would increase
the reusability of both the proposed models and proofs. Modelling adding and
removal of links in the WMNs would make our models more realistic. Finally,
showing how to reuse various models for other routing protocols would clearly
demonstrate the advantages of Event-B and the refinement approach.

References

[1] Abrial, J.R.: The B-book: Assigning Programs to Meanings. Cambridge
University Press (1996)

[2] Abrial, J.R.: Modeling in Event-B - System and Software Engineering. Cam-
bridge University Press (2010)

[3] Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.:
Rodin: an open toolset for modelling and reasoning in Event-B. STTT 12(6),
447–466 (2010)

[4] Abrial, J.R., Su, W., Zhu, H.: Formalizing hybrid systems with event-b. In:
Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves,
S., Riccobene, E. (eds.) Abstract State Machines, Alloy, B, VDM, and Z,
Lecture Notes in Computer Science, vol. 7316, pp. 178–193. Springer (2012)

23



[5] Back, R.J., Sere, K.: From action systems to modular systems. In: Formal
Methods Europe ?94: Industrial Benefit of Formal Methods. Lecture Notes
in Computer Science, vol. 873, pp. 1–25. Barcelona, Spain (1994)

[6] Banach, R., Butler, M., Qin, S., Verma, N., Zhu, H.: Core hybrid event-b i:
Single hybrid event-b machines. Science of Computer Programming 105, 92
– 123 (2015)

[7] Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Interna-
tional School on Formal Methods for the Design of Computer, Communica-
tion, and Software Systems, SFM-RT 2004. Revised Lectures. pp. 200–236.
Springer Verlag (2004)

[8] Butler, M., Maamria, I.: Practical theory extension in event-b. In: Liu, Z.,
Woodcock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods,
Lecture Notes in Computer Science, vol. 8051, pp. 67–81. Springer (2013)

[9] Clausen, T., Jacquet, P.: Optimized link state routing protocol (OLSR). RFC
3626 (Experimental) (2003), http://www.ietf.org/rfc/rfc3626

[10] Hoang, T.S., Kuruma, H., Basin, D., Abrial, J.R.: Developing topology dis-
covery in event-b. In: Leuschel, M., Wehrheim, H. (eds.) Integrated Formal
Methods, Lecture Notes in Computer Science, vol. 5423, pp. 1–19. Springer
(2009)

[11] Holzmann, G.J.: The model checker spin. IEEE Trans. Softw. Eng. 23(5),
279–295 (1997)

[12] Kamali, M., Laibinis, L., Petre, L., Sere, K.: Formal development of wireless
sensor-actor networks. Science of Computer Programming 80, Part A(0), 25
– 49 (2014)

[13] Kamali, M., Höfner, P., Kamali, M., Petre, L.: Formal analysis of proactive,
distributed routing. In: 13th International Conference on Software Engineer-
ing and Formal Methods (SEFM 2015). vol. 9276, pp. 175–189. Springer
(2015)

[14] Kamali, M., Petre, L.: Improved recovery for proactive, distributed routing.
In: 20th International Conference on Engineering of Complex Computer
Systems (ICECCS 2015). pp. 178–181. IEEE (2015)

[15] Méry, D., Singh, N.K.: Analysis of DSR protocol in Event-B. In: SSS. Lec-
ture Notes in Computer Science, vol. 6976, pp. 401–415. Springer (2011)

[16] Steele, M.F., Andel, T.R.: Modeling the optimized link-state routing proto-
col for verification. In: SpringSim (TMS-DEVS). pp. 35:1–35:8. Society for
Computer Simulation International (2012)

24

http://www.ietf.org/rfc/rfc3626




Joukahaisenkatu 3-5 A, 20520 TURKU, Finland | www.tucs.fi

University of Turku
Faculty of Mathematics and Natural Sciences
• Department of Information Technology
• Department of Mathematics
Turku School of Economics
• Institute of Information Systems Sciences

Åbo Akademi University
• Department of Computer Science
• Institute for Advanced Management Systems Research

ISBN 978-952-12-3350-0
ISSN 1239-1891


	Introduction
	Overview of the OLSR protocol
	Overview of Event-B
	Event-B Model of OLSR
	The Context C0 and Initial Model M0
	First Refinement M1: Storing and Forwarding Architecture
	Second Refinement M2: Route Discovery Protocol
	Third Refinement M3: Sequence Numbers
	Fourth Refinement M4: MPR Selection

	Verification and Impact
	Related Work
	Conclusions

