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Abstract—Formal analysis of functional and non-functional
requirements is crucial in automotive systems. The behaviors
of those systems often rely on complex dynamics as well as on
stochastic behaviors. We have proposed a probabilistic extension
of Clock Constraint Specification Language, called PrCCSL, for
specification of (non)-functional requirements and proved the
correctness of requirements by mapping the semantics of the
specifications into UPPAAL models. Previous work is extended
in this paper by including an extension of PrCCSL, called
PrCCSL∗, for specification of stochastic and dynamic system
behaviors, as well as complex requirements related to multiple
events. To formally analyze the system behaviors/requirements
specified in PrCCSL∗, the PrCCSL∗ specifications are translated
into stochastic UPPAAL models for formal verification. We
implement an automatic translation tool, namely ProTL, which
can also perform formal analysis on PrCCSL∗ specifications
using UPPAAL-SMC as an analysis backend. Our approach is
demonstrated on two automotive systems case studies.

Index Terms—Automotive Systems, PrCCSL∗, UPPAAL-SMC,
ProTL

I. INTRODUCTION

Model-based development (MBD) is rigorously applied in
automotive systems in which the software controllers contin-
uously interact with physical environments. The behaviors of
automotive systems often involve complex hybrid dynamics
as well as stochastic characteristics. Formal verification and
validation (V&V) technologies are indispensable and highly
recommended for development of safe and reliable automo-
tive systems [1], [2]. Statistical model checking (SMC) tech-
niques have been proposed [3]–[5] to address the reliability
of hybrid systems associated with the stochastic and non-
linear dynamical features. These techniques for fully stochastic
models validate probabilistic properties of controllers in given
environments under uncertainty.

EAST-ADL [6], [7] is a concrete example of MBD approach
for architectural modeling of automotive systems. The latest
release of EAST-ADL has adopted the time model proposed in
the Timing Augmented Description Language (TADL2) [8],
which expresses and composes the basic timing constraints,
i.e., repetition rates, end-to-end delays, and synchronization
constraints. TADL2 specializes the time model of MARTE,
the UML profile for Modeling and Analysis of Real-Time
and Embedded systems [9]. MARTE provides CCSL [10],
[11], which is the clock constraint specification language for
specification of temporal constraints and functional causality

properties [12]. In CCSL, time can be either chronometric
(i.e., associated with physical time) or logical (i.e., related
to events occurrences), which are represented by dense clocks
and logical clocks, respectively. Dense clocks can be multi-
form and attached with various rates, allowing to express the
evolution of time-related quantities with different units, e.g.,
temperature degree and crankshaft angle [13]. The discrete
and dense clocks in CCSL enable the specifications of hybrid
system behaviors that incorporate both discrete phenomena
and continuous dynamics [14].

We have previously proposed a probabilistic extension of
CCSL, i.e., PrCCSL [15], [16], to formally specify (non)-
functional properties in weakly-hard (WH) context [17], i.e.,
a bounded number of constraints violations would not lead
to system failures when the results of the violations are
negligible. However, PrCCSL still lacks expressivity for de-
scribing critical system behaviors regarding to: 1) Continuous
dynamic behaviors of physical plant, which are typically
modeled by ordinary differential equations (ODE) containing
functions and derivatives; 2) Discontinuous activities triggered
by discrete events. For example, the velocity of an automo-
tive system undertakes instantaneous changes when collisions
occur; 3) Stochastic time spans of continuous activities (e.g.,
execution time of a component, response time for a spon-
taneous failure); 4) Nondeterministic behaviors regarding to
exclusive activities. For instance, during the execution of an
automotive system, multiple sensors can forward messages to
the controller simultaneously and the order for the controller
to receive the messages is nondeterministic.

Supporting formal specifications of dynamic and stochas-
tic behaviors is crucial for effective analysis of automotive
systems. In this paper, we propose an extension of PrCCSL,
called PrCCSL∗, to enable the specification of the aforemen-
tioned system behaviors. To allow the analysis of system
behaviors specified in PrCCSL∗, the PrCCSL∗ specifications
are translated into UPPAAL-SMC models for formal verifi-
cation. Furthermore, in PrCCSL, requirements are specified
as binary clock constraints that describe temporal and causal
relations between two events. To support the analysis of
complex requirements associated with multiple events, we
extend the binary clock constraints into n-ary constraints and
provide the corresponding translation patterns in UPPAAL-
SMC. The automatic translation from PrCCSL∗ specifications
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(of system behaviors/requirements) to UPPAAL-SMC models
is implemented in a tool called ProTL (Probabilistic CCSL
Translator). Formal analysis of the PrCCSL∗ specifications can
be performed by ProTL using UPPAAL-SMC as an analysis
backend. Our approach is demonstrated on two automotive
systems case studies.

The paper is organized as follows: Sec. II presents an
overview of PrCCSL and UPPAAL-SMC. The definition of
PrCCSL∗ is presented in Sec. III. Sec. IV describes the
mapping rules from PrCCSL∗ specifications into stochastic
UPPAAL models. The applicability of our approach is demon-
strated by performing verification on two automotive systems
in Sec. V. Sec. VI and Sec. VII present related works and
conclusion.

II. PRELIMINARY

In this section, we first introduce the notations and formal-
ism in PrCCSL that are employed in the rest of the paper. Then,
we give an overview of UPPAAL-SMC, which is utilized as
the analysis backend of ProTL.
PrCCSL [15] is a probabilistic extension of CCSL (Clock
Constraint Specification Language) [10], which specifies tem-
poral and causal constraints with stochastic characteristics in
weakly-hard context [17]. In PrCCSL, a clock is a basic ele-
ment that represents a sequence of (possibly infinite) instants.
A clock in PrCCSL can be either dense or discrete/logical.
A dense clock represents physical time, which is considered
as a continuous and unbounded progression of time instants.
The physical time is represented by a dense clock with a base
unit. idealClk is a predefined dense clock in CCSL, which
represents the ideal physical time whose unit is second. A
dense clock can be discretized into a discrete/logical clock.
For example, a clock ms can be defined based on idealClock:
ms = idealClock discretizedBy 0.001, i.e., ms ticks
every 1 millisecond. A logical clock represents an event
and the clock instants correspond to the event occurrences.
A clock represents an instance of ClockType character-
ized by a set of attributes. The keyword DenseClockType

(DiscreteClockType) defines new dense (discrete) clock
types.

PrCCSL provides two types of clock constraints to describe
the occurrences of different events (logical clocks), i.e., clock
expressions and clock relations. Expressions derive new clocks
from the already defined clocks. Table I presents a set of clock

expressions, where c1, c2, ref, res, base are clocks and “,”
means “is defined as”. We only list a subset of clock expres-
sions here due to page limit and the full set of expressions can
be found in [10].

A clock relation limits the occurrences among different
clocks/events, which are defined based on run and history.
A run corresponds to an execution of the system model
where the clocks tick/progress. The history of a clock c
represents the number of times c has ticked currently. A
probabilistic relation in PrCCSL is satisfied if and only if
the probability of the relation constraint being satisfied is
greater than or equal to the probability threshold p ∈ [0, 1].
Given k runs = {R1, . . . , Rk}, the probabilistic relations
in PrCCSL, including subclock, coincidence, exclusion,
precedence and causality are defined in Table II.

UPPAAL-SMC [18] performs the probabilistic analysis of
properties by monitoring simulations of complex hybrid sys-
tems in a given stochastic environment and using results from
the statistics to determine whether the system satisfies the
property with some degree of confidence. Its clocks evolve
with various rates, which are specified with ordinary differ-
ential equations (ODE). UPPAAL-SMC provides a number
of queries related to the stochastic interpretation of Timed
Automata (STA) [5] and they are as follows, where N and
bound indicate the number of simulations to be performed and
the time bound on the simulations respectively: 1) Probability
Estimation estimates the probability of a requirement property
φ being satisfied for a given STA model within the time
bound: Pr[bound] φ. 2) Hypothesis Testing checks if the
probability of φ being satisfied is larger than or equal to a
certain probability P0: Pr[bound] φ > P0. 3) Probabil-
ity Comparison compares the probabilities of two properties
being satisfied in certain time bounds: Pr[bound1] φ1 >
Pr[bound2] φ2. 4) Expected Value evaluates the minimal or
maximal value of a clock or an integer value while UPPAAL-
SMC checks the STA model: E[bound;N ](min : φ) or
E[bound;N ](max : φ). 5) Simulations: UPPAAL-SMC runs
N simulations on the STA model and monitors k (state-based)
properties/expressions φ1, ..., φk along the simulations within
simulation bound bound: simulate N [6 bound]{φ1, ..., φk}.

III. EXTENSION OF PRCCSL

To improve the expressiveness of PrCCSL for specify-
ing dynamic and stochastic system behaviors (i.e., the four

TABLE I: Clock Expressions

Expression Notation Remarks

ITE
(if-then-else) res , b ? c1 : c2 res behaves either as c1 or as c2 based on the value of the boolean variable b.

DelayFor res , ref (d)  base ∀i ∈ N+, the ith tick of res corresponds to the ith tick of ref delayed for d ticks (or units) of base.

FilterBy res , base H u(v)
res is generated by filtering the instants of base based on a binary word w=u(v), where u is prefix and v is
period. “(v)” denotes the infinite repetition of v. ∀i ∈ N+, if the ith bit of w is 1, res ticks at the ith tick
of base.

PeriodicOn res , base ∝ n Any two consecutive instants of res are separated by n instants of base.
Infimum res , c1 ∧ c2 res is the slowest clock faster than c1 and c2.
Supremum res , c1 ∨ c2 res is the fastest clock slower than c1 and c2.



TABLE II: Relations in PrCCSL

Relation Notation Remarks

Probabilistic
Subclock c1⊆pc2

c1⊆pc2⇐⇒ Pr[c1⊆c2] > p, where Pr[c1⊆c2] = 1
k

k∑
j=1
{Rj |= c1⊆c2} is the ratio of runs that satisfies the relation

out of k runs. A run Rj satisfies the subclock relation c1⊆c2 if “when c1 ticks, c2 must tick” always holds in Rj .

Probabilistic
Coincidence c1≡pc2

c1≡pc2⇐⇒ Pr[c1≡c2] > p, where Pr[c1≡c2] = 1
k

k∑
j=1
{Rj |= c1≡c2} is the ratio of runs that satisfies the coinci-

dence relation out of k runs. The satisfaction of coincidence relation c1≡c2 is established in Rj when the two
conditions “if c1 ticks, c2 must tick” and “if c2 ticks, c1 must tick” always hold.

Probabilistic
Exclusion c1#pc2

c1#pc2⇐⇒ Pr[c1#c2] > p, where Pr[c1#c2] = 1
k

k∑
j=1
{Rj |= c1#c2}, indicating the ratio of runs that satisfies the

exclusion relation out of k runs. A run Rj satisfies the exclusion relation c1#c2 if the condition “c1 and c2 must
not tick at the same time” holds.

Probabilistic
Precedence c1≺pc2

c1≺pc2⇐⇒ Pr[c1≺c2] > p, where Pr[c1≺c2] = 1
k

k∑
j=1
{Rj |= c1≺c2}, which denotes the ratio of runs that satisfies

the precedence relation out of k runs. A run satisfies the precedence relation c1≺c2 if the history of c1 is not less
than the history of c2, and c2 must not tick when their histories are equal.

Probabilistic
Causality c1�pc2

c1�pc2⇐⇒ Pr[c1�c2] > p, where Pr[c1�c2] = 1
k

k∑
j=1
{Rj |= c1�c2}, i.e., the ratio of runs satisfying the causa-

lity relation among the total number of k runs. A run Rj satisfies the causality relation c1�c2 if the history of c2
is always less than or equal to the history of c1.

types of behaviors mentioned in Sec. I), we present an
extension of PrCCSL, called PrCCSL∗, which is augmented
with notations of interval-based DelayFor, Clock Action,
Probabilistic Clock Action and DenseClockType.
Furthermore, to allow specification of complex requirements
involving multiple events, the binary clock relations in PrCCSL
are extended into n-ary clock relations.

In automotive systems, time delays between events/activi-
ties (e.g., message transmissions, execution of computational
components) can be stochastic and fluctuate randomly in
the environments under uncertainty. Those stochastic time
delays can be described as random variables that uniformly
distributed between the values of the best-case time and the
worst-case time. To express the stochastic time delay between
events, we define an interval-based DelayFor expression.

Definition 3.1 (Interval-based DelayFor): Let C be a set of
clocks. res, ref , base ∈ C, lower, upper ∈ N+ and upper
≥ lower, the interval-based DelayFor generates a new clock
res by delaying ref for random number of units (instants) of
base clock, which is expressed as:

res , ref ([lower, upper])  base

where lower, upper are two positive integers that represent
the minimum and maximum time delay. The expression is
interpreted as: res , ref(x)  base ∧ x ∈ [lower,
upper], i.e., res is a clock generated by delaying ref for x
units of base and x is given by (continuous/discrete) uniform
probability distribution over [lower, upper].

The standard DelayFor operator (see Table I) can be seen
as a special interval-based DelayFor when lower = upper.
Since the base clock of the DelayFor operator can be either
dense or discrete, the delay should conform to continuous or
discrete probability distribution according to the clock type of
base.

Automotive systems are event-driven systems that react to
external/internal events, e.g., triggering of sensors/actuators
or arrivals of input signals. Event occurrences can lead to
execution of related actions, i.e., functions/operations on vari-
ables. The “event-action” relation can be specified by Clock

Action.
Definition 3.2 (Clock Action): Let V be a set of variables

and C be a set of logical clocks. Assign denotes a sequence
of assignments to V and Func represents a set of mathe-
matical functions on V . Clock action is a function A: C
7→ Assign ∪ Func. Let c ∈ C, A(c) represents the set of
assignments and functions that are invoked to execute when c
ticks. The clock action of c is defined as:

c → {λ1, λ2, ..., λn}

where n ∈ N+ is the number of assignments/functions related
to c, λi ∈ Assign ∪ Func (i ∈ {1, 2, ..., n}) denotes an
assignment or a function that is executed when an occurrence
of c is detected.

In other words, the clock action relates a logical clock
c with a set of operations that are performed to change the
system behaviors. Note that the assignment of each variable
in V must appear at most once in the clock action, i.e.,
two or more assignments to the same variable are not allowed.

An event can be associated with multiple actions under
uncertainty, i.e., it is uncertain which action out of a set of
actions the system will take when the event occurs. In this
case, the actions related to the same event can be assigned
with probabilities and interpreted as probabilistic alternatives.
We enrich clock actions with probabilities and define
probabilistic clock action.

Definition 3.3 (Probabilistic Clock Action): Let C be a set
of logical clocks and P be a set of real numbers in [0, 1].
The probabilistic clock action is a function Ap: C ×
Assign ∪ Func 7→ P . Let c ∈ C and Λi ⊆ Assign ∪ Func



(i ∈ {1, 2, ..., n}), Ap(c,Λi) represents the probability of Λi

being executed when c ticks. The probabilistic clock action is
represented as:

c →p {(p1,Λ1), (p2,Λ2), ..., (pn,Λn)}

where n ∈ N+ is the number of sets of actions related to c,
Λi is a set of assignments/functions, and pi ∈ P represents
the probability of actions in Λi being executed when c occurs,

i.e., pi = Pr(A(c) = Λi) and
n∑

i=1

pi = 1.

We express the probability distribution of the set of actions
related to event c by a list of tuples in the form of “(pi, Λi)”.
For instance, c →p {(0.2, {v = 0}), (0.3, {v = 1}), (0.5,
{v = 2})} means that when c ticks, v is assigned the value 0,
1, 2 with probability 0.2, 0.3 and 0.5, respectively.

In automotive systems, variations of physical quantities
(e.g., energy consumption, temperature) usually involve con-
tinuous dynamics described by ODE, as well as discrete
changes activated by physical phenomena. For example, bat-
tery consumption of an automotive system increases continu-
ously with a certain rate when the vehicle runs under certain
modes (e.g., braking or turning) while undergoes discrete
increments when the physical phenomena (e.g., turning on/off
switches in circuits) take place. To allow the specification of
the continuous/discrete variations of those physical quantities,
we utilize dense clocks to represent those quantities and extend
the attributes of DenseClockType, from which the dense
clocks can be instantiated.

Definition 3.4 (DenseClockType): Let n and m be two
positive integers. A dense clock type DT can be defined based
on the following four attributes:
DenseClockType DT {reference ref , factor r, offset
{(c1, v1), . . . , (cn, vn)}, reset {e1, . . . , em}};
where

– reference specifies a referential dense clock, i.e., ref .
– factor indicates the increase rate of instances of DT

compared to ref .
– offset represents a set of tuples {(c1, v1), (c2, v2) . . . ,

(cn, vn)}, where ∀i ∈ {1, 2, ..., n}, ci ∈ C is a logical
clock and vi ∈ R represents a real number. The ticks of
ci result in the instaneous changes of instances of DT
by vi time units.

– reset represents a set of logical clocks {e1, e2 . . . , em}
whose ticks reset the instances of DT .

Let c be an instance of DT and vc be a real number that
represents the time value of c. The factor of c (denoted
by r) corresponds to the increase rate of vc compared to the
reference clock. For example, if the reference clock of c
is idealClk, then vc =

∫
r dt, where t ∈ [0, ∞] represents the

physical time. The offset and reset of c describe discrete
changes of vc triggered by events, i.e., ∀i ∈ {1, 2, ..., n}, ci
→ {vc = vc + vi} and ∀ j ∈ {1, 2, ..., m}, ej → {vc = 0}.

By utilizing the operators and notations in PrCCSL∗, a
system can be specified as a Probabilistic Clock Based

System (PCBS), in which the continuous and discrete system

behaviors can be described as the evolutions of a set of dense
and logical clocks.

Definition 3.5 (Probabilistic Clock Based System (PCBS)):
A probabilistic clock based system is a tuple:

S = 〈 T, Ct, Cn, Exp, A, Ap 〉

where
– T is a set of clock types;
– Ct is a set of dense clocks;
– Cn is a set of logical clocks;
– Exp is a set of clock expressions;
– A is a set of clock actions of clocks in Cn;
– Ap is a set of probabilistic clock actions of

clocks in Cn.
Clocks in Ct and Cn are instances derived from clock types

in T . Ct and Cn are two exclusive sets. Clock actions and
probabilistic clock actions (see Definition 3.2 and
3.3) are employed to describe the actions activated by events
(i.e., logical clocks). Since clock relations in PrCCSL∗ are
applied in specifying requirements and not utilized in system
behaviors specifications, a PCBS does not contain any clock
relations.

In PrCCSL, requirements are specified by clock relations
(see Table II) between two events. To describe the complex
requirements associated with multiple events, we extend the
binary relations into n-ary relations, which allow to describe
the dependencies among a set of events.

Definition 3.6 (N-ary Relation): Let M be a PCBS and c1,
c2, ..., cn are n clocks in M. An n-ary clock relation among
clocks c1, c2, ..., cn, denoted as ∼(c1, c2, ..., cn), is satisfied
over M if the following condition holds:

M � ∼(c1, c2, ..., cn)⇐⇒ ∀i, j : 1 ≤ i < j ≤ n⇒M � ci∼cj
where ∼ ∈ {⊆,≡,≺,�,#}, n ≥ 2 is the number of clocks
in the relation.

Note that the n clocks in the n-ary relations are partially
ordered, e.g., ⊆(c1, c2, c3) and ⊆(c2, c1, c3) are different
subclock relations. Informally, an n-ary relation, including
coincidence, subclock, exclusion, precedence and
causality relations, is satisfied if any order-preserving pair
(i.e., the order relation i < j is maintained) of two clocks
in the set of n clocks satisfy the corresponding (binary) clock
relation. In other words, an n-ary clock relation can be seen as
the conjunction of n(n−1)

2 corresponding binary relations. For
example, the ternary causality relation among c1, c2 and c3
limits that the three binary relations, i.e., c1�c2, c1�c3 and
c2�c3, must be satisfied at the same time.

The probabilistic n-ary relation is satisfied if the probability
of the corresponding n-ary relation being satisfied is greater
than or equal to a given probability threshold p.

Definition 3.7 (Probabilistic N-ary Relation): The prob-
abilistic n-ary relation among c1, c2, ..., cn, denoted as
∼p(c1, c2, ..., cn), is satisfied if the following condition holds:

M � ∼p(c1, c2, ..., cn)⇐⇒ Pr(∼(c1, c2, ..., cn)) ≥ p



where ∼ ∈ {⊆,≡,≺,�,#}, Pr(∼(c1, c2, ..., cn)) =

1
k

k∑
j=1

{Rj |= ∼p(c1, c2, ..., cn)}, which is the probability of

the n-ary relation being satisfied, i.e., the ratio of runs satis-
fying the n-ary relation among the total number of k runs.

IV. TRANSLATION OF PRCCSL∗ INTO UPPAAL-SMC
MODELS

In PrCCSL∗, an automotive system can be specified as
a PCBS and the requirements of the system are specified
as clock relations. To enable the formal analysis of system
behaviors/requirements specified in PrCCSL∗, in this section,
we first present how to translate PrCCSL∗ elements, including
DenseClockType, expressions, (probabilistic) clock

actions and relations, into verifiable UPPAAL models. Then,
we introduce our developed tool ProTL for supporting auto-
matic translation and formal verification of PrCCSL∗ specifi-
cations.

Clock and DenseClockType In PrCCSL∗, a clock is either a
logical clock or a dense clock. A logical clock c represents an
event, which is represented as a

Fig. 1: History and DenseClockType

synchronization chan-
nel c! in UPPAAL-
SMC. The history of
c (which represents the
number of times that c
has ticked currently) is
modeled as the History(c) STA (stochastic timed automata)
in Fig. 1: whenever c occurs (c?), the value of its history is
increased by 1 (i.e., h++).

A dense clock in PrCCSL∗ represents the physical time,
which is considered as a continuous and unbounded progres-
sion of time instants. A dense clock is represented as a “clock”
variable in UPPAAL-SMC [18], which is a real type variable
increasing monotonically with a certain rate. For instance, the
idealClk is mapped to a standard clock variable whose increase
rate is 1 in UPPAAL-SMC.

To describe the continuous and instaneous variations of
physical quantities (e.g., energy consumption, temperature),
those quantities are represented as dense clocks instantiated
by different DenseClockTypes. A DenseClockTypes DT
is defined based on the reference, factor, offset and
reset attributes (see Definition 3.4). DT(c) STA in Fig. 1 is
a generic representation of DT in UPPAAL-SMC, in which
c is a dense clock instantiated from DT . The factor of
DT (denoted r) is the rate of c compared to the reference

clock ref . Let ref rate represent the increase rate of ref
with respect to ideal physical time (i.e., idealClk). Thus the
increase rate of c compared to idealClk equals to r∗ref rate,
modeled as the invariant “c′==r∗ref rate” in Fig. 1. Thus, c
is changed continuously according to the differential equation
“c=

∫
r ∗ ref rate dt”, where t ∈ [0, ∞] represents the

physical time. Moreover, offset specifies the instaneous
changes of c activated by a set of events c1, c2, ..., cn. As
shown in Fig. 1, each tuple in offset corresponds to a self-
loop transition where a discrete increment of c is performed.

reset is a set of events whose occurrences reset the time
value of c into 0, modeled as the transitions where c is reset.

Fig. 2: DelayFor

Clock Expressions generate new
clocks based on existed clocks. To
model clock expressions in UPPAAL-
SMC, the resulting clock of the
expression is represented by a channel
variable res and the semantics of
the expression is modeled as an STA
that determines when res ticks (via
res!). For example, the interval-based DelayFor expression
(Definition 3.1), expressed as res , ref ([lower, upper])  
base, is modeled as the STA in Fig. 2. DelayFor defines
a new clock res based on a reference clock (ref ) and a
base clock, i.e., ∀i ∈ N+, the ith tick of res is generated
by delaying the ith tick of ref for [lower, upper] units
of base. The generation process of the ith tick of res can
be summarized as: when the ith tick of ref occurs, after
[lower, upper] time units of base clock is elapsed, the
ith tick of res is triggered. The generation processes of
different ticks of res are independent and can run in parallel.
Therefore, we model the generation of each tick of res as a
spawnable STA [5] (i.e., the Delay() STA in Fig. 2), which
is dynamically spawned (by Detect(ref) STA) whenever
ref occurs (ref?), and terminated when the calculation of the
current tick of res is completed (denoted “exit()”). Here the
base in DelayFor is a dense clock and r is the increase rate
of base compared to idealClk. For the STA of DelayFor

with discrete base clock and other clock expressions, refer to
[19].

Fig. 3: STA of clock action

(Probabilistic) Clock
Action (see Definition
3.2 and 3.3) of clock c
are modeled as the STA
in Fig. 3. The clock

action “c → {v[0] =
0, v[1] = 1, v[2] =
2}” is modeled as the Action(c, v) STA: when c ticks
(c?), the assignment operations on the integer array v are
executed. The probabilistic clock action of clock c
specifies a set of actions that are performed when c ticks
based on a discrete probability distribution. For instance,
the probabilistic clock action “c →p{(p[0], v[0] =
0), (p[1], v[1] = 1), (p[3], v[2] = 2)}” is modeled as the
pAction(c, p, v) STA, in which each element of the action

is mapped to a probabilistic transition weighted by correspond-
ing probability.

Based on the mapping patterns described above, a PCBS

(that consists of a set of clocks, clock types, expressions
and clock actions) can be represented as a network of STA
(NSTA), which consists of the STA of corresponding clock

type, (probabilistic) clock actions and expressions.

Probabilistic Clock Relations To represent PrCCSL∗ rela-
tions in UPPAAL-SMC, observer STA that capture the se-
mantics of standard subclock, coincidence, exclusion,



TABLE III: STA of PrCCSL∗ Relations

STA Remarks

Coincidence relation c1 ≡p c2 delimits that two clocks must tick simultaneously. When c1 (c2) ticks via c1?
(c2?), the STA judges if the other clock, c2 (c1) ticks at the same time. If there is no time elapsed between
the corresponding occurrences of c1 and c2 (i.e., “t==0”), the STA transits to success location. Otherwise,
it goes to fail location.

Exclusion relation c1 #p c2 limits that two clocks must not occur at the same time. Contrary to the
Coincidence(c1, c2) STA, when c1 (c2) ticks and if the other clock ticks simultaneously (“t==0”), the STA
goes to the fail location.

Subclock relation c1 ⊆p c2 states that c2 (superclock) must tick when c1 (subclock) ticks, which is interpreted as
a conditional coincidence relation: when c1 ticks, c2 must coincides with c1. Similar to Coincidence(c1, c2)
STA, when c1 (c2) occurs, the Subclock(c1, c2) STA checks whether the other clock also ticks at the same
instant. If c1 ticks and c2 does not occur (denoted “t>0”), the relation is violated and the STA transits to fail
location.

Causality relation c1 �p c2 states that c2 (effect) must not tick prior to c1 (cause). When c1 or c2 ticks, if the
two clocks are coincident (represented by “t==0”) or c1 ticks faster (denoted “h1 ≥ h2”), the relation is satisfied
and the STA goes to success location. Otherwise, the STA goes to fail location.

Precedence relation c1 ≺p c2 states that c1 must run faster than c2. When c1 or c2 ticks, if c2 ticks faster
(“h1<h2”) or c1 and c2 are coincident (represented by “h1==h2&&t==0”) the relation is violated and fail
location is activated.

precedence and causality relations are constructed. In
our earlier work [15], we have shown the translation patterns
from clock relations into STA. However, the patterns are
given based on discrete time semantics, i.e., the continuous
physical time line is discretized into a set of equalized steps.
As a result, (in the extreme cases) two clock instants are
still considered coincident even if they are one time step
apart. In this paper, we refine the STA of relations in [15] to
support the translation of relations conformed to continuous
time semantics. The refined STA are illustrated in Table III,
in which t represents the time delay between two consecutive
instants of clock c1 and c2. c1 and c2 are simultaneous if
t equals to 0. h1 and h2 represent the histories of c1 and
c2, respectively. Each relation is mapped to an observer STA
that contains a “fail” location, which suggests the violation
of corresponding relation. Recall the definition of probabilistic
relations in Sec. II, the probability of a relation being satisfied
is interpreted as a ratio of runs that satisfies the relation among
all runs. It is specified as Hypothesis Testing query in UPPAAL-
SMC, H0: m

k ≥ p against H1: m
k < p, where m is the

number of runs satisfying the given relation out of all k runs.
As a result, the probabilistic relations are interpreted as the
query: Pr[bound]([ ] ¬STAobs.fail) ≥ p, which means that
the probability of the “fail” location of the observer STA

(denoted STAobs) never being reached should be greater than
or equal to threshold p.

Requirements associated with multiple clocks can be ex-
pressed by n-ary relations (see Definition 3.6). According to
the definition, an n-ary relation among n clocks c1, c2, ..., cn
is satisfied if any pair of two clocks 〈ci, cj〉 (1 ≤ i < j ≤ n)
satisfies the corresponding binary relation. Since an n-ary
clock relation can be seen as the conjunction of n(n−1)

2
binary relations, we construct an STA for the relation of
each pair 〈ci, cj〉 (1 ≤ i < j ≤ n) and an n-ary relation
is represented as the synchronization product of the n(n−1)

2
STA. For instance, an n-ary exclusion can be represented
as the composition of the n(n−1)

2 Exclusion(i, j) STA in
Fig. 4(a) (similar to the Exclusion(c1, c2) STA in Table
III), which represents the exclusion relation between ci and
cj . The probabilistic n-ary exclusion is specified as: Pr[≤
bound]([ ]forall(i : int[1, n]) forall(j : int[1, n]) (i <
j imply not Exclusion(i, j).fail)) ≥ p.

The coincidence, subclock, precedence and
causality relations are transitive relations, i.e., if both
the relations between ci and cj and the relation between
clock cj and ck are satisfied, then the relation between ci
and ck is also satisfied. Thus, an n-ary transitive relation
can be interpreted as the combination of n − 1 binary



Fig. 4: STA of N-ary Relations

relations. For instance, the n-ary coincidence relation

is interpreted as: ≡(c1, c2, ..., cn) ⇐⇒
n−1∧
i=1

ci≡ci+1.

As illustrated in Fig. 4(b), Coincidence(i) STA
represents the coincidence relation between ci
and ci+1 (similar to the Coincidence(c1, c2)

STA in Table III). The n-ary coincidence relation
can be represented as the composition of the n − 1
Coincidence(i) STA, where i ∈ {1, 2, 3, ..., n − 1}.
The n-ary probabilistic coincidence relation can be
verified by using the query: Pr[≤ bound]([ ]forall(i :
int[1, n − 1])(not Coincidence(i).fail)) ≥ p. Similarly, the
other three transitive relations, i.e., subclock, precedence
and causality relations, can be represented based on the
STA in Fig. 4.

Tool Support To improve the efficiency and accuracy of
translation, we implement a tool ProTL (Probabilistic CCSL
TransLator) [19], which provides a push-button transforma-
tion from PrCCSL∗ specifications into UPPAAL-SMC mod-
els. Moreover, to enable the formal verification of PrCCSL∗

specifications, ProTL brings the capability of verification for
the translated UPPAAL-SMC models by employing UPPAAL-
SMC as its verification backend. Furthermore, ProTL offers a
configuration panel for customizable generation of five types
of probabilistic queries (introduced in Sec. II). ProTL can
also generate counter-examples that depict the evolution of
clocks related to the unsatisfied clock relations, which pro-
vide diagnosis information for further refinement of PrCCSL∗

specifications.

V. CASE STUDIES

We show the applicability of ProTL on two automotive
systems case studies. We report only the verification on a list
of representative requirements for each example and further
details can be found in [19].

Autonomous Vehicle (AV) [15] reads the road signs, e.g.,
“speed limits”, “stop” or “right/left turn”, and adjusts its speed
and movements accordingly. To achieve traffic sign recogni-
tion, a camera is equipped in the vehicle to capture images.

The camera relays the captured images to a sign recognition
device periodically. The representative requirements on AV are
listed below:
A1. A periodic acquisition of camera must be carried out every
50ms with a jitter of 10ms.
A2. If the vehicle detects a left turn sign, it should start to
turn left within 300ms.
A3. The detected image should be computed within [20, 30]ms
in order to generate the desired sign type.
A4. When a traffic sign is recognized, the speed of vehicle
should be updated within [50, 150]ms based on the sign type.
A5. The required environmental information should arrive to
the controller within 40 ms, i.e., the input signals (traffic sign
type, speed, direction, gear and torque) must be detected by
controller within 40 ms.
A6. The execution time interval from the controller to the
actuator must be less than or equal to the sum of the worst
case execution time intervals of controller and actuator.
A7. While the vehicle turns left, the “turning right” mode
should not be activated. The events of turning left and right
are considered as exclusive and specified as an exclusion
constraint.

We specify the system behaviors of AV as a PCBS and
requirements as clock relations in PrCCSL∗. The PrCCSL∗

specifications of requirements (A1–A7) and the verification
results are illustrated in Table IV. Let camera represent the
triggering event of camera and camera[i] denote the ith

occurrence of camera. A1 can be interpreted as: ∀i ∈ N+,
camera[i + 1] should occur later than camera[i] delaying
for 40ms but prior to camera[i] delaying for 60ms, which is
specified as a ternary precedence relation in Table IV. The
“forall” query in UPPAAL is employed to verify the ternary
relation.

In the specification of A2, detectLeftSign represents the
event that a left turn sign is detected. startTurnLeft denotes
the event that the vehicle starts to turn left. We construct a new
clock leftSignDe by delaying detectLeftSign for 300ms.
A2 can be expressed as a precedence relation between
startTurnLeft and leftSignDe, i.e., startTurnLeft



TABLE IV: Verification Results of AV

Req Spec Expression Runs Result Time (Min) Mem (Mb) CPU (%)

A1
PrCCSL∗

cameraFltr , camera H01(1)

cameraDelay40 , camera (40)  ms

cameraDelay60 , camera (60)  ms

≺0.96 (cameraDelay40, cameraF ltr, cameraDelay60)

142 valid 9.69 8.49 25.08

UPPAAL Pr[610000]([ ] forall i:[1, 2] ¬A1 Precedence(i).fail) ≥ 0.96

A2
PrCCSL∗ leftSignDe , detectLeftSign (300)  ms

startTurnLeft ≺0.95 leftSignDe
161 valid 8.72 8.30 25.40

UPPAAL Pr[610000]([ ] ¬A2 Precedence.fail) ≥ 0.95

A3
PrCCSL∗

ImgRecDe20 , ImgRec (20)  ms

ImgRecDe30 , ImgRec (30)  ms

�0.96(ImgRecDe20, signType, ImgRecDe30)

142 valid 10.31 8.51 25.27

UPPAAL Pr[610000]([ ] forall i:[1, 2] ¬A3 Causality(i).fail) ≥ 0.96

A4
PrCCSL∗

signTypeDe50 , signType (50)  ms

signTypeDe150 , signType (150)  ms

≺0.95(signTypeDe50, updateSpeed, signTypeDe150)

140 valid 10.25 8.58 25.13

UPPAAL Pr[610000]([ ] forall i:[1, 2] ¬A4 Precedence(i).fail) ≥ 0.95

A5
PrCCSL∗

InfIn , speedIn ∧ posIn ∧ dirIn∧ signType

SupIn , speedIn ∨ posIn∨ dirIn ∨ signType

InfInDe40 , InfIn (40)  ms

SupIn �0.95 InfInDe40

140 valid 12.96 8.6 24.86

UPPAAL Pr[610000]([ ] ¬A5 Causality.fail) ≥ 0.95

A6
PrCCSL∗ signTypeDe , signType (SUMWCET )  ms

actOut ≺0.95 signTypeDe
140 valid 12.11 8.48 24.24

UPPAAL Pr[610000]([ ] ¬A6 Precedence.fail) ≥ 0.95

A7
PrCCSL∗

turnLeft , {inLeft = 1} ? always : never

turnRight , {inRight} ? always : never

turnLeft #0.95 turnRight

140 valid 8.82 8.40 25.31

UPPAAL Pr[610000]([ ] ¬A7 Exclusion.fail) ≥ 0.95

should occur no later than the occurrence of leftSignDe.
Similarly, A3–A6 can be specified. In the PrCCSL∗ specifi-
cation of A7, always (never) represents a clock that always
(never) ticks. Based on always and never, we generate two
new clocks turnLeft and turnRight by using ITE expres-
sions. turnLeft (turnRight) represents the event that the
vehicle is turning left (right). A7 is specified as an exclusion

relation between turnLeft and turnRight.
Cooperative Automotive System (CAS) [20] includes dis-
tributed and coordinated sensing, control, and actuation over
three vehicles which are running in the same lane. A lead
vehicle can run automatically by recognizing traffic signs on
the road. The follow vehicle must set its desired velocity
identical to that of its immediate preceding vehicle. Vehicles
should maintain sufficient braking distance to avoid rear-end
collision while remaining close enough to guarantee commu-
nication quality. The position of each vehicle is represented by
Cartesian coordinate (xi, yi), where xi and yi (i ∈ {0, 1, 2})
are distances measured from the vehicle to the two fixed
perpendicular lines, i.e., x-axis and y-axis, respectively. A list
of the representative requirements on CAS are given below:
B1. The follow vehicle should not overtake the lead vehicle.
B2. When the lead vehicle adjusts its movement (e.g., brak-

ing) regarding environmental information, the follow vehicle
should move towards the lead one within 500ms.
B3. Each vehicle should maintain braking distance, i.e., if
the braking distance is insufficient, the follow vehicle should
decelerate within a given time.
B4. When the lead vehicle starts to turn left, both the lead and
follow vehicle should complete turning and run in the same
lane within a certain time.
B5. The velocity of vehicles should update every 30ms, i.e., a
periodic acquisition of a speed sensor must be carried out for
every 30ms.
B6. The required input signals of the environmental informa-
tion (speed, position, direction) must be detected by controller
within a given time window, i.e., 60ms.
B7. The controller of the follow vehicle should finish its
execution within [30, 100]ms.

The specifications and verification results of B1–B7 are
shown in Table V. In the PrCCSL∗ specification of B1,
runAtXDir indicates that the vehicles are running at the pos-
itive x-direction (“direction=xDir”). overTake represents
the event that the position of follow on x-axis is greater than
that of lead vehicle (x1 ≥ x0). B1 limits that runAtXDir
and overTake can not happen at the same time, which can



TABLE V: Verification Results of CAS

Req Spec Expression Runs Result Time (Min) Mem (Mb) CPU (%)

B1
PrCCSL∗

runAtXDir , {direction = xDir} ? always : never

overTake , {x1 ≥ x0} ? always : never

runAtXDir #0.95 overTake

140 valid 128.34 10.62 25.34

UPPAAL Pr[610000]([ ] ¬B1 Exclusion.fail) ≥ 0.95

B2
PrCCSL∗ brakeDelay500 , leadBrake (500)  ms

followBrake ≺0.95 brakeDelay500
140 valid 132.83 8.15 25.17

UPPAAL Pr[610000]([ ] ¬B2 Precedence.fail) ≥ 0.95

B3
PrCCSL∗

notSafe , {inConst = true&&dist < safeDis} ? always : never

notSafeDe300 , notSafe (300)  ms

const2dec ≺0.95 notSafeDe300

140 valid 126.40 10.52 25.29

UPPAAL Pr[610000]([ ] ¬B3 Precedence.fail) ≥ 0.95

B4
PrCCSL∗ leadTurnLeftDe , leadTurnLeft (500)  ms

followTurn ≺0.95 leadTurnLeftDe
54 Unsatisfied 60.87 10.66 24.86

UPPAAL Pr[610000]([ ] ¬B4 Precedence.fail) ≥ 0.95

B5
PrCCSL∗ prdClk , ms ∝ 30

≡0.98(leadSpeedTrig, prdClk, followSpeedTrig)
145 valid 160.91 10.69 25.05

UPPAAL Pr[610000]([ ] forall (i:int[1,2]) ¬B5 Coincidence(i).fail) ≥ 0.98

B6
PrCCSL∗

InfIn , speedIn∧ posIn∧ dirIn

SupIn , speedIn∨ posIn∨ dirIn

InfInDe , InfIn (60)  ms SupIn ≺0.95 InfInDe

140 valid 188.63 8.92 24.09

UPPAAL Pr[610000]([ ] ¬B6 Precedence.fail) ≥ 0.95

B7
PrCCSL∗

ctrlInDe30 , ctrlIn (30)  ms

ctrlInDe100 , ctrlIn (100)  ms

�0.95(ctrlInDe30, ctrlOut, ctrlInDe100)

140 valid 8.82 8.4 25.31

UPPAAL Pr[610000]([ ] forall (i:int[1,2]) ¬B7 Causality(i).fail) ≥ 0.95

be expressed by exclusion relation. In the specification
of B2, leadBrake (followBrake) denotes the event that
the lead (follow) vehicle starts to brake. brakeDelay500 is
built by delaying leadBrake for 500ms. Thus B2 can be
specified as a precedence relation between followBrake
and brakeDelay500. Similarly, B3–B4 and B6–B7 can be
specified. To specify B5, a periodic clock prdClk that ticks
every 30 ms is generated by using PeriodicOn expression.
leadSpeedTrig and followSpeedTrig represent the trigger-
ing events of speed sensors of the lead and follow vehicles.
B5 is specified as a ternary coincidence relation.

The verification results in Table V shows that B1–B3 and
B5–B7 are established as valid while B4 is unsatisfied. The
invalid property B4 is identified using ProTL which generates
a counter-example (CE) presented in Fig. 5. After analyzing
CE, the cause of error was found: when the follow vehicle
is decreasing its speed and the lead vehicle turns left, the
follower keeps speeding down but does not turn left until the
deceleration is completed. Based on the CE, the system model
are refined: when the follower is under deceleration mode and
it detects that the lead vehicle turns left, the follower first turns
left and then continues to speed down after turning. After the
modification, B4 becomes valid.

VI. RELATED WORK

In the context of EAST-ADL, efforts on the integration
of EAST-ADL and formal techniques were investigated in

Fig. 5: CE of B4: leadTurn-his (followTurn-his) represents the history
of the clock (event) that the lead (follow) vehicle turns left. At
Time=7739, the lead vehicle starts to turn left (leadTurn-his becomes
1), while the follow vehicle is under deceleration mode (represented
by “followDec==1”). The follow does not turn until it finishes the
deceleration at Time=8108 and starts to turn left at Time=8323
(followTurn-his becomes 1), which violates B4.

several works [21]–[25], which are however, limited to the
executional aspects of system functions without addressing
dynamic and stochastic behaviors. Kang [26] defined the
execution semantics of both the controller and the environment
of industrial systems in CCSL which are also given as mapping
to UPPAAL models amenable to model checking. Du et al. [27]
proposed a probabilistic extension of CCSL, called pCCSL,
for specifying the stochastic behaviors of uncertain events in
cyber-physical (CPS) and provided the transformation from
pCCSL into Stochastic Hybrid Automata. In contrast to our



current work, those approaches lack precise annotations spec-
ifying continuous dynamic behaviors in particular regarding
different clock rates during execution.

Transformation of CCSL specifications into verifiable for-
malisms for formal analysis has been investigated in several
works [28], [29]. Yin et al. [28] translated CCSL specifications
into Promela models amenable to model checking using SPIN
model checker. Chen et al. [29] performed formal analysis of
timed behaviors specified in CCSL by mapping the specifi-
cations into timed Input/Output automata. However, neither
tool support for automatic transformation nor probabilistic
analysis is provided in those works. Zhang et al. [30] imple-
mented a tool clyzer for formal analysis of CCSL constraints
through automated translation from CCSL specifications into
SMT formulas amenable to SMT solving. Compared to their
approach, we provide the tool support for probabilistic analysis
of dynamic and stochastic systems behaviors based on the
translation from PrCCSL∗ specifications into formal models.

VII. CONCLUSION

In this paper, we present a tool-supported approach for
formal verification of dynamic and stochastic behaviors for
automotive systems. To enable the formal specifications of
stochastic behaviors and continuous dynamics in automotive
systems, we propose an extension of PrCCSL, i.e., PrCCSL∗,
which is augmented with notations for descriptions of contin-
uous/discrete variations of physical quantities, stochastic time
delays, activations of actions and nondeterministic alternatives.
Moreover, to support the specification of complex require-
ments involved with multiple events, we extend the binary
relations into n-ary relations in PrCCSL∗. To enable the for-
mal verification of system behaviors/requirements specified in
PrCCSL∗, we provide the mapping rules to translate PrCCSL∗

specifications into verifiable UPPAAL-SMC models. Based on
the proposed translation strategies, we implement an automatic
translation tool, namely ProTL, which also supports verifica-
tion of the translated models by leveraging UPPAAL-SMC as
an analysis backend. The applicability of our approach and tool
is demonstrated by conducting verification of (non)-functional
properties on two automotive system case studies.

As ongoing work, formal validation of the correctness of
translation rules from PrCCSL∗ into stochastic UPPAAL-SMC
models is further investigated. Furthermore, new features of
ProTL with respect to analysis of UPPAAL-SMC models
involving wider range of variable/query types (e.g., urgent
channels and bounded integers) are further developed.
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