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Abstract—The verification of systems combining hard tim-
ing constraints with concurrency is challenging. This challenge
becomes even harder when some timing constants are missing
or unknown. Parametric timed formalisms, such as parametric
timed automata (PTAs), tackle the synthesis of such timing
constants (seen as parameters) for which a property holds. Such
formalisms are highly expressive, but also undecidable, and few
decidable subclasses were proposed. We propose here a syntactic
restriction on PTAs consisting in removing guards (constraints
on transitions) to keep only invariants (constraints on locations).
While this restriction preserves the expressiveness of PTAs (and
therefore their undecidability), an additional restriction on the
type of constraints allows to not only prove decidability, but also
to perform the exact synthesis of parameter valuations satisfying
reachability. This formalism, that seems trivial at first sight as
it benefits from the decidability of the reachability problem with
a better complexity than Timed Automata (TAs), suffers from
the undecidability of the whole TCTL logic that TAs, on the
contrary enjoy. We believe our formalism allows for an interesting
trade-off between decidability and practical expressiveness and
is therefore promising. We show its applicability in a small case
study.

I. INTRODUCTION

The verification of systems combining hard timing con-

straints with concurrency is challenging. This challenge be-

comes even harder when some timing constants are missing

or unknown. Parametric timed formalisms tackle the synthesis

of such timing constants (seen as parameters) for which a

property holds. A well-known such formalism is parametric

timed automata [AHV93], a formalism extending finite-state

automata with clocks [AD94], that can be compared to either

integer constants or to integer-valued or real-valued parameters

along guards (over transitions) or in invariants (in locations).

Such formalisms are highly expressive, but also highly unde-

cidable, and only a few decidable subclasses were proposed.

In the PTA literature, the main problem studied is EF-

emptiness (“is the set of valuations for which a given location
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is reachable for at least one run empty?”): it is “robustly” un-

decidable in the sense that, even when varying the setting, un-

decidability is preserved. For example, EF-emptiness is unde-

cidable even for a single bounded parameter [Mil00], even for

a single rational-valued or integer-valued parameter [Ben+15],

even with only one clock compared to parameters [Mil00], or

with strict constraints only [Doy07] (see [And19] for a survey).

Decidability can be obtained using two main directions.

First, reducing the number of clocks may lead to decidabil-

ity: for example, decidability is ensured in some restrictive set-

tings such as over discrete time with a single parametric clock

(i. e., compared to parameters in at least one guard) [AHV93],

or over discrete or dense time with one parametric clock and

arbitrarily many non-parametric clocks [BO14; Ben+15], or

over discrete time with two parametric clocks and a single

parameter [BO14]. But the practical power of these restrictive

settings remains unclear.

Second, restricting the syntax may also lead to decidability,

notably on two main subclasses: in [Hun+02], L/U-PTAs are

proposed as a subclass where parameters are partitioned into

upper-bound parameters (only compared to clocks as upper-

bounds, i. e., of the form x > p or x ≥ p, where x is a clock

and p a parameter) and lower-bound parameters. While L/U-

PTAs benefit from the decidability of EF-emptiness [JLR15;

BL09], AF-emptiness (“is the set of valuations for which a

given location is reachable for all runs empty?”) is undecid-

able [JLR15]; even more annoying, it is impossible to achieve

exact synthesis, even for EF: that is, it is not possible in

general to compute the set of parameter valuations for which a

given location is reachable. A second restriction of the syntax

is proposed in [ALR19]: in reset-PTAs, whenever a clock is

compared to a parameter, all clocks must be reset (possibly

to parameters, which extends the original PTA syntax). While

exact synthesis over bounded rational-valued parameters can

be achieved for EF, resetting all clocks as soon as one clock

is compared to a parameter is a strong practical restriction,

and is dedicated to systems that have some cyclic, repetitive

behavior.

a) Contribution: In this work, we propose an original

subclass of parametric timed automata, with interesting prac-

tical results. We restrict the expressive power by disallowing
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guards in the model, therefore leaving the model with only

invariants.

On the one hand, we show that this model of PTAs with

only invariants (PTAsI ) is at least as expressive as the orig-

inal PTAs, and therefore inherits its notorious undecidability

results.

On the other hand, by restraining the shape of the constraints

in these invariants, giving PTAs with only invariants and

upper-bound constraints (PTAsUI ), we get decidability results

independently of the number of clocks or parameters used.

In addition, we show that we can synthesize the exact set of

parameters for which reachability (EF) properties hold. This

result is particularly welcome, as existing classes for which

decidability of the emptiness problems hold does usually

not guarantee the possibility to perform synthesis: the best-

known existing subclass of PTAs, i. e., L/U-PTAs, benefit from

decidability results [Hun+02; BL09] but synthesis cannot be

achieved, even over integer-valued parameters [JLR15].

Our formalism of PTAsUI is the first of its kind to allow

for exact synthesis over unbounded, rational-valued parameters

(in contrast to [Hun+02; BL09; ALR19]) without imposing

conditions on the number of clocks or parameters (in contrast

to [BO14; Ben+15]), nor imposing frequent resets (in contrast

to [ALR19]). This makes this formalism promising, together

with a still interesting expressive power. In fact, we show that

for more complex properties (e. g., nested TCTL formulas),

PTAsUI become undecidable, which shows that our formalism

is far from featuring a trivial expressiveness. We also exem-

plify our formalism on a case study, where we model a data

streaming protocol using PTAsUI .

b) Outline: Section II recalls the necessary preliminar-

ies, introduces the class of PTAs without guards (PTAsI ) and

the problems of interest. Section III proves that reachability

is undecidable for PTAI . Section IV introduces an additional

restriction (PTAsUI ), and proves decidability of the emptiness

problems of reachability, together with the possibility to per-

form synthesis. In contrast, we show that TCTL-emptiness is

undecidable for PTAsUI , making it an expressive formalism at

the border between decidability and undecidability. Section V

exemplifies our formalism on a case study. Section VI con-

cludes the paper and proposes some perspectives.

II. PRELIMINARIES

A. Clocks, parameters and parametric clock constraints

We assume a set X = {x1, . . . , xH} of clocks, i. e., real-

valued variables that evolve at the same rate. A clock valuation

is a function w : X → R+. We identify a clock valuation w

with the point (w(x1), . . . , w(xH)) of RH
+ . We write ~0 for the

clock valuation assigning 0 to all clocks. Given d ∈ R+, w+d

denotes the valuation s.t. (w+d)(x) = w(x)+d, for all x ∈ X.

Given R ⊆ X, we define the reset of a valuation w, denoted by

[w]R, as follows: [w]R(x) = 0 if x ∈ R, and [w]R(x) = w(x)
otherwise.

We assume a set P = {p1, . . . , pM} of parameters, i. e.,

unknown constants. A parameter valuation v is a function

v : P → Q+.

We assume ⊲⊳ ∈ {<,≤,=,≥, >} and ⊳ ∈ {<,≤}. A para-

metric clock constraint pcc is a constraint over X∪ P defined

by a set of inequalities of the form x ⊲⊳
∑

1≤i≤M αipi + d,

with αi ∈ {0, 1} and d ∈ Z. Given pcc, we write w |= v(pcc)
if the expression obtained by replacing each x with w(x) and

each p with v(p) in pcc evaluates to true.

B. Parametric timed automata

Let AP be a set of atomic propositions. We first recall

PTAs [AHV93].

Definition 1. A PTA A is a tuple A = (Σ, L,L, ℓ0,X,P, I, E),
where:

• Σ is a finite set of actions,

• L is a finite set of locations,

• L is a label function L : L → 2AP ,

• ℓ0 ∈ L is the initial location,

• X is a finite set of clocks,

• P is a finite set of parameters,

• I is the invariant, assigning to every ℓ ∈ L a parametric

clock constraint I(ℓ),
• E is a finite set of edges (or transitions) e =
(ℓ, g, a, R, ℓ′) where ℓ, ℓ′ ∈ L are the source and target

locations, a ∈ Σ, R ⊆ X is a set of clocks to be reset,

and the guard g is a parametric clock constraint.

Given a parameter valuation v, we denote by v(A) the non-

parametric structure where all occurrences of a parameter pi
have been replaced by v(pi). We denote as a timed automaton

any structure v(A).1 A bounded PTA is a PTA with a bounded

parameter domain that assigns to each parameter a minimum

integer bound and a maximum integer bound. That is, each

parameter pi ranges in an interval [ai, bi], with ai, bi ∈ N.

Hence, a bounded parameter domain is a hyperrectangle of

dimension M .

Let us first recall the concrete semantics of TAs.

Definition 2 (Concrete semantics of a TA). Given a PTA

A = (Σ, L,L, ℓ0,X,P, I, E), and a parameter valuation v,

the concrete semantics of v(A) is given by the timed transition

system (S, s0,→), with

• S = {(ℓ, w) ∈ L× RH
+ | w |= v(I(ℓ))},

• s0 = (ℓ0,~0)
• → consists of the discrete and (continuous) delay transi-

tion relations:

– discrete transitions: (ℓ, w)
e
7→ (ℓ′, w′), if

(ℓ, w), (ℓ′, w′) ∈ S, there exists e = (ℓ, g, a, R, ℓ′) ∈
E, w′ = [w]R, and w |= v(g).

– delay transitions: (ℓ, w)
d
7→ (ℓ, w+ d), with d ∈ R+, if

∀d′ ∈ [0, d], (ℓ, w + d′) ∈ S.

Moreover we write (ℓ, w)
e

−→ (ℓ′, w′) for a combination of

a delay and discrete transition where ((ℓ, w), e, (ℓ′, w′)) ∈ →

if ∃d, w′′ : (ℓ, w)
d
7→ (ℓ, w′′)

e
7→ (ℓ′, w′).

1Technically and strictly speaking, we should use a rescaling of the
constants to avoid comparisons of clocks with rationals: by multiplying all
constants in v(A) by the least common multiple of their denominators, we
obtain an equivalent (integer-valued) TA, as defined in [AD94].
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Given a TA v(A) with concrete semantics (S, s0,→), we

refer to the states of S as the concrete states of v(A). A run

of v(A) is a possibly infinite alternating sequence of states

of v(A) and edges starting from the initial state s0 of the

form s0
e0−→ s1

e1−→ · · ·
em−1

−→ sm
em−→ · · · , such that for

all i = 0, 1, . . . , ei ∈ E, and (si, ei, si+1) ∈ →. Given a

state s = (ℓ, w), we say that s is reachable if s appears in a

run of v(A), or simply that ℓ is reachable in v(A), if there

exists a state (ℓ, w) that is reachable. By extension, we say that

a label lb is reachable in v(A) if there exists a state (ℓ, w) that

is reachable such that lb ∈ L(ℓ).
Given a parameter valuation v and a run of v(A) ρ =

(ℓ0, w0)
e0−→ · · ·

ei−1

−→ (ℓi, wi)
ei−→ (ℓ, w) we define the length

of a run as the number of edges in ρ.

A maximal run is a run that is either infinite (i. e., contains

an infinite number of discrete transitions), or that cannot be

extended by a discrete transition. Given a run ρ of v(A),
time(ρ) gives the total sum of the delays d along ρ.

C. A new syntactic restriction

We now introduce the first main restriction of our formal-

ism, that consists in removing guards from PTAs.

Definition 3. A PTA with only invariants (PTAI) is a PTA

where, in each transition, g is always true, i. e., is an empty

set of inequalities.

D. Timed CTL

TCTL [ACD93] is the quantitative extension of CTL where

temporal modalities are augmented with constraints on dura-

tion. Formulae are interpreted over TTS.

Given ap ∈ AP and c ∈ N, a TCTL formula is given by

the following grammar:

ϕ ::= ⊤ | ap | ¬ϕ | ϕ ∧ ϕ | EϕU⊲⊳cϕ | AϕU⊲⊳cϕ

A reads “always”, E reads “exists”, and U reads “until”.

Standard abbreviations include Boolean operators as well

as EF⊲⊳cϕ for E⊤U⊲⊳cϕ, AF⊲⊳cϕ for A⊤U⊲⊳cϕ and EG⊲⊳cϕ for

¬AF⊲⊳c¬ϕ. (F reads “eventually” while G reads “globally”.)

Definition 4 (Semantics of TCTL). Given a TA v(A), the

following clauses define when a state si of its TTS (S, s0,→)
satisfies a TCTL formula ϕ, denoted by si |= ϕ, by induction

over the structure of ϕ (semantics of Boolean operators is

omitted):

1) si |= EϕU⊲⊳cΨ if there is a maximal run ρ in v(A)

with σ = si
ei−→ · · ·

ej−1

−→ sj (i < j) a prefix of ρ s.t. sj |=
Ψ, time(σ) ⊲⊳ c, and if ∀k s.t. i ≤ k < j, sk |= ϕ, and

2) si |= AϕU⊲⊳cΨ if for each maximal run ρ in v(A) there

exists σ = si
ei−→ · · ·

ej−1

−→ sj (i < j) a prefix of ρ s.t.

sj |= Ψ, time(σ) ⊲⊳ c, and if ∀k s.t. i ≤ k < j, sk |= ϕ.

In EϕU⊲⊳cΨ the classical until is extended by requiring

that ϕ be satisfied within a duration (from the current state)

verifying the constraint “⊲⊳ c”. Given v, a PTAU
I A and a

TCTL formula ϕ, we write v(A) |= ϕ when s0 |= ϕ.

We define flat TCTL as the subset of TCTL where, in

EϕU⊲⊳cϕ and AϕU⊲⊳cϕ, ϕ must be a formula of propositional

logic (a Boolean combination of atomic propositions).

E. Problems

In this paper, we address the following problems:

TCTL-emptiness problem:

INPUT: a PTAI A and a TCTL formula ϕ

PROBLEM: is the set of valuations v such that v(A) |= ϕ

empty?

TCTL-synthesis problem:

INPUT: a PTAI A and a TCTL formula ϕ

PROBLEM: synthesize the set of valuations v such that

v(A) |= ϕ.

We will focus notably on the TCTL formula “EF” express-

ing reachability [AD94]. That is, EF-emptiness asks whether

the set of parameter locations for which a given location is

reachable for at least one run is empty or not. Similarly, EF-

synthesis asks to synthesize these valuations.

III. THE POWER OF INVARIANTS IN PTAS

In this section, we show that the expressive power of

invariants in PTAs is surprisingly high: in fact, we show that a

PTA with guards but without invariants can be transformed to

an equivalent PTAI . As most undecidability results for PTAs

hold even without invariants, our transformation shows that

PTAI are (at least) as expressive as PTAs—and therefore as

undecidable too. Notably, the simplest problem for PTAs (EF-

emptiness) is undecidable for PTAsI .

A. Transforming guards into invariants

Let us describe our transformation from a PTA A without

invariants to a PTAI T (A). For each edge e = (ℓ1, g, a, R, ℓ2)
of A, we add in T (A) a new location ℓ′1 with invariant I(ℓ′1) =
g and replace e with a transition that is always true from ℓ1
to ℓ′1 with action a and no reset: e′ = (ℓ1, true, a, ∅, ℓ′1).
Then we add a unique transition from ℓ′1 to ℓ2 that is always

true, without action and with the original resets R of e:

e′′ = (ℓ′1, true, ǫ, R, ℓ2) (ǫ denotes the silent action; note that

actions do not matter much in our setting anyway as we are

concerned with reachability properties).

Example 1. An example of this transformation is given in

Fig. 1. The transition (say e) from ℓ1 to ℓ2 in Fig. 1a is

translated into 1) a new transition from ℓ1 to a new location ℓ′1
with as invariant the guard of the original transition e, i. e.,

x ≤ p, and 2) a new transition from ℓ′1 to ℓ2 with the same

reset as the one of the original transition e, i. e., x := 0. This

translation is exemplified in Fig. 1b.

The guard on the transition from ℓ2 to ℓ3 is translated

similarly.
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l1 l2 l3
x ≤ p

x := 0

y ≥ p, x ≥ 3

(a) A PTA

l1 l′1

x ≤ p

l2 l′2

y ≥ p, x ≥ 3

l3
x := 0

(b) Transformed version

Fig. 1: An example of PTA without invariant and its equivalent PTAI .

B. Characterization of the transformation

We show that, for any run of v(A), there exists in v(T (A))
a run twice as long, whose states of index 2× i are identical

to states of index i of the original run, for each i between 0

and the length of the run minus 1.

Lemma 1. Let A be a PTA without invariant, and v a

parameter valuation. There is a run ρ = (ℓ0, w0)
e0−→

· · ·
ei−1

−→ (ℓi, wi)
ei−→ (ℓ, w) · · · in v(A) iff there is a

run ρ′ = (ℓ0, w0)
e′
0−→ (ℓ′0, w

′
0)

e′′
0−→ · · ·

e′′i−1

−→ (ℓi, wi)
e′i−→

(ℓ′i, w
′
i)

e′′i−→ (ℓ, w) · · · in v(T (A)).

Proof. Let ρ be a run of v(A) ending in a concrete state (ℓ, w).
We build by induction on n, a run ρ′ in v(T (A)) of length 2n
taking the same sequence of edges as ρ w.r.t. our transforma-

tion and ending in the same concrete state2.

If n = 0, then ρ′ consists only of the initial location of T (A)
which has no invariant, so we can stay there forever as in the

initial location of A. So any run of length 0 of v(T (A)) is a

run of v(A) and conversely.

Suppose now that we have built ρ′ for size n and consider

a run ρ with n + 1 edges. Then ρ consists of a run ρ1,

ending in (ℓ1, w1) with n edges followed by a delay d and

finally a discrete transition along the edge e to the concrete

state (ℓ2, w2). From the induction hypothesis, we can build an

equivalent run ρ′1 in T (A) of length 2n ending in (ℓ1, w1),
Let w′

1 be the clock valuation obtained from w1 after the

delay d. By construction, if constraints defined by the guard

of e are satisfied by w′
1 then in ρ′1, we can take the transition e′

without guards from ℓ1 to ℓ′1 as w′
1 |= v(I(ℓ′1)). Once in ℓ′1, we

cannot stay forever because of I(ℓ′1). We can also immediately

in a 0-delay take the transition e′′ from ℓ′1 to ℓ2 and clocks in X

are reset so w2 = [w′
1]R, and we obtain a run of length 2(n+1)

in v(T (A)) ending in (ℓ2, w2).
For the other direction, starting from a run in T (A), the ini-

tial step of the induction is similar. Let ρ′ be a run of v(T (A))
of length 2(n+1) ending in a concrete state (ℓ2, w2). Then ρ′

consists of a run ρ′1, ending in (ℓ1, w1) with 2n edges followed

by a first delay d1, then a discrete transition e′ to ℓ′1, and a

possible delay d2 and finally a discrete transition e′′ to ℓ2. Let e

be the edge in A corresponding to e′, e′′ w.r.t. our construction

2Note that the fact that the length is even is a consequence of the
construction: with two edges, first from ℓ to ℓ

′′ and the second from ℓ
′′

to ℓ
′, if the former can be taken then I(ℓ′′) is satisfied, and the run cannot

stay forever in ℓ′′ because of I(ℓ′′) and is forced to take the latter to ℓ′.

of T (A), with guard g = I(ℓ′1) and the same resets as in e′′.

Suppose now that we have built by induction hypothesis ρ

in v(A) for size n equivalent to a run ρ′1 in v(T (A)) ending

in (ℓ1, w1), Let w′
1 be the clock valuation obtained after the

delay d1 from w1 and w′′
1 after the delay d2 from w′

1. By

construction, if constraints defined by I(ℓ′1) are satisfied by w′
1

then w′
1 |= v(g). The first transition e′ in v(T (A)) to ℓ′1 can

be taken, similarly e can already be taken in v(A). After

the delay d2, we still have w′′
1 |= I(ℓ′1) therefore we still

have w′′
1 |= v(g). The second transition e′′ in v(T (A)) to ℓ2

can be taken, similarly e can still be taken in v(A). Clocks are

reset along e so w2 = [w′′
1 ]R and we obtain a run of length n

in v(A) ending in (ℓ2, w2).

C. Undecidability for PTAsI

Theorem 1. EF-emptiness is undecidable for PTAsI .

Proof. From Lemma 1, for any valuation v, reachability of

a location in v(A) and v(T (A)) is equivalent. Therefore,

EF-emptiness holds for A iff EF-emptiness holds for T (A).
As EF-emptiness is undecidable for PTAs without invari-

ant [AHV93], EF-emptiness is undecidable for PTAsI .

IV. A NEW DECIDABLE SUBCLASS

We now consider PTAsI with only upper-bound invariants.

Definition 5. A PTA with only upper-bound invariants (PTAU
I )

is a PTAI where each inequality in an invariant is of the form

x ⊳
∑

1≤i≤M αipi + d.

An example of PTAU
I is given in Fig. 6.

PTAsUI can be seen as a subclass of L/U-PTAs, a formalism

for which EF-emptiness is decidable [Hun+02; BL09] while

AF-emptiness is undecidable [JLR15]. In addition, the synthe-

sis of (even integer-valued) parameters for which EF holds in

L/U-PTAs cannot be done [JLR15]. PTAsUI can also be seen

as a subclass of U-PTAs [BL09], i. e., L/U-PTAs with only

upper-bound parameters, a formalism for which EF-emptiness

is decidable [Hun+02; BL09] while AF-emptiness is open, and

full TCTL-emptiness is undecidable [ALR18]; in addition, EF-

synthesis of integer-valued parameter can be achieved [BL09],

but the possibility to perform or not the exact synthesis of

rational-valued parameters for EF remains open.

The main differences between PTAsUI and U-PTAs are

1) the absence of guards in PTAsUI , and

2) the possibility only for U-PTAs to involve constraints of

the form x > c or x ≥ c in clock constraints, provided c

4



is a constant (no parameter can be used as a lower-bound

constraint).

In this section, we will see that these differences will allow

not only for positive decidability results but will also make

exact synthesis possible.

A. Reachability (EF)

1) EF-emptiness: We first show that, while matching the

decidability of L/U-PTAs (and U-PTAs) for EF-emptiness, the

complexity of EF-emptiness for PTAU
I is not the same as

for U-PTAs, which is PSPACE-complete for integer parameter

valuations [BL09]; in our case, given a PTAU
I A and a special

parameter valuation v1 that sets all parameters to 1, it is

sufficient to test in v1(A) the reachability of a given location in

a 0-delay (a run of duration 0), which is linear in the number of

locations of A. That is, we do not perform a symbolic analysis

(using the region graph [AD94] or the zone graph [BY03]) of

some TA, but we directly syntactically analyze our PTAU
I .

Formally, let v1 be the parameter valuation such that ∀1 ≤
i ≤ M : v1(pi) = 1. In the following lemma, we will show

that there exists a valuation v such that there exists a run in

v(A) reaching a given location ℓf iff there exists a 0-delay

run in v1(A) reaching ℓf . By 0-delay run, we mean for which

the sum of the delays along the edges is 0. This will allow us

to only test 0-delay runs in v1(A) to decide EF-emptiness.

Lemma 2. Let A be a PTAU
I and ℓf a goal location. There

exists a parameter valuation v and a run in v(A) reaching ℓf
iff there exists a 0-delay run in v1(A) reaching ℓf .

Proof. =⇒ Assume there exists a parameter valuation v and a

run ρ in v(A) reaching ℓf . We first show that there exists

a 0-delay run ρ0 in v(A) reaching ℓf (and, in fact, going

through the same locations and edges as ρ, with only the

delay being replaced with 0). This is immediate from the

syntax of PTAsUI : since we only allow invariants of the

form x ⊳
∑

1≤i≤M αipi + d, then nothing can constrain

a run to spend a certain amount of time in a location.

Therefore, ρ0 can follow the same locations and edges as

in ρ without letting any time elapse. This gives that there

exists a 0-delay run ρ0 in v(A) reaching ℓf .

We will now show that this run ρ0 is also a run of v1(A).
This is not entirely immediate, as v1(A) and v(A) have

different invariants, coming from different parameter val-

uations. Indeed, in case of invariants of the form x < p,

a 0-delay run is blocked in this location whenever p = 0
(as the constraint x < 0 is never satisfiable due to the

non-negative nature of clocks). However, by definition,

ρ0 does not pass through any location with an invariant

of the form x < p, with v(p) = 0, since this is a valid

run of v(A). That is, for any location ℓ along ρ0 with

an invariant containing an inequality of the form x < p,

v(p) > 0. We can finally conclude by observing that,

in v1(A), no such invariant blocking a 0-delay run exists

since, by definition of v1(A), all parameters evaluate to 1.

Therefore ρ0 is also a run reaching ℓf in v1(A).

⇐= The opposite direction is trivial. It suffices to pick v = v1
and, since there exists a 0-delay run in v1(A) reaching ℓf ,

then there exists a run (in 0-delay) in v(A) reaching ℓf .

From Lemma 2, we state the following theorem.

Theorem 2. EF-emptiness is decidable in NLOGSPACE for

PTAU
I .

Proof. Let A be a PTA and ℓf be a target location. From

Lemma 2, there exists a parameter valuation v and a run

in v(A) reaching ℓf iff there exists a 0-delay run in v1(A)
reaching ℓf . That is, it suffices to test only the existence of at

least one 0-delay run in v1(A) to decide EF-emptiness in A.

From the nature of PTAsUI , there exists a 0-delay run in

v1(A) iff there exists in the automaton v1(A) seen as a graph

a syntactic path from ℓ0 to ℓf that features no state with

an invariant involving a comparison of the form x < 0, for

some x. We can therefore consider v1(A) as a directed graph,

in which we remove all the edges to locations where there

is an invariant containing a comparison of the form x < 0
for some x. In this obtained oriented graph, we perform the

reachability of ℓf from ℓ0 which is NLOGSPACE [Pap94], so

is EF-emptiness for PTAU
I .

2) EF-synthesis: We will show that, in order to compute

EF-synthesis, it suffices to test (syntactically, without se-

mantic analysis) each automaton obtained by replacing each

parameter valuation with either 0 or 1. This is a strong

result, as EF-synthesis cannot be performed for L/U-PTAs

with either integer or rational valued parameters [JLR15],

and can only be performed for U-PTAs over integer-valued

parameters [BL09]. We first define an equivalence relation

for parameter valuations.

Definition 6. Let v, v′ be two parameter valuations. We say

that v ∼ v′ if, for each parameter p, v(p) = 0 iff v′(p) = 0
(i. e., v(p) > 0 iff v′(p) > 0).

Lemma 3. Let A be a PTAU
I and ℓf a goal location. Let v, v′

be two parameter valuations such that v ∼ v′.

There exists a run in v(A) reaching ℓf iff there exists a

0-delay run in v′(A) reaching ℓf .

Proof. The proof reuses the same technique as in Lemma 2.

=⇒ Assume there exists a parameter valuation v and a run ρ

in v(A) reaching ℓf . From the reasoning used in the

proof of Lemma 2, there exists a 0-delay run ρ0 in

v(A) reaching ℓf (and, in fact, going through the same

locations and edges as ρ, with only the delay being

replaced with 0).

We will now show that this run ρ0 is also a run of v′(A).
Following again the reasoning used in the proof of

Lemma 2, by definition, ρ0 does not pass through any

location with an invariant of the form x < p, with

v(p) = 0, since this is a valid run of v(A). That is,

for any location ℓ along ρ0 with an invariant containing

an inequality of the form x < p, v(p) > 0. We can
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finally conclude by observing that, in v′(A), no such

invariant blocking a 0-delay run exists since, from the fact

that v ∼ v′, v(p) > 0 iff v′(p) > 0 for all p. Therefore

ρ0 is also a run reaching ℓf in v′(A).
⇐= The opposite direction is similar. Since there exists a 0-

delay run in v′(A), then following the same reasoning as

above and since v ∼ v′, then this same 0-delay run is

also a run of v(A).

From Lemma 3, it suffices to test one valuation in each of

the regions defined by Definition 6. Each region being defined

by v(p) = 0 or v(p) > 0, for each parameter p, it suffices to

test both 0 and a non-zero value, e. g., 1. We end up with a

set V of 2|P| parameter valuations. This gives the following

theorem.

Theorem 3. We can compute the set EF-synthesis of parame-

ter valuations for PTAU
I within exponential time w.r.t. the size

of the input.

Proof. From Lemma 3, given a PTAU
I A it suffices to test

the existence of at least one 0-delay run for one parameter

valuation v in each of the regions defined by Definition 6,

i. e., from the set V . From the proof of Theorem 2, this can

be achieved syntactically by solving a reachability problem in

the graph of v(A). If the answer to the reachability problem

is positive for this parameter valuation, the whole region is

added to the result. That is, considering two parameters p1 and

p2, and the valuation such that v(p1) = 0 and v(p2) = 1, the

added region is p1 = 0∧p2 > 0. However, iterate similarly for

all valuations in V gives 2|P| different valuated automata and

we have to test the reachability for each of them. Therefore,

to compute EF-synthesis, we obtain a complexity exponential

in time.

This result makes the subclass of PTAU
I very interest-

ing, as a subclass of PTAs where EF-synthesis can be per-

formed. Rare subclasses such as reset-update-to-parameter

PTAs [ALR19] enjoy this possibility (and only on bounded

parameters), while well-known L/U-PTAs enjoy the only de-

cidability of EF-emptiness while EF-synthesis has been proven

intractable [JLR15].

B. Undecidability of TCTL-emptiness

While EF-emptiness is decidable for PTAU
I , one can wonder

whether this extends to the whole TCTL-emptiness prob-

lem. We exhibit in this section a nested TCTL formula

(by opposition to flat TCTL formula, e. g., EF or AF),

namely EGAF=0 ap for some atomic property ap and prove

that EGAF=0-emptiness is undecidable for (possibly bounded)

PTAU
I . The formula EGAF=0 was already used to prove

the TCTL-emptiness of U-PTAs in [ALR18]. This implies

the undecidability of the whole TCTL-emptiness problem for

(possibly bounded) PTAU
I .

Theorem 4. The EGAF=0-emptiness problem is undecidable

for bounded PTAU
I .

Proof. We reduce from the boundedness problem for two-

counter machines (i. e., whether the value of the counters

remains bounded along the execution), which is undecid-

able [KC10]. Recall that a two-counter machine is a finite

state machine with two integer-valued counters c1, c2. Two

different instructions are considered, we present those for c1,

those for c2 are similar:

1) when in state qi, increment c1 and go to qj ;

2) when in state qi, if c1 = 0 go to qk, otherwise decre-

ment c1 and go to qj .

We assume w.l.o.g. that the machine halts iff it reaches a

special state qhalt.

a) General explanation of the encoding: Let ◦ and ◦
be two labels. We define a PTAU

I that, under some conditions,

will encode the machine, and for which EGAF=0 ◦ -emptiness

holds iff the counters in the machine remain bounded. We will

reuse an encoding originally from [ALR16, proof of theorem

1], and apply a few modifications. In fact, recall that PTAU
I

disallow the use of comparisons of the form x = p, or x = c

with c a constant.

We label our transitions with: ◦ for the locations already

present in [ALR16] (depicted in yellow in our figures), and ◦
for the newly introduced locations (depicted in white in our

figures). In [ALR16], the gadgets use edges of the form of

Fig. 2a to encode the two-counter machine instructions. To

define a PTAU
I , we replace each of these edges by a special

construction given in Fig. 2b using only inequalities of the

form x ≤ k and x < k with k either a constant or a parameter.

Non guarded transitions are depicted as dotted edges. We will

show that a run will exactly encode the two-counter machine

if all transitions x ≤ a+1 (resp. x ≤ 1) to a location labeled

with ◦ are in fact taken when the clock valuation is exactly

equal to a+1 (resp. 1). Those runs are further denoted by ρ ◦ .

In the transformed version given in Fig. 2b, due to the ≤
invariant runs exist that take the guard “too early” (i. e., before

x1 = a + 1). Those are denoted by ρ◦. But, in that case,

observe that in ℓ′1, one can either take the transition to ℓ′′ or

to ℓ′2 (as the invariant to satisfy is x1 < a + 1) and then, go

to ℓerror. Therefore on this gadget, EGAF=0 ◦ is true at ℓ′

iff the guard x1 ≤ a+ 1 from ℓ to ℓ′ is taken at the very last

moment. In our gadgets encoding the counters, there will be

for each location with invariant x ≤ k an associated location

with invariant x < k, with only a transition to ℓerror. Note

that AF=0 ◦ is trivially true in ℓ and ℓ′′ as both locations are

labeled with ◦ (many runs also exist from ℓ to ℓerror and

do not encode properly the machine; they will be discarded in

our reasoning later).

Our PTAU
I A uses one parameter a and three parametric

clocks x1, x2, z. Each state qi of the two-counter machine is

encoded by a location ℓi of A. Each increment instruction

of the two-counter machine is encoded into a PTAU
I frag-

ment. The decrement instruction is a modification of the one

in [ALR16] using the same modifications as the increment

gadget.
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ℓ ℓ′′
x1 = a + 1

x := 0

(a) Gadget fragment of [ALR16]

ℓ ℓ′
1

x1 ≤ a + 1

ℓ′′

ℓ′
2

x1 < a + 1

ℓerror

x
1
:=

0

(b) Modified gadget of [ALR16] enforcing EGAF=0 ◦

Fig. 2: A gadget fragment and its modification into a PTAU
I

ℓi ℓi
0

z ≤ 0

ℓi
1

ℓi
2

x2 ≤ 1

ℓi
2′

x2 < 1

ℓi
3

ℓi
4

x1 ≤ a + 1

ℓi
4′

x1 < a + 1

ℓi
5

ℓi
6

z ≤ 1

ℓi
6′

z < 1

ℓerror

ℓj

ℓi
7

x1 ≤ a + 1

ℓi
7′

x1 < a + 1

ℓi
8

ℓi
9

x2 ≤ 1

ℓi
9′

x2 < 1

ℓi
10

x2
:=

0

x1 := 0

z := 0

x
1
:=

0

x2 := 0

Fig. 3: increment gadget

Given v, our encoding is such that when in ℓi with w(z) = 0
then w(x1) (resp. w(x2)) represents the value of the counter c1
(resp. c2) encoded by 1−v(a)c1 (resp. 1−v(a)c2) with v(a)
small enough so v(a)c1 < 1 (resp. v(a)c2 < 1). The two

branches in the gadgets handle both cases w(x1) > w(x2)
and w(x1) ≤ w(x2).

b) Increment gadget: Depicted in Fig. 3. We assume a ∈
[0, 1], in which case our PTAU

I is bounded (if a is unbounded,

then our construction proves the unbounded case). In the fol-

lowing, we write w as the tuple (w(x1), w(x2), w(z)). The ini-

tial encoding when w(z) = 0 is w(x1) = 1−v(a)c1, w(x2) =
1 − v(a)c2, w(z) = 0. From ℓi, we prove that there is a

unique run, going through the upper branch of the gadget,

that reaches ℓj without violating our property. It is the one

that takes each transition to a location with an invariant z ≤ 0
at the exact moment w(z) = 0, the transition to a location

with an invariant x2 ≤ 1 at the exact moment w(x2) = 1 and

transition to a location with an invariant x1 ≤ a + 1 at the

exact moment w(x1) = v(a) + 1. The other runs, that take

the transitions “too early” are removed as they violate the

property; indeed, if a run takes a transition before the “last

moment” allowed by the invariant (e. g., x ≤ 1), then it can

possibly take the successor state with invariant (x < 1) and

go to ℓerror. That is, EGAF=0 does not hold, because not all

7



runs go in 0-time to a ◦ location.

So, for each transition, many runs can take it, but we only

consider from now on the only one that takes the transition

at the last moment, i. e., when the clock is exactly equal to

the parameter/constant it is compared to. The same applies at

each transition. This gives the following run for the increment

gadget:

( ℓi , w)
0

−→ (ℓi0, (1 − v(a)c1, 1 − v(a)c2, 0))
0

−→

( ℓi1 , (1 − v(a)c1, 1 − v(a)c2, 0))
v(a)c2
−→ (ℓi2, (1 −

v(a)c1 + v(a)c2, 1, v(a)c2))
0

−→ ( ℓi3 , (1 − v(a)c1 +

v(a)c2, 0, v(a)c2))
v(a)−v(a)c2+v(a)c1

−→ (ℓi4, (1 +

v(a), v(a) − v(a)c2 + v(a)c1, v(a) + v(a)c1))
0

−→

( ℓi5 , (0, v(a)−v(a)c2+v(a)c1, v(a)+v(a)c1))
1−v(a)−v(a)c1

−→

(ℓi6, (1 − v(a) − v(a)c1, 1 − v(a)c2, 1))
0

−→

( ℓj , (1− v(a)(c1 + 1), 1− v(a)c2, 0)).

We apply the same reasoning on the lower branch of Fig. 3.

c) Decrement and 0-test gadget: The decrement and 0-

test gadget, depicted in Fig. 4, is similar to the one of [ALR16]

and undergoes the same modifications as in Fig. 3, the in-

crement gadget. Assume the same requirements as for the

increment gadget. From ℓi, following the same reasoning as

for the increment gadget we prove that there is a unique run,

going through the upper branch of the decrement gadget, that

reaches ℓj without violating our property.

Assume we are in a configuration (ℓi, w) where w(z) =
0 and suppose w(x1) < 1. We can enter the configura-

tion (ℓ1i , (w(x1), w(x2), 0)) as the invariant z = 0 ensures

no time has elapsed; in its short form, the run that reaches ℓj
correctly, i. e., satisfying our property EGAF=0 is:

( ℓi , w)
0

−→ (ℓi1, (1 − v(a)c1, 1 − v(a)c2, 0))
0

−→

( ℓi2 , (1 − v(a)c1, 1 − v(a)c2, 0))
v(a)c1
−→ (ℓi3, (1, 1 −

v(a)c2 + v(a)c1, v(a)c1))
0

−→ ( ℓi4 , (0, 1 − v(a)c2 +

v(a)c1, v(a)c1))
v(a)−v(a)c1+v(a)c2

−→ (ℓi5, (v(a) − v(a)c1 +

v(a)c2, v(a)+ 1, v(a)+ v(a)c2))
0

−→ ( ℓi6 , (v(a)− v(a)c1 +

v(a)c2, 0, v(a)+v(a)c2))
1−v(a)c2
−→ (ℓi7, (1−v(a)c1+v(a), 1−

v(a)c2, v(a)+1))
0

−→ ( ℓj , (1−v(a)(c1−1), 1−v(a)c2, 0)).

We apply the same reasoning on the lower branch of Fig. 4.

d) Initial gadget: In Fig. 5, the initial gadget ensures

the same way as presented before that the counters are both

initialized to 0. Recall that w(x1) = 1−v(a)c1, and w(x2) =
1 − v(a)c2. The unique run that does not violate EGAF=0

reaches ℓ1 exactly when w(x1) = w(x2) = 1, ensuring c1 =
c2 = 0.

e) Simulating the 2-counter machine: Now, let us con-

sider the runs ρ ◦ that take each transition to a location where

there is an invariant at the very last moment; note that other

runs violate the property anyway.

• If the counters of the two-counter machine remain

bounded then,

– either the two-counter machine halts by reaching qhalt

and there exist parameter valuations v (typically a suffi-

ciently small value for v(a) to encode the value of the

counters during the computation). In the constructed

PTAU
I , once valuated with v there is a (unique) run

simulating correctly the machine, reaching ℓhalt and

staying there forever.

In this first case, EGAF=0 ◦ holds for these valuations:

hence EGAF=0 ◦ -emptiness is false;

– or the two-counter machine loops forever, never

reaches qhalt, with values of the counters remaining

bounded. There exist small parameter valuations v

that encode the maximal value of the counters. In the

constructed PTAU
I , once valuated with v there is an

infinite (unique) run in the PTAU
I simulating correctly

the machine. As this run is infinite, we infinitely often

visit the decrement and/or the increment gadget(s).

In this second case, EGAF=0 ◦ also holds for these

valuations: hence EGAF=0 ◦ -emptiness is again false.

• Conversely, if the counters of the two-counter machine

are unbounded, then for any valuation, all runs end

in ℓerror. This happens either because all the runs took

on purpose an unguarded transition to ℓerror or because

they blocked due to the fact that counters are unbounded,

and therefore, for any arbitrarily small valuation, one

of the guards will eventually block the run and send it

to ℓerror thanks to the unguarded transitions. That is,

it is possible, e. g., in ℓi5 of Fig. 3, when the value

of w(z) = v(a)(c1+1) becomes strictly greater than 1 af-

ter a sufficient number of steps. It is no longer possible to

take the transition to ℓi6 because of the invariant z ≤ 1 and

there is no choice other than reach ℓerror again. Hence

there is no parameter valuation for which EGAF=0 ◦
holds, so EGAF=0 ◦ -emptiness is true.

We conclude that EGAF=0 ◦ -emptiness is true iff the values

of the counters of the two-counter machine are unbounded.

In this section, we have proved the following properties

about PTAU
I . Our first result here is that the EF-emptiness for

PTAU
I is less than the same reachability problem in classical

TAs without parameters.

Paradoxically, this simpler complexity for one TCTL deci-

sion problem (EF) does not make PTAU
I a trivial subclass of

(P)TAs at all. On the contrary, we proved that the decidability

of EF-emptiness does not extend to the whole TCTL logic by

exhibiting a TCTL formula for which deciding the emptiness

of parameter valuations satisfying it is undecidable, while

model-checking TCTL logic is decidable in TAs [ACD93].

V. PROOF OF CONCEPT: CASE STUDY

To illustrate the usability of PTAsUI , we describe in this

section a case study modeled and verified using PTAsUI .
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ℓi

ℓi
0

z ≤ 0, x1 ≤ 1

ℓi
0′

x1 < 1

ℓk

ℓi
1

z ≤ 0, x1 < 1

ℓi
2

ℓi
3

x1 ≤ 1

ℓi
3′

x1 < 1

ℓi
4

ℓi
5

x2 ≤ a + 1

ℓi
5′

x2 < a + 1

ℓerror ℓi
6

ℓi
7

z ≤ a + 1

ℓi
7′

z < a + 1

ℓj

ℓi
8

x2 ≤ a + 1

ℓi
8′

x2 < a + 1

ℓi
9

ℓi
10

x1 ≤ 1

ℓi
10′

x1 < 1

x1
:=

0

x
2

:=
0

z := 0

x
2
:=

0

x
1
:=

0

Fig. 4: decrement gadget

ℓ0 ℓ1
0

z = 0
x1 ≤ 1
x2 ≤ 1

ℓ2
0

z = 0
x1 < 1
x2 < 1

ℓerror

ℓ1

Fig. 5: initialisation gadget

a) Software support: PTAsUI are natively supported by

IMITATOR [And+12], which is a parametric model checker

performing parameter synthesis for parametric timed automata,

extended with some useful features such as synchronization,

global variables, etc.

b) Description: The idea here is to model a Real-time

Transport Protocol (RTP) using PTAsUI . RTP is a network

protocol usually used to deliver video, audio over a network.

RTP is mainly used in Voice over IP, teleconference and since

the last few years in systems that involve media streaming.

RTP is typically running over User Datagram Protocol

(UDP), which can broadcast data to several clients, and is

faster as TCP (Transmission Control Protocol) as it does not

provide guarantees for message delivery.

Fig. 6 represents a simplified version of an RTP protocol

combined with a Real-Time Control Protocol (RTCP). A server

sends audio and video data to a client, and the client has the

possibility to pause the data stream or ask for more data when

its buffer is empty. We use two clocks to model the protocol.

x represents the server, while y represents the client. In each

location, the first word represents the state of the client, while

the second represents the state of the server. The automaton

starts in location ℓ1 as the client is waiting for its data stream.

On the begin action, the server first opens the channel for the

video within pv units of time, and the channel for the audio

within ps − pv units of time, assuming otherwise audio and

video would not be synchronized at reception by the client.

Then data is streamed for at most psend units of time to

prevent overflowing the bandwidth, in location idle, sending.

At this moment, the server stops sending for an undetermined

amount of time. In the meantime, the client’s buffer is being

emptied. When running outOfData, the client switches to

location askMore, sending as the server is still sending data.

y is reset and the system has the possibility to switch to

location idle, sending again if the server is still streaming

data, i. e., the constraint x < psend is still satisfied. While

in idle, sending, the client can choose to interrupt the data

stream. When in location idle, notSending, the client still

uses the data of the buffer, but has to request more data at

some point, i. e., while y < prced is satisfied. The procedure
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idle, notSending
y ≤ prced

ℓ2
x ≤ pv

ℓ1

ℓ3
x ≤ ps

idle, sending

x < psend
y < prced

askMore, sending
x ≤ psend

askMore, notSending

begin

start
x := 0, y := 0

sendVideo

sendSound

x := 0

interrupt

x := 0

outOfData
y := 0

Fig. 6: Model of a media streaming protocol

from start is similar to the previously described one.

From locations askMore, sending and idle, notSending the

location askMore, notSending is reachable, when the server

is not streaming and the client’s buffer is empty. This is the

bug state of the system. We are interested in computing the

concrete parameter valuations of psend, prced, ps, pv s.t. the

system can reach the “bad” state askMore, notSending—that

is, we aim at performing EF(askMore, notSending)-synthesis.

c) Experiments: We modeled the case study in Fig. 6 in

the input language of IMITATOR. Experiments were conducted

with IMITATOR 2.11 “Butter Kouign-amann”, on a 2.4 GHz

Intel Core i5 processor with 2 GiB of RAM in a VirtualBox

environment running Ubuntu.3 The synthesis time is less than

1 second with four parameters.

Applying IMITATOR to Fig. 6, we obtain the following

result for EF(askMore, notSending)-synthesis:

ps ≥ 0 ∧ pv ≥ 0 ∧ psend > 0 ∧ prced > 0.

That is, for almost all parameter valuations, there exists

an execution of the system such that it reaches the bad

location askMore, notSending. This is not surprising, as it

depends on the rate of data exchanged and of the connection

quality to the network. In other words, this bug state can be

reached in any case as the data stream can be blocked at any

time, i. e., the client may have to wait for the video to load.

A more interesting question is to study whether all runs of

some valuations may eventually reach the bug location. This

would be worrying, as it would denote that the protocol has no

chances of success for these valuations. Therefore, we focus

on EF(askMore, notSending)-synthesis. This time, we obtain

that the set of valuations for which all runs eventually reach

askMore, notSending is empty, and therefore no valuation

makes the protocol entirely unsuccessful.

VI. CONCLUSION

We proposed a new parametric timed formalism to reason

about timed systems with some uncertain or unknown timing

constants, with two interesting positive results. First, the

emptiness of the valuation set for which at least one run

reaches a location i. e., EF-emptiness, is decidable in linear

time which is better than solving the reachability problem for

3Models and results are available at
https://www.imitator.fr/static/ICECCS19/

TAs, as it is PSPACE-complete. Second, we showed that exact

synthesis can be achieved in exponential time.

In contrast, we showed that (nested) TCTL-emptiness is

undecidable, making PTAsUI , as model-checking TCTL is de-

cidable for TAs, a formalism at the border between decidability

and undecidability.

Our formalism seems to allow for promising practical

applications as shown by Section V, where we successfully

modeled a simple data streaming protocol.

Future work: On the theoretical side, the emptiness of

some flat TCTL formulas remains open for PTAsUI , notably

AF, EG and AG-emptiness. Improving the complexity of EF-

synthesis is also an interesting direction.

More practically, we are interested in proposing dedicated

efficient synthesis algorithms for PTAsUI (independently of the

underlying decidability).
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