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Abstract

‘We propose and demonstrate a method for the reduction of testing effort
in safety-critical software development using DO-178 guidance. We achieve
this through the application of Bounded Model Checking (BMC) to formal
low-level requirements, in order to generate tests automatically that are
good enough to replace existing labor-intensive test writing procedures
while maintaining independence from implementation artefacts. Given
that existing manual processes are often empirical and subjective, we begin
by formally defining a metric, which extends recognized best practice
from code coverage analysis strategies to generate tests that adequately
cover the requirements. We then formulate the automated test generation
procedure and apply its prototype in case studies with industrial partners.
In review, the method developed here is demonstrated to significantly
reduce the human effort for the qualification of software products under
DO-178 guidance.

1 Introduction

DO-178C/ED-12C [1] provides guidance for the production of software for airbone
systems. For each process of the life-cycle it lists the objectives for the life-cycle,
the activities required to meet those objectives and explains what evidence is
required to demonstrate that the objectives have been fulfilled. DO-178C is the
most recent version of the DO-178 family. DO-178 is thorough, and when the
highest level is chosen, aids the production of highly reliable software.



Developing to this guidance can be hard and time consuming. We will use
one small aspect of this process as exemplar: the generation and verification of
low-level tests against low-level requirements (LLRs) as described in the Software
Reviews and Analyses part (Section 6 of the DO-178C). The objectives related
to this particular area are: compliance with the low-level requirements (6.3.4.a),
compliance with the software architecture (6.3.4.b), verifiability (6.3.4.c), con-
formance to standards (6.3.4.d), traceability (6.3.4.e), accuracy and consistency
(6.3.4.1), the executable object code complies with the low-level requirements
(6.4.c), the executable object code is robust with the low-level requirements
(6.4.d), the executable object code is compatible with the target computer
(6.4.e), normal range test cases (4 additional objectives, 6.4.2.1), robustness test
cases (6 additional objectives, 6.4.2.2) and test coverage analysis (4 additional
objectives, 6.4.4). A typical DO-178C test coverage analysis has two steps:

1. The first step is analysis of the coverage of requirements.
2. The second step is structural coverage analysis on the implementation.

The requirements-based coverage analysis establishes whether the software
requirements are covered adequately, which may prompt a revision of the
requirements-based tests. Subsequently, structural coverage analysis is applied
to determine which part of the code is exercised by the requirements-based
tests. Inadequate structural coverage in the second step indicates that require-
ments are missing or that implementation behaviour is unspecified. To this end,
requirements-based testing derives a suite of tests from software requirements
only, and must not use internal structure of the implementation.

Structural Coverage Analysis The most common form of structural cover-
age analysis is code coverage analysis, which measures the degree to which
the source code of a program has been covered during execution. Criteria for
code coverage include statement coverage (checking whether each statement
in the program has been executed), branch coverage (checking whether each
branch of conditional structures in the code has been taken), and Modified
Condition/Decision coverage (MC/DC). In MC/DC analysis, a boolean decision
consists of multiple boolean conditions such that every condition shall be evalu-
ated to true and false and it is required that this switch changes the outcome
of the final decision. DO-178C guidance requires MC/DC coverage of function
bodies.

Automating functional requirements-based testing Common require-
ments-based testing techniques [2] include equivalence partitioning, boundary
value analysis, decision tables, and state transition testing. Equivalence parti-
tioning and boundary value analysis are most relevant to the coverage criterion
we propose. Equivalence class partitioning is a software testing technique that
partitions each of the inputs (or outputs) to the unit under test into a finite
number of disjoint equivalence classes. It can also be applied to the inputs to a
conditional statement. It is usually used in conjunction with boundary value



analysis. Boundary value analysis is a technique that generates test cases that
exercise an input or predicate (conditional) variable just below, on, and just
above the limits of valid ranges (equivalence partitions), the rationale being that
errors tend to occur near, or on the partition boundaries.

The key goal of this paper is the automated creation of a functional test
suite from formal, low-level requirements. Software requirements are usually
written in natural language and for our approach these must then be translated
into a formal specification in the form of pre- and post-conditions. The pre-
conditions capture the calling context required before the function call, and the
post-conditions capture the state of the system required after the function call.

There is a variety of approaches to automating specification-based testing.
In particular, [3] is among first that applied Model Checking to generate tests
from requirements specifications. For each condition tested, a trap property that
violates this condition is generated and instrumented into the code: if a trap
property is satisfied by the model checking, it means that the corresponding
condition will be never met by the program; otherwise, a counterexample will
be returned by the Model Checker that leads the program to the condition
tested and a test vector can be thus derived. However, the method in [3] needs
to call the function body in a black box fashion. In [4], structural coverage
is applied to function specifications to generate testing conditions, which are
then automatically matched with tests that already exist. [5] summarizes test
selection strategies when using formal specifications to support testing. In such
cases, post-conditions are only used to determine the outcome of the tests that
are generated. Moreover, work like [6] and [7] test specifications that include
temporal properties; though beyond the scope of the work in this paper, they
establish interesting future directions.

Main contributions.

e We formally define a coverage criterion for generating testing conditions
from software requirements. It is based on “MC/DC plus boundary analy-
sis”, extended with control flow coverage.

e We design an automated procedure for the test generation from pre- and
post-conditions using a Model Checker.

e We implemented the procedure in Model Checking tool CBMC [§] and
integrated it with RapiTestFramework (published by Rapita Systems).
The resultant toolchain specializes in automatic testing under DO-178C
and was applied in real-world case studies using source code for an avionics
system provided by Rolls-Royce. We report here outcome from the case
study work and experience learned from this project.

Structure of the paper In Section [2| we introduce the application context
for our automatic test case generation approach. Section [3] gives the formal
definition for functional requirements, in form of pre- and post-conditions. In



Section[d] a coverage criterion is formulated for coverage analysis of requirements.
Testing conditions generated according to the proposed criterion, which are
then utilized by the automated testing framework developed in Section [5] to
generated test cases. The method introduced so far has been implemented and
integrated in a toolchain that is examined by two industrial case studies, and
this is reported in Section [6] Finally, we conclude the paper and discuss future
exploitations in Section [7}

2 The Problem Formulation

The work in this paper targets the scenario depicted in Figure [l with our
focus on using automated low-level requirements (LLRs) testing to minimize
human effort. Within such a scheme, after high-level requirements (HLRs) are
(mostly) manually interpreted as low-level requirements (LLRs), the function
implementation (Impl) and the requirements testing are two independent proce-
dures. The function implementation can be either manually written by software
programmers or automatically generated by source code generation tools as in
many model-based development platforms. In the end, test cases generated
from LLRs must be validated against the function implementation (e.g., by
code coverage level measurement), which are supplied as evidence for fulfilling
DO-178C guidance.

Figure [1] depicts a suitable scheme for developing avionics software under
DO-178C. The work in this paper specializes in the LLRs testing, which is
nowadays performed manually by experienced engineers. We aim to automating
this procedure, that is, automatically creating test cases for LLRs.

HLRs
[human
LLRs
human=- autoW W /automation
Testing Impl
\ ,,,,, /
| |
! Validation ' automation
| t ,
Evidence

Figure 1: The targeted software development scheme



Given the authors’ experience in the field, the cost of developing tests against
low-level requirements (as required by the objectives in DO-178C) equates to,
on average, two days per procedure/function. This takes account of initial test
development, test debugging and review. For a project with 250,000 lines of code
and assuming an average size of 25 lines per procedure/function, this equates to
50 person-years of effort! Given this level of effort and expense, coupled with
the generally held view that low-level testing is of relatively low value, there
is a strong commercial incentive to consider ways of automating this aspect of
development. The DO-333 Formal Methods Supplement [9] to RTCA DO-178C
provides an approach to automating low-level verification through the use of
proof, but few businesses are considering this option because of the perceived
cost of using formal methods. This is because verification results from a formal
methods tool (e.g., a Model Checker) can be used under DO-178C and DO-333
guidance, only if that tool has been certified or the verification process has been
instrumented to generate the evidence. Either way is challenging.

The research described in this paper has used formal methods in another
way: instead of mathematically proving the software, we use proof to generate
tests that cover low-level verification objectives (listed earlier) through execution.
We expect (at least) the following advantages of this approach.

e Fasy adoption The automated tests represent a like-to-like replacement
for existing (manual) test-writing procedures. Generated tests can be
reviewed in the same way as those written by a skilled engineer without a
background in formal methods.

e (Consistency The usage of qualified tools that make use of formal methods
improves consistency and completeness of testing by removing human
variability.

e Improved development lifecycle An automated process encourages develop-
ers to specify requirements at the beginning of the development lifecycle
and to adopt test-driven practices.

e Reduced cost As previously stated, a large percentage of the cost of safety-
critical development is in low-level testing. Significant cost savings will be
achieved by reducing or eliminating manual testing effort.

e Painless maintenance If the code under test is changed, a revised set of
tests can be generated without additional effort.

o Ezxtensibility When required, manual tests can be added alongside to
complement generated tests in an identical format.

3 The Requirement Specification

The software requirements must be formally specified in order to perform the
automatic test generation. Works on specification languages include [10] for C,



[11] for the .NET, and SPARK Ada [12]. Hierons et al. [5] provide a survey on
formal specification techniques for testing.

Instead of digging into the details of some specific programming language
syntax, also for both the convenience and generality, we assume that every
requirement is specified as a Boolean expression bool_expr, defined following
the mini syntax in Listing .

T
bool_expr ©f true | false | bool_var | —bool_expr
| bool_expr A bool_expr
| bool_expr V bool_expr
| nbe {<,<,=,>,>,#} nbe
| ITE(bool_expr, bool_expr, bool_expr)
non_bool_expr et int_expr | float_expr
| string_expr | char_expr | enum_expr
| ITE(bool_expr, nbe, nbe)

Listing 1: The mini syntax of a requirement

Most parts of the syntax are straightforward. The ITE is an if-then-else
style operator like the ternary operator (? :) in C language, and nbe is short
for non_bool_expr. This mini syntax does not aim to be comprehensive. For
example, function/procedure definitions are not specified here. However, an
argument to the function call in the form of the Boolean expression is treated as
a bool_expr and a function return is regarded as a variable/expression of the
corresponding type.

In addition, a Boolean predicate is defined as a Boolean expression of the
form nbe ~ nbe with ~€ {<,<,=,>,>,#}. A Boolean predicate nbe ~ nbe is
also called an ordered predicate if ~€ {<,=,>}. A compound Boolean expression
is with multiple conjunctions or disjunctions of its Boolean sub-expressions.

4 The Coverage Criterion

We assume that the requirements are given as boo_expr as specified in Listing [I]
We now develop a coverage criterion in order to automatically apply a formalized
procedure to each expression which generates a set of testing conditions that
meaningfully interpret this requirement. The coverage criterion in our work
extends MC/DC with boundary value analysis (for compound expression analysis)
to take control flow structures in the requirement specification into account.

4.1 The compound expression

Our treatment of compound expressions is similar to [I3], which uses MC/DC
together with boundary value analysis. However, we provide a formal definition
of the rules for generating the testing conditions.



In code coverage analysis, the MC/DC criterion is often regarded as a
good practice to generate testing conditions to examine a compound expression.
According to MC/DC, the Boolean expression being tested is called the decision,
which is going to be evaluated to true or false, and a condition of the decision is a
Boolean predicate that cannot be broken down into simpler Boolean expressions.
The MC/DC criterion requires that each condition needs to be evaluated one
time to true and one time to false, and this flip of condition value affects the
decision’s output. For example, let us consider a requirement specified as in
following compound expression.

M >0AN <1000 (1)

Applying the MC/DC rules, we obtain the testing conditions ® = {M > 0AN <
1000, =(M > 0) A N <1000, M > 0 A —~(N < 1000)}. More details on how to
implement MC/DC can be found in [I4].

However, MC/DC is not immediately applicable for to software specifications,
as it does not support equivalence class partitioning or boundary value analysis.
Nevertheless, we believe MC/DC generates a meaningful set of testing conditions,
which can be used as the starting point for adequately covering a requirement.
Thus, subsequently to plain MC/DC, we perform two additional steps to obtain
a larger set of testing conditions.

The motivation behind this is that an ordered predicate typically represents
one equivalence class for the variables involved. As an example, given a non-
ordered predicate M > 0, by convention there are two equivalence classes: M > 0
and M = 0. In the following, we are going to introduce two operations that
eliminate non-ordered predicates in any Boolean expression, by converting it
into a set of Boolean expressions that do not contain non-ordered predicates.

Negation-free expressions A Boolean expression is said to be negation free
for its predicates if there is no negation applied to any Boolean predicate within
it. As an example, the two colored testing conditions in the set ® above are not
negation free.

Suppose that e is a negated predicate of the form e = —(nbe; ~ nbes). We
define a neg- free operator, as in Equation , to convert a negation expression
to its equivalent set of non-negation expressions. By recursively applying it to
any appearance of the negated predicate within an expression, the neg-free
operator can be naturally extended to apply to any Boolean expression.

{nbe; = nbey,nbe; > nbea} if ~ is <
{nbe; > nbes} if ~ is <
{nbe; < nbeg,nbe; > nbea} if ~ is =

neg-free(e) = {nbe; < nbey} if ~ is

v

{nbe; = nbey, nbe; < nbeg} if ~ is

oV

{nbe; = nbey} if ~ is



For the aforementioned example in , if we apply the negation free operator
to its MC/DC results, the resulting testing conditions are ® = {M > 0A N <
1000, M < 0 AN <1000, M > 0A N > 1000}. The colored predicates are due
to neg-free.

Non-ordered predicate expansion Given a non-ordered Boolean predicate
e = nbe; ~ nbey with ~€ {< > #}, the to-ordered operator is defined to
expand it into the equivalent ordered predicates.

{nbe; < nbegy,nbe; = nbea} if ~ is <
to-ordered(e) = { {nbe; > nbeg, nbe; = nbes} if ~ is >

{nbey < nbey,nbe; > nbes} if ~ is #

(3)

Accordingly, for any testing condition generated after the MC/DC starting
point, by conducting the neg-free and to-ordered operations, we obtain an
elaborated set of testing conditions that respect equivalence class partitioning.
As a result, for the example in , the final set of testing conditions will
be ® = {M =0AN = 1000, M = 0A N < 1000, M > 0 A N = 1000,
M >0AN <1000, M <OAN =1000, M <O0AN <1000, M > 0AN > 1000,
M =0A N >1000}. Clearly, the final results in ® combine these equivalence
classes for M and N based on their boundaries: in this case, M = 0 and
N = 1000.

It is common to use a tolerance level o for boundary value analysis. The
value of this tolerance level is based on the precision of the number representation
and requirements for the accuracy of calculation. This combines well with our
coverage criterion. In order to integrate this tolerance level, we extend the
neg-free in and to-ordered in such that every time a testing condition
with a predicate of the form nbe; < nbes (resp. nbe; > nbes) is obtained,
an extra testing condition with this predicate replaced by nbe; = nbes — o
(resp. nbe; = nbes + o) is added to the set.

4.2 The ITE expression

So far, the proposed coverage criterion extends the MC/DC rules with the
boundary value analysis, but it has no consideration of the possible control
flow structure within a requirement, which is tackled in this part. The focus is
on the (nested) if-then-else style structures encoded in the requirement. Each
if-then-else (ITE) expression is represented as the tuple ITE(ey, es, e3), where
e1, e2 and ez are all Boolean expressions such that es will be reached only if
ey is true, otherwise ez is chosen. Note that if e; and ez are not Boolean, the
coverage analysis would stop at e;. An example of the ITE expression is

ITE(M + N < 10, Res = M + N, Res = 10) . (4)

Given any Boolean expression e, we use ®(e) to denote its set of testing
conditions after neg-free and to-ordered operations, following the MC/DC



phase. Besides, ®(e,+) contains all these testing conditions representing that
the decision of e is true and ®(e,—) is for e to be false such that ®(e) =
O(e,+) UD(e, —).

Regarding any if-then-else expression e = ITE(eq, e, €3), the coverage anal-
ysis of eg (resp. e3) will be only relevant if ey is true (resp. false). Therefore, we
define the resultant testing conditions from an ITE expression e as follows.

D(e) ={e'|Fx € P(e1,+) Ty € P(ez) s.t. € =z Ay} 5)

U{e'|3z € ®(er,—) Ty € D(es) s.t. € =x Ay}

If we apply the definition in to the ITE expression in , the final set of
testing conditions generated becomes

®={M+N<10ANRes=M+ N, M+ N <10A
Res> M+ N, M+ N <10A Res< M + N,
M+N=10ANRes=M+ N, M-+ N =10A (6)
Res > M+ N, M+ N =10ARes <M + N,
M+ N > 10N Res =10, M + N > 10 A Res
> 10, M+ N >10A Res < 10}.

It can be easily seen that if is some requirement that must be guaranteed in
the program, these colored testing conditions shall never be met.

5 The Automated Testing Procedure

In this section, we give the procedure for automated test generation from a
function’s requirements, which are specified as pre-conditions (Pre) and post-
conditions (Post). This is a generic framework to apply Bounded Model Checking
(BMC) for automatically creating test cases from a function’s requirements, and
it relies on several routine methods (e.g., non-deterministic assignment) that
are commonly available in modern Model Checkers. In our particular case, we
implement this automated testing inside CBMC [§].

Suppose that these requirements are for a function/procedure F, which has
a set of input parameters Z and a set of output parameters O. The function F
may also require some global input variables in Z9 and after the function call it
can change the values of some global output variables in OY.

In order to test the requirements of the target function F, we require a calling
context F¢ for it. The calling context can be automatically generated, e.g., by a
Python script. A concrete example is available in the appendix.

The calling context function F¢ is structured as in Listing REQUIRE
is supposed to be the method that is supplied by a Model Checker. It takes
a Boolean expression as the input argument and guarantees this expression is
true/valid for the rest part of the program. It can also take string information
as the second input argument, which is necessary for the traceability of tests,
however, for simplicity this is not explicitly specified here.



void F¢(void)
{
/** input type check */
VY var € ZUZIY
var := IN_TYPE(var_type_expr);

/**x preconditions */
V expr € Pre
REQUIRE (expr)

/** over-approximation call of F x*/

/** output type check */
V var € OU 09
var := IN_TYPE(var_type_expr);

/** postconditions x*/
V expr € Post
REQUIRE (expr)

Listing 2: The calling context function

Initially, all inputs of the function F are non-deterministically assigned a
value within the valid range of its type, by the IN.TYPE method, which contains
two steps:

1. to generate a non-deterministic value for var;

2. to guarantee the value at step (1) is valid subject to var_type_expr and
this is achieved by calling the REQUIRE method.

For any variable var, the var_type_expr is a Boolean expression depends on
the type of var. For example,

e if var is a float variable, then var_type_expr is in form of min_float <
var < maz_float;

e if var is of an enum type, then var_type_expr is in form of var = enum; V
var = enums V ..., and it enumerates all possible values of var.

As a matter of fact, these input checks cope with the implicit requirements of
software. That is, every input/output variable in the program inherently is
constrained by its type.

Subsequently, for every requirement in the pre-conditions (Pre), a call to the
REQUIRE method guarantees that it must be true for the following part of the
program context. Because we aim to independently examine the requirements
specified as pre-/post-conditions, the function body of F is simply ignored,




whereas a proper over-approximation is also allowed depending on the application
scenario. In consequence, outputs from F are over-approximately assigned values
according to their types. To keep the consistency, requirements from the post-
conditions must be required to be true too, which indicates that our method
does not target these conditions out of the range of the requirements.

In order to conduct the automated testing procedure, coverage criterion in
Section [ is supposed to have been already implemented in a Model Checker
that is CBMC in this work. There are a number of works that implement or
integrate different kinds of coverage analyses with Bounded Model Checking.
Examples are like [15], [16] and [I7]. We have adopted a similar approach that
embeds trap properties (i.e., negation of testing conditions) into the program
model of these requirements.

The Model Checker simply goes through the calling context function F¢ as
listed and generates the set of testing conditions ® (e.g., Equation @) for every
expr and var_type_expr, according to the coverage criterion defined.

For each testing condition (let us say) ¢ € @, a trap property (that violates
this testing condition) is encoded as —¢ and instrumented into the F¢ context,
after which the Model Checker checks if these trap properties are satisfied.

e In case a (trap) property is not satisfied, then an execution trace of the
program model (of F¢) leading to the reachability of the violation of the
property (i.e., the original testing condition) is returned and a test vector
is outputted.

e Otherwise, it means that the corresponding testing condition will never be
met.

In conclusion, a test vector in the results represents an admissible behaviour
with respect to the function requirements, and it is expected that given the
inputs as in a test vector, the execution of the function implementation shall
trigger the corresponding testing conditions for examining the requirements, but
it is not necessarily true that the exact values of outputs must be always the
same, depending on the implementation choices.

6 The Case Study

The functional requirements-based test-generation method introduced in this
paper has been implemented in the Model Checking tool CBMC, and is integrated
into the toolchain developed in the AUTOSAC (Automated Testing of SPARK
Ada Contracts) project.

The AUTOSAC toolchain is encapsulated within RapiTestFramework, the
unit- and system-level testing solution provided by Rapita Systems. It serves
as the graphical environment presented to the user as well as the solution
for compiling, executing, and reviewing the generated tests. This toolchain’s
performance and ability to replace manual testing effort is confirmed through
the process of generating and executing tests for selected code made available
by Rolls-Royce.



6.1 Test compilation, execution and review

As depicted in Figure [[, DO-178C certification requests evidence from both
requirements coverage analysis and structural coverage analysis. This means,
beyond automatically generating tests from requirements, a successful testing
toolchain also needs to provide the following:

e executes the procedure or function under test with the test vector inputs;

e collects coverage data for execution of the subprogram, including statement,
branch, and/or MC/DC coverage information;

e verifies that the Post-condition(s) for the subprogram have not been vio-
lated when the subprogram exits.

In addition, the data resulting from one or more test runs must be analyzed,
collated, and presented to the tester in a format suitable for review. In this
context, review may include either checking the successful execution of the test(s)
or reviewing the percentage of code coverage acheived during execution.

RapiTestFramework provides an existing solution for unit test execution and
code coverage reporting, and has been extended in the following ways to acheive
to achieve these goals:

e a dialog is presented to the tester displaying available subprograms for
testing;

e a documented XML schema for test vector definitions has been exposed in
order to allow communication with external tools such as CBMC;

e the generated test harness includes exception-handling for the purpose of
reporting violated post-conditions.

The coverage reporting features of RapiTestFramework have been found to
be suitable for review of test execution, especially code coverage percentages
and source code highlighting and annotation.

6.2 Overview of toolchain workflow

The AUTOSAC case study required the integration of CBMC for test vector
generation and RapiTestFramework for subprogram selection, test compilation
and execution, and review of results.

This process is managed using a graphical environment to call the underlying
tools. A brief explanation of each stage in the testing workflow follows, beginning
with software requirements and concluding with test execution results.

The starting point for test generation is the low-level requirements of the
functions and procedures under test, formulated as SPARK pre- and post-
conditions. Because the generated tests are based on these requirements, they
have the same level of independence from software implementation as with a
manual test-writing process.



Firstly, these requirements are analyzed (by CBMC). Pre-/post-conditions
and ranges of input/output parameter types define the scope of possible test
vectors, and they are analyzed using strategies discussed in this paper for the
test generation. To the extent to which these algorithms are successful, the
collection of test vectors will be of similar quantity and quality to those that
might have been written by a test engineer. The resulting test vectors are stored
in a documented XML format.

Some configurable options were explored during the course of the case study
which affect the resultant generated vectors, including limiting the unwinding
of loops in the analysis of SPARK contracts, and the exploration of different
combination levels of in-typed parameters for the coverage analysis, as in Figure

Test Generation Arguments + X

Test generation arguments:

Consider parameter combinations: Maximum loop unwinding
Ol : (0 for unlimited):

. s 3
() Weak-in-type B
() Default

oK Cancel

Figure 2: Toolchain configuration options

The next stage of the process converts these test vectors into executable
test scripts (as in Figure [3]). The scripts are presented to the user in their test
project and are the principle artifact of the generation process. These tests may
be altered by hand in the future, or simply used for test review; to facilitate this,
the interface provides a text editor with syntax highlighting and error checking.
Note that the testing condition is specified as part of the description, which
provides the traceability back to requirements.

Finally, the GUI interface enables the user to compile and run a test executable
including some or all of the generated tests. Upon completion of the test execution
a report is created, which contains both test and code coverage results for analysis
and review. Users can view coverage metrics at the function, statement, or
MC/DC level, providing immediate feedback on both the effectiveness of test
generation as well as the coverage of the source code achieved from requirements,
as in Figure[d The coverage reporting features of RapiTestFramework, especially



38 f=—-

4 Scope for the tests

5 |-—=/

6~ scope global.airspeed.read_airspeed (

7 in param.in_data as glebal.data_types.in_data_type

8 ) s

10% fie—

11 Test case for name : "Test 1"

12 ——f

13& test name : "Test 1",

14 description : "\"In_Data Is In Type\": In_Data == 15 ;%\"(Output) internal_package__ status
15

16 -- Run of the unit: read_airspeed
i7e run — Invoke the run of the uut
18= is

19 param.in_data := 15;

20

21 end run;

22

23 end test;

24

258 fie—

26 Test case for name : "Test 2"

27 ——f

28e test name : "Test 2",

29 description : "\"In_Data Is In Type\": In_Data == 24 ;\"(Output) internal_package__ status
30

31 -- Run of the unit: read_airspeed
326 run — Invoke the run of the uut
335 is

34 param.in_data := 24;

35

36 end run;

37

38 end test;

Figure 3: The test script

code coverage percentages and source code highlighting and annotation, have
been found to be suitable for review of test execution.
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.cycle  MCDC410 Jinstruments/ir/ir.adb:241 x F J J o 1 0% 2 -

Overview | Static | Coverage | Functions [ Calls | Statements | Decisions | MC/DC [ Justifications |

Figure 4: The code coverage analysis

In addition to the material presented here, a video demonstration of the
toolchain (using open-source code under test) is available onlineﬂ

Ihttps://youtu.be/72NWFZQOvIM



6.3 Case study results

The software architecture behind the case studies is composed of two layers. The
first one is an application layer (AL) and the second one, is an operating layer
(OL). In order to use the toolchain in a real environment, two case studies have
been picked, one per each layer in order to observe how the tool works with
different abstract levels. Concretely, a health monitoring component for the AL
case study and a temperature sensor component for the OL case study, both
written in Ada, have been chosen.

After both components have been isolated from non-related code, to make the
toolchain work, the legacy code has to be modified to represent the requirements
with the component/functions by the use of SPARK Ada contracts, specifically,
the use of SPARK pre- and post- conditions.

Ghost functions from SPARK2014 have not been used, as they are not
currently supported by the toolchain. This has not been a problem for proceeding
with the examples, though this would be a great advantage for the future.

By applying the AUTOSAC toolchain, tests are automatically generated from
the SPARK Ada contracts. We check these resultant tests, by measuring the
corresponding statement code coverage level on each subprogram: AFA(100%),
AST(100%), CTE1(100%), CTE2(100%), CTEC(100%), CVO(100%), FES
(100%), ISCD(100%), ISCF(100%), ISCC(100%), RT'C(68.75%).

Overall, the automatically generated tests show good coverage and represent
a good spectrum of the case scenarios to be tested. The gap on code coverage
level in some cases (e.g., RT'C from the OL) required further refinements on
the SPARK Ada contracts under test and investigations on the intermediate
language representation for SPARK Ada contracts in the toolchain.

Importantly, the verification role will retain its skillset, yet remove monotonous
test scripting, as a result of writing SPARK Ada contracts instead of specific test
harness. Besides writing such contracts, we believe minimal human observation
for the review of the automatically generated tests is required.

The case study undertaken during the AUTOSAC research project demon-
strated the successful implementation of automated testing in a real-world
environment, integrating and extending existing tools for achieving DO-178-level
certification. The toolchain has become one of the candidates for Rolls-Royce to
reduce costs for verification, which is of great interest. We anticipate that it will
undergo further development, including adding support for mixed-language test
projects.

6.4 Experience and lessons learned

The main obstacle we encountered during the toolchain development phase is the
intermediate representation of SPARK Ada. Regarding the automated testing
procedure proposed in this paper, its implementation is based on CBMC, which
does not have a direct front end for Ada. Thus, these requirements specified
as in SPARK Ada contracts are at first converted into C language form, from
which tests are then automatically generated. This choice is due to the limited



timescale of the AUTOSAC project and is also for the purpose of evaluating
the feasibility of such a requirements-based automated testing methodology.
However, certain features in Ada cannot be trivially represented in C and the
conversion procedure from Ada to C needs to be very carefully maintained.
Currently, there is a continuing collaboration between partners to develop a
formal Ada/SPARK front end for CBMC, thanks to the promising results shown
from AUTOSAC toolchain for the automated test generation from software
requirements.

Notwithstanding this limitation, the case study presented here illustrates
the success of the tools and approach developed during the AUTOSAC project.
In particular, the successful integration of CBMC and RapiTestFramework
demonstrated the powerful combination of test generation based on mathematical
proof combined with a robust platform for test execution and review. It is
expected the reduction in time and cost of low-level requirement validation
described in this paper will begin to be achieved as this technology is adopted
in large-scale commercial projects.

On the other hand, defining requirements in the SPARK language has shown
four advantages. Firstly, the different abstract levels allow us to generate low
level tests, but also high level tests. Secondly, SPARK contracts provide an
additional implicit verification between requirements and code design. Thirdly,
it allows legacy code to become closer to new formal methods, as the evolution
of SPARK language, so in future, the change would not be very radical. Finally,
the use of the AUTOSAC toolchain encourages software teams to adopt agile
development practices, as quick tests of the code can be done while maintaining
independence from implementation, something that is currently not possible
within the constraints of the DO-178 guidance.

Regarding this last point, such an agile approach allows the same person to
perform two roles on different modules. The first one is the verification role,
which would initially make the specification of some modules using SPARK Ada
contracts. The other one is the design role, which would design/implement a
different software module, independently from the SPARK Ada contracts written
by another person.

7 Conclusions

In this paper, we successfully demonstrated feasibility of automatic test case gen-
eration from functional requirements, targeting software testing in avionics. We
define a requirements-based coverage criterion and formulate an automated proce-
dure for functional requirements-based testing. We implemented our method and
integrated it within a testing environment. The developed toolchain is applied
to industrial case studies, and its applicability and usefulness are confirmed.
Regarding future exploitation, we are interested in investigating application
of the technique in this paper to test case chains generation for reactive systems
[18]. In particular, testing of model-based development processes (e.g., testing
Simulink systems [19, 20} 21]) is of great relevance to the context of avionics



software certification.
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Appendix

This is an illustrative example for the calling context function presented in
Section [p| Given a target function F named as constrained_add, there are two
input arguments M and IV, and one output Res. The function’s requirements
are specified as

{M>0ANM<10, N>0AN <10, Res>0A Res <
10, ITE(M + N <10,Res =M + N, Res = 10)}

Using the AUTOSAC toolchain, the calling context function F€ is generated
as in the code List [3] The two steps of IN.TYPE method in Section [5] correspond
to the assignment of nondet__my_range and the call to __AUTOSAC_in_type.

As mentioned in Section [5] annotations can be also added as strings. For ex-
ample, "postcondition at basic_tests.ads:52:20” tells that this is a post-condition
that can be traced back to line 52 at the source file basic_tests.ads.

void ___calling_context__constrained_add () {
/* in-parameters */
my_range M;
M = nondet__my_range ();
__AUTOSAC_in_type ((M >= 0) && (M <= 10), "M, is,in_type");
my_range N;
N = nondet__my_range ();
__AUTOSAC_in_type ((N >= 0) && (N <= 10), "Nyisgingtype");
my_range res;

/* subprogram in-globals */

/* subprogram preconditions */

/* overapproximate call: out-parameters and out-globals */

res = nondet__my_range ();

__AUTOSAC_in_type ((Res >= 0) && (Res <= 10),
"Resyisyingtype");

/* explicit postcondition */

__AUTOSAC_postcondition(((m + n) > 10) ? (res == 10)
(res == (m + n)),
"postconditionuatubasic_tests.ads:52:20”);

Listing 3: The calling context function for constrained_add

A calling context function in such a form can be now directly recognized and
run through by CBMC. A set of testing conditions for each requirement of the
constrained_add method will be generated according to the criterion in Section
As an example, for the post-condition ITE(M + N < 10, Res = M + N, Res =
10), the set of testing conditions is as in @ Afterwards, these conditions are
negated and instrumented by CBMC to automatically generate test cases. The
whole procedure of test generation is independent from the implementation of
constrained_add function.
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