Behaviour-Driven Formal Model Development of
the ETCS Hybrid Level 3

Michael Butler, Dana Dghaym,
Thai Son Hoang, Tope Omitola,
Colin Snook
University of Southampton
Southampton, UK
{mjb, d.dghaym, t.s.hoang, t.omitola, cfs}
@soton.ac.uk

Abstract—Behaviour driven formal model development
(BDFMD) enables domain engineers to influence and validate
mathematically precise and verified specifications. In previous
work we proposed a process where manually authored scenarios
are used initially to support the requirements and help the
modeller. The same scenarios are used to verify behavioural prop-
erties of the model. The model is then mutated to automatically
generate scenarios that have a more complete coverage than the
manual ones. These automatically generated scenarios are used
to animate the model in a final acceptance stage. In this paper,
we discuss lessons learned from applying this BDFMD process
to a real-life specification: The European Train Control Systems
(ETCS) Hybrid Level 3. During the case study, we have developed
our understanding of the process, modifying the way we do some
stages and developing improved tool support to make the process
more efficient. We discuss (1) the need for abstract scenarios
during incremental model development and verification, (2) tools
and techniques developed to make the running of scenarios more
efficient, and (3) improvements to tools that generate new test
cases to improve coverage.

Index Terms—Event-B, UML-B, MoMuT, BDFMD, Scenario,
ETCS Hybrid Level 3

I. INTRODUCTION

For complex computing systems, formal modelling supports
a rigorous system-level engineering method to ensure that
the system upholds important properties such as safety and
security. Using theorem provers, such properties can be proven
to hold generically without instantiation and testing. However,
the human centric processes of understanding a natural lan-
guage or semi-formal requirements document and representing
it in mathematical abstraction is subjective and intellectual,
leading to misinterpretation. Hence it is vital that domain
experts validate the final models to show that they capture
the customer requirements.

A widely-used and reliable validation method is acceptance
testing, which with adequate coverage, provides assurance that
a system, in our case embodied by a formal model, repre-
sents the informal customer requirements. Acceptance tests
describe a sequence of simulation steps involving concrete data
examples to exhibit the functional responses of the system.
However, acceptance tests can also be viewed as a collection
of scenarios providing a useful and definitive specification of
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the behavioural requirements of the system. The high level
nature of acceptance tests, which are both human-readable
and executable, guarantees that they reflect the current state
of the product and do not become outdated. They are also
necessarily precise and concise to ensure that the acceptance
tests are repeatable.

Behaviour-Driven Development (BDD) [14], [17] is a
software development process based on writing precise semi-
formal scenarios as a behavioural specification and using
them as acceptance tests. In [20], we proposed a Behaviour-
Driven Formal Model Development (BDFMD) process where
manually authored scenarios are used initially to support
the requirements and help the modeller and then used to
verify behavioural properties of the model. Model mutation
is then used to automatically generate further scenarios that
have a more complete coverage than the manual ones. The
additional scenarios are checked by domain experts to ensure
they represent desired behaviour and then used to animate the
model in a final acceptance stage. For this acceptance stage, it
is important that a domain expert decides whether or not the
behaviour is desirable.

In this paper we develop the BDFMD process further based
on a ‘real-life’ case study: The Hybrid ERTMS/ETCS Level
3 (HL3) railway specification. As a result of feedback from
the formal model verification using theorem provers, that we
reported in [4], the HL3 specification has been re-issued to
clarify ambiguities and remove some contentious situations.
Here, we focus on validation and how it may guide the veri-
fication. We discuss further insights about the process which
were revealed by the case study and develop the techniques
and tool-support for creating, managing and running scenarios
via animation of the models. The contributions of this paper
are thus: a realistic case study resulting in; a proposal for
abstract scenarios in order to better guide the development and
verification of the model at abstract refinement levels; devel-
opment of the BDFMD process especially in the management
and use of scenarios; improved tool support for managing and
generating scenarios.

The remainder of the paper is structured as follows. Sec-
tion Il gives an overview of the case study and a summary



of the tools and languages used in the process. Section III
describes our BDFMD approach and how it has developed
compared to [20]. Section IV introduces our formal model
and, in more detail, how we tackled each stage of the BDFMD
process on the case study. Section V describes further work
that has arisen from the case study and Section VI concludes.

II. BACKGROUND

In this section, we first give a description of the HL3
case study (Section II-A) and then outline the background
technologies that we used in the case study (Section II-B).

A. HL3 Case Study Description

This paper uses the HL3 case study [6], [10] to apply a
process pattern for systematic verification and testing. The
case study concerns the European Rail Traffic Management
System (ERTMS)', the system of standards for management
and interoperation of signalling for railways by the European
Union (EU). HL3 is a “fixed virtual block” approach to
train movement, where the Trackside Train Detection (TTD)
derived from wayside equipment is augmented by information
obtained from trains>. Trains equipped with ERTMS equip-
ments can regularly report its current position and integrity
status. The scope of the HL3 specification does not include any
continuous domain aspects or real-time performance require-
ments. Timer functionality is described but not quantified. For
example, "if the propagation timer expires, X should happen".

The hardware derived TTD section is divided into a fixed
number of Virtual Sub-Sections (VSSes). A train movement
controller called the Radio Block Centre (RBC) manages the
Movement Authority (MA) granted to each train in mission.
An Full Supervision Movement Authority (FS MA) is the
permission for a train to move safely to a specific location
avoiding train collisions when the track is known to be free.
An On Sight Movement Authority (OS MA) permits the driver
to proceed with caution when the track state is uncertain.
However, in order for the RBC to grant a FS MA, it needs
to know which sections are free. The status of the VSSes are
calculated by the Virtual Block Detector (VBD) depending
on the information it receives from the environment:

« Track occupancy received from the trackside.

« Position reports and integrity confirmations received from
the trains.

« Timer expiry.

The RBC uses free sections to calculate the FS MA. In
addition to the occupied/free VSS states, the VSSes can also
be described as unknown or ambiguous. These additional
states are necessary to mitigate against possible roll-back of
disconnected trains, and to optimise the use of sections in a
safe manner.

Uhttp://ertms.net.
2Trains may or may not be specially equipped with the necessary equip-
ment, hence the term hybrid.

B. Background Technologies

In this sub-section, we give an overview of the background
technologies supporting our case study. These include Event-
B (Section II-B1) and iUML-B (Section II-B2) modelling
methods; ProB model checker (Section 1I-B3); MoMuT (Sec-
tion I1I-B4), a test case generation tool for deriving tests from
behavioural models; Cucumber for Event-B/iUML-B (Sec-
tion I1-B5) for the automatic execution of Gherkin scenarios on
Event-B/iUML-B models; and BMotion Studio (Section II-B6)
for visualising of formal models.

1) Event-B: Event-B [1] is a formal method for system
development. An Event-B model contains two parts: contexts
and machines. Contexts contain carrier sets S, constants C,
and axioms A(C) that constrain the carrier sets and constants.
Note that the model may be underspecified, e.g., the value of
the sets and constants can be any value satisfying the axioms.
Machines contain variables v, invariants |(v) that constrain the
variables, and events. An event comprises a guard denoting its
enabling-condition and an action describing how the variables
are modified when the event is executed. In general, an event
e has the following form, where t are the event parameters,
G(t, v) is the guard of the event, and v :=E(t, v) is the action
of the event.

any t where G(,v) then v :=E(t,v) end

Actions in Event-B are, in the most general cases, non-
deterministic [9], e.g., of the form v :€E(V) (v is assigned any
element from the set E(v)) or v :|P(v,v’) (v is assigned any
value satisfying the before-after predicate P(v,v’)). A special
event called INITIALISATION without parameters and guards
is used to put the system into the initial state.

A machine in Event-B corresponds to a transition system
where variables represent the state and events specify the
transitions. Event-B uses a mathematical language that is based
on set theory and predicate logic.

Contexts can be extended by adding new carrier sets,
constants, axioms, and theorems. Machines can be refined
by adding and modifying variables, invariants, events. In this
paper, we do not focus on context extension and machine
refinement.

Event-B is supported by the Rodin Platform (Rodin) [2],
an extensible open source toolkit which includes facilities for
modelling, verifying the consistency of models using theorem
proving and model checking techniques, and validating models
with simulation-based approaches.

2) iUML-B: iUML-B [15], [18], [19] provides a dia-
grammatic modelling notation for Event-B in the form of
state-machines and class diagrams. The diagrammatic models
are contained within an Event-B machine and generate or
contribute to parts of it. For example a state-machine will
automatically generate the Event-B data elements (sets, con-
stants, axioms, variables, and invariants) to implement the
states while Event-B events are expected to already exist to
represent the transitions. Transitions contribute further guards
and actions representing their state change, to the events
that they elaborate. A choice of two alternative translation



encodings are supported by the iUML-B tools. State-machines
are typically refined by adding nested state-machines to states.
Class diagrams provide a way to visually model data relation-
ships.

3) ProB: Consistency of Event-B models is provided via
means of proof obligations, e.g., invariant preservation by
all events. Proof obligations can be discharged automatically
or manually using the theorem provers of Rodin. Another
important tool for validation and verification of our model
is ProB [13]. ProB provides model checking facility to com-
plement the theorem proving technique for verifying Event-B
models. Features of the ProB model checker include finding
invariant violations and deadlock for multiple refinement levels
simultaneously. Furthermore, ProB also offers an animator
enabling users to validate the behaviour of the models by
exploring execution traces. The traces can be constructed
interactively by manual selection of events or automatically as
counter-examples from the model checker. Here, an animation
trace is a sequence of event execution with parameters’ value.
The animator shows the state of the model after each event ex-
ecution in the trace. Other technologies such as Cucumber for
Event-B/iUML-B, BMotion Studio, and our newly developed
Scenario checker are built on top of ProB.

4) MoMuT: MoMuT is a test case generation tool able to
derive tests from behaviour models. The behaviour model rep-
resents a system specification, the generated tests can be used
as black box tests on an implementation. They help to ensure
that every behaviour that is specified, is also implemented
correctly.

In contrast to other model based testing tools, the generated
test cases do not target structural coverage of the model, but
target exposing artificial faults systematically injected into the
model. These faults are representatives of potential faults in
the implementation; a test finding them in the model can be
assumed to find its direct counterpart as well as similar, not
only identical problems in the implementation [7].

As input models, MoMuT accepts Object Oriented Action
Systems (OOAS) [11], an object oriented extension of Back’s
Action systems [3]. The underlying concepts of Action sys-
tems and Event-B are both closely related to Dijkstra’s guarded
command language [5]. For a subset of UML, for some
Domain Specific Language s (DSLs) and for a subset of Event-
B, transformations into OOAS are available.

MoMuT strives to produce effective tests, i.e. tests exposing
faults, as well as efficient tests, i.e. keeping the test suite’s size
close to the necessary minimum. Thereby, the tests are also
suitable as manually reviewed acceptance tests.

5) Cucumber for Event-B/iUML-B: In [20], we described
our specialisation of Cucumber for Event-B and iUML-B with
the purpose of automatically executing of scenarios for Event-
B and iUML-B models. Cucumber [21] is a framework for
executing acceptance tests written in Gherkin language and
provides Gherkin language parser, test automation as well as
report generation. We provide Cucumber step definitions for
Event-B and iUML-B in [8] allowing us to execute the Gherkin

scenario directly on the Event-B/iUML-B models. Some main
Cucumber step definitions are as follows.

e The Cucumber step definitions for Event-B allow to
execute an event with some contraints on the parameters,
or to check if an event is enabled/disabled in the current
state, or to check if the current state satisfies some
constraint.

e Cucumber for iUML-B class diagrams provides step
definitions for calling a method with some constraints
on the method’s parameters, or to check the value of an
attribute or associations of the class.

e Cucumber for iUML-B state machines provides step
definitions for invoking a transition with some constraints
on the transition’s parameters, or to check the current
state of the state-machine.

6) BMotionStudio: In this paper we have used BMotion
Studio [12] to create a domain specific visualisation (DSV) of
our Event-B model. BMotion Studio comes with a graphical
environment including a visual editor that provides various
graphical elements to create a visualisation of the model. A
graphical element is based on Scalable Vector Graphics (SVG)
and HTML, two markup languages which support widgets like
shapes, images, labels, tables and lists. Moreover, observers
are used to link the model with the visualisation. For instance,
the tool provides a formula observer that binds a formula
(e.g. an expression or a variable) to a graphical element and
allows the tool to compute a visualisation for any given state
by changing the properties of the graphical element (e.g. the
colour or position) according to the evaluation of the formula
in the respective state. Finally, event handlers can be attached
to the visualisation to provide interactive functionalities, such
as an execute event handler that binds an Event-B event to a
graphical element and executes the event when the user clicks
on the graphical element.

III. A PROCESS PATTERN FOR SYSTEMATIC VERIFICATION
AND TESTING

In our previous work [20], we presented an approach for
formal systems modelling and validation based on BDD.
In this paper, we extend the forementioned approach and
defined a process pattern for systematic verification and testing
(Fig. 1). Note that the pattern is generic in terms of the
methods or tools used in different steps. The steps of the
process are as follows.

1) In the scenario modelling step, the manually written
scenarios are produced from the system requirements.
The output manual scenarios are kept close to the
terminology and representation of the domain and act
as a good means to support communication between
domain experts and development experts. In our HL3
case study, the scenarios are given in [6]. However, in
hindsight, the descriptions of the scenarios do not always
use a consistent terminology which, for a non-domain
expert, makes them difficult to follow and introduces
ambiguities. It would be better to rewrite the scenarios



System Manual Safe Behavioural
Requirements Scenarios Model Verified Model

Generated Accepted System
Scenarios Model
v : b A :

’F-‘“i _____ 1 %}----‘-F--—-I-\I ',:;.I";.;A ““““ e 4. _ . ____C A ;__.k_.A__.'__ SR > o

! o orma i o . . - e Model | & VO \

11l i - nal b Lol 1 o i
.—>, IVSICdenI?”O E—): = Modelling :“—h: VEEES;L%; > G;ﬁgigﬁ .'_)': Acceptance :,—>«: Implement- > Conforgizﬁz :—).
\__Viedeling s of System ;| . b Testing | ation i ' Finished

A S e e ——m® N - N - E e . e

2)

3)

4)

5)

Corrections to model behaviour

Changes to Requirements

Corrections to Implementation

Fig. 1. A Process Pattern for Systematic Verification and Testing

in a more concise and precise language, e.g., a Gherkin
domain-specific syntax for European Train Control Sys-
tem (ETCS) systems.

In the formal modelling step, the model is produced
from system requirements and the manual scenarios. The
output of the modelling step is a safe model, in the sense
that it is fully proven to be consistent with the invariants.
We use “safe” in a wide sense to include any important
properties). In our case study, we use Event-B/iUML-
B (Sections II-B1 and Section II-B2) as our modelling
methods.

The safe model is behaviourally verifed against the
manually written scenarios. The purpose is to verify that
the safe model exhibits the behaviour specfied in the
requirements which cannot be expressed via invariants.
The output of this step is a (safe and) behaviourally
verified model. In our case study, we use Cucumber
for Event-B/iUML-B for automatically verifying the
behaviour of our model written in Event-B/iUML-B. At
the same time, the newly developed scenario checker
(see Section IV-B2) are used to interactively verify the
behaviour of our model with the assistance BMotion
Studio (see Section II-B6). More discussion about our
BMotion Studio visualisation in BMotion Studio is in
Section IV-B1.

The behaviourally-verified model is used as the input
for a scenario generator, which automatically produces
a collection of generated scenarios. In our case study,
we use an Event-B-enabled version of MoMuT (see
Section II-B4) as the scenario generator. The gener-
ated scenarios should be reviewed to ensure that they
represent desired behaviour. If the model still contains
undesirable behaviour, that was not detected in the
previous step, this will be reflected in the generated
scenarios. Note that the set of generated scenarios is
a super-set of the manually scenarios. This is for the
purpose of using the “complete” set of scenarios in
the later steps such as model acceptance testing and
conformance testing.

The generated scenarios are used for acceptance testing
of the behaviourally verified model. Model acceptance

testing allows stakeholders to assess the usefulness of
the model by watching its behaviour. We again use Cu-
cumber for Event-B/iUMLB to automatically illustrate
the generated scenarios to different stakeholders. The
scenarios are in “natual language” and it is easy to
see the correspondence between the scenarios and the
requirements. The output of this step is an accepted
model, in the sense that it has been approved by the
stakeholders after validating its behaviours using the
generated scenarios.

6) In the implementation step, the accepted model is used
as the input to produce the system. In our case study,
while there is no implementation yet, the accepted model
can be used, for example, in conjunction with a code
generator to produce an implementation. Note that the
accepted model often contains environment and the
controller. In this case, we will need to separate the
controller model and implement it.

7) Finally, the system is conformance tested against the
scenarios. This is to ensure that the implementation
is consistent with the accepted model with respect to
the scenarios. Any inconsistency found in this step will
require corrections to the implementation and we expect
iterations between the implementation and conformance
testing steps. Note that the conformance test is for the
implementation of the controller against the environment
model with respect to the scenarios. As a result we will
need to co-simulate the environment together with the
controller implementation for testing the their confor-
mance. Implementing the HL3 controller and testing its
conformance is our future work (see Section V).

Compared to [20], our process pattern here extends the
original approach by having additional steps for scenario
modelling, implementation, and conformance testing. We also
explicitly added the iterative nature between the different steps,
e.g., between formal modelling and behavioural verification,
between implementation and conformance testing. This is an
indication that the process is not a one-directional procedure:
iterations are required when modifications need to be made to
the different artefacts during development.
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IV. CASE STUDY

We formally model the HL3 case study in [4]. Our model
follows a refinement-based approach using Event-B, where the
main focus is the VBD and how it can predict the VSS state
based on the provided information.

First, we start by modelling the environment focusing on
train movement, the actual position of the trains relative to the
VSS sections and TTDs. We also introduce radio communica-
tion to distinguish between connected and disconnected trains
which can only be detected by the trackside equipement. Later,
we introduce the concept of FS MA to control the movement
of trains and OS MA to permit the driver to control the
movement of trains when the track state is uncertain. Finally,
we introduce the VBD, which uses the information it receives
from the environment, in the form of position and integrity
reports, trackside vacancy and timers to calculate the VSS
states. The VSS state is determined by a fully connected state
machine (Fig. 2) described in [6]. The transition from one state
to the other can only happen under certain conditions, which
are modelled as event guards in Event-B. The VSS states
are eventually fed to the RBC to grant movement authorities.
Fig. 3 illustrates a part of our iUML-B model for the VSS.

A. Modelling with Scenarios

While constructing the formal model, we were only able to
use the scenarios to a limited extent. They were useful to help

understanding of the specification but, because they are very
concrete, we could not use them to drive or verify our abstract
models. Only when we had reached a refinement level that
implemented the internal VBD processing of VSS state, could
we animate the scenarios in our models. We did not use the
scenarios to help find useful abstractions during modelling, for
this we relied on analysing the main text in the specification.
However, it may be useful to find a way to abstract from the
given scenarios to form more abstract ones.

Our refinement strategy introduces new details with each
refinement level, in addition to some data refinement. Each
level focuses on a newly introduced concept. To illustrate our
abstract scenarios, we take Steps 2 and 3 from Scenario 2 of
[6], which are described concretely as follows. An illustration
of the first three steps of Scenario 2 is in Fig. 4. (Note that the
bracketed numbers in the text refer to subclauses of transitions
in the state diagram of Fig. 2. For example, (#8A) refers to
transition 8 firing because a particular disjunct, A, of its guard
has become true.

1) Step 2: Train 1 and Train 2 are split. Train 1 remains
connected with trackside and reports the new train
data train length. Except of the reporting of the mode
change, Train 2 is not connected to the trackside. Due
to the reported change of train data train length VSS
12 becomes “ambiguous” (#8A). The change of train
data train length also starts the integrity loss propagation
timer for VSS 12.

2) Step 3: Train 1 receives an FS MA until end of VSS
33, starts to run again, passes the TTD section border,
and reports its position on VSS 21, which becomes “am-
biguous” (#3A). VSS 12 becomes “unknown” (#10A).

Following our refinement strategy these concrete descrip-
tions of the steps can be abstracted as follows, where each
level adds more detail (shown in italics) corresponding to the
functionality added in that refinement level of the model.

1) Movement & VSS:

o Train 1 and 2 are split.
o Train 1 starts to run again and moves to VSS 21.

2) Radio Communication

o Train 1 and 2 are split. Train 1 remains connected
with the trackside. Train 2 is not connected to the
trackside.

o Train 1 starts to run again and moves to VSS 21.

3) TTD

e Train 1 and 2 are split. Train 1 remains connected
with the trackside. Train 2 is not connected to the
trackside.

o Train 1 starts to run again, passes the TTD section
border and moves to VSS 21.

4) Mission & Movement Authority

e Train 1 and 2 are split. Train 1 remains connected
with the trackside. Train 2 is not connected to the
trackside.
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o Train 1 receives an MA until end of VSS 33, starts to
run again, passes the TTD section border and moves
to VSS 21.

5) Position Reports

e Train 1 and 2 are split. Train 1 remains connected
with the trackside and reports its position in VSS
12. Train 2 is not connected to the trackside.

e Train 1 receives an MA until end of VSS 33, starts
to run again, passes the TTD section border and
reports its position on VSS 21.

6) VSS Availability & MA types

e Train 1 and 2 are split. Train 1 remains connected
with the trackside and reports its position in VSS
12. Train 2 is not connected to the trackside. VSS
12 remains unavailable.

e Train 1 receives an FS MA until end of VSS 33,
starts to run again, passes the TTD section border
and reports its position on VSS 21, which becomes
unavailable. VSS 12 remains unavailable.

7) Integrity

e Train 1 and 2 are split. Train 1 remains connected
with the trackside and reports the new train data
length. Train 2 is not connected to the trackside.
VSS 12 remains unavailable.

e Train 1 receives an FS MA until end of VSS 33,
starts to run again, passes the TTD section border
and reports its position on VSS 21 with integrity
confirmed. VSS 21 becomes unavailable. VSS 12
remains unavailable.

8) Timers

e Train 1 and 2 are split. Train 1 remains connected
with the trackside and reports the new train data
length. Train 2 is not connected to the trackside.
VSS 12 remains unavailable. The change of train
data length also starts the integrity loss propagation
timer for VSS 12.

e Train 1 receives an FS MA until end of VSS 33,
starts to run again, passes the TTD section border
and reports its position on VSS 21 with integrity
confirmed. VSS 21 becomes unavailable. VSS 12
remains unavailable.

Using these abstract versions of the scenarios, we could
animate our model and incrementally verify that its behaviour

is developing in accordance with the scenario. Finally, at
the last refinement we verify the model against the complete
concrete scenario described in the specification document.

However, this approach is retrospective; we abstracted the
scenario to match our refinement strategy. It may also be
possible to abstract the scenarios first, for example, by fo-
cusing on different areas of functionality in each scenario and
then looking for common patterns across the set of scenarios.
The abstract scenarios could then be used as suggested in
Section III, step 2, to guide the refinement strategy used in
the model.

B. Behaviour Verification and Acceptance Testing

This section describes our approach, and tool-support for,
behaviour verification and acceptance testing. These steps both
rely on being able to animate the model in controlled steps
that make up a particular scenario. As the scenario unfolds,
at each step the state of the model is examined to ensure
that it is a valid representation of the desired system. The
scenario must also be feasible for it to complete. That is, the
steps of the scenario must be enabled in the model at the
appropriate stages. This examination of state and enabledness,
may either be performed by manual observation (initial be-
havioural verification and acceptance tests) or by comparison
with previous animations (for regression testing of the model
after changes). Manual observation is assisted by a BMotion
Studio visualisation of the state as described in Section IV-B1,
whereas comparison is done automatically by running the
cucumber execution tool described in Section II-B5 or (more
slowly) by replaying the scenario using the scenario checker
tool described in Section IV-B2. The scenarios may either
be written ‘by hand’ by authoring a cucumber for Event-B
script, or recorded by stepping through the animation using the
scenario checker tool described in Section IV-B2 and saving
the results.

1) Visualisation: In order to efficiently verify or validate
the behaviour of the model we need to be able to visualise its
state while running scenarios. The ProB animator provides a
‘state view’ window (lower right view pane in Fig. 5) showing
the current and past state of each variable. However, this view
shows the mathematical forms such as sets of pair maplets
for a relation, which is difficult to interpret with respect to
the domain being modelled. To visualise the state in a more
appealing way we created a BMotion Studio visualisation
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Fig. 5. Behaviour Verification using BMotion Studio Visualisation and Scenario Checker to drive ProB

(upper left view pane in Fig. 5) that is linked to the variables
of the model.

For the incremental behaviour verification stage, while con-
structing the model, we used a simple tabular representation
of the data which is very quick to create but easier to map to
domain concepts than lists of maplet pairs. New tables could
be added easily to represent the new variables introduced at
each refinement level. We arranged the tables into coloured
blocks to easily distinguish the representation of the physical
trains in the environment from the representation of the
internal state of the control system. This stage is mainly for
the modeller who has a good understanding of the variables
in the model.

For the acceptance testing stage, where stakeholders such
as domain experts are expected to understand the behaviour
of the model, a more concrete visualisation of state was
added consisting of coloured blocks to represent the state of
TTD and VSS, coloured line to indicate movement authority,
and a moving picture of a train to represent train position
on the sections. The trains also change their rendering to
indicate whether they are ‘in mission’ or not and whether
they are ‘ghost’. The visualisation was used to demonstrate
and successfully validate the model to domain experts from
equipment suppliers and national rail operators.

2) Scenario Checker: The BDFMD process relies heavily
on animation of scenarios. Hence it is important to make this

activity as efficient as possible. ProB provides a basic GUI
interface for controlling animations, but manually firing the
correct sequence of selected events was found to be a slow
and onerous task. ProB also provides an API for extending the
tooling with additional facilities and this was used to provide
anew ‘Scenario Checker’ tool (lower left view pane in Fig. 5).
The tool provides two areas of functionality that make scenario
checking feasible: run to completion and record/replay.

In Event-B models we model closed systems of interacting
components including the domain or environment and any
controlling device. Event-B makes no distinction between the
kinds of events and hence an event in the environment will
usually trigger a sequence of events of the controller as it
responds to the change in the environment. The events that fire
to implement control are considered internal implementation
steps and are not specified in our scenarios. The scenario
checker repeatedly automatically fires any internal events
until none are enabled and then waits for another external
environment event to be selected. (For example, in Fig. 5,
compare the enabled external events available in the scenario
checker with the full history of fired events shown by ProB
in the upper right view pane). Only the external environment
events and associated state are recorded during a scenario.
During playback, only the external events are needed from the
scenario script because internal ones are fired automatically
when enabled.



In our Event-B model we left the order of firing of some
internal process steps non-deterministic because it is not
important for the refinement proof and it is cumbersome to
specify the negation of all other options. In the scenario
checker tool we added a priority annotation mechanism to
ensure that the correct order is used for animation.

The scenario checker saves a snapshot of the state at each
step that is recorded. This can then be used during playback
to compare the new state of the running model with that
recorded previously. Variables in the model either represent
physical properties of the environment or internal processing
of the controller. The scenario checker includes the option
to annotate some variables as PRIVATE so that they are
not recorded or checked. Any variable may be excluded in
this way but typically the environment variables need to be
checked and internal process control variables (akin to pro-
gramme counters) should be ignored. Control state variables
that represent the controllers model of the environment may be
ignored or checked depending on whether they are significant
to the specification being modelled. In our case we ignored
the process variables that control the sequence of VSS state
updates but checked the controller state variables such as VSS
state, ghost train, in mission etc. since these are properties
that the controller must understand according to the HL3
specification.

For now, we have used comments to annotate which are
the internal events and which are the private variables. The
annotations are made in a special refinement which also
instantiates the model with the example track sections used in
the scenarios. In future we intend to add a modelling feature
to do this in a more robust way using an attribute of the meta-
class. Another model feature that would be useful to ‘hide’
during scenario checking is local variables. Event-B syntax
does not distinguish between parameters that represent choices
in the environment and those that are used for convenience as
local variables. It would be useful to only record the former
and hide the latter when scenario checking. However, due to
event extension, parameters can not be annotated in the final
animation refinement since they are not repeated at subsequent
refinements of the event.

The current implementation records the scenario scripts in
an Eclipse Modelling Framework (EMF) based format. In
future work we will use the Cucumber for Event-B notation
as the persistence of the scenario checker tool to improve the
integration of these tools. For example, the scenario recording
mechanism could then be used to create cucumber scenarios
that are used like regression tests automatically replayed after
model changes in a continuous integration environment.

C. Scenario Generation

This section describes our experience of using the MoMuT
test-case generator to generate scenarios for the HL3 case
study.

1) Partial Order Model Adaption: Requirements can be un-
derspecified with regards to the order of events. For example,
two lights, A and B, could be required to be switched on in

an arbitrary order before some next event C happens. Both
sequences A-B-C and B-A-C are correct implementations of
this requirement, yielding the same final result. The number
of correct sequences grows exponentially with the number
of events that are allowed to appear in an arbitrary order,
which makes model exploration highly inefficient. If the
events are independent (i.e. one event does not modify a
variable that the other event reads or modifies), MoMuT is
able to identify such sequences using partial order reduction,
However, the transition events for updating the VSS states are
not independent because they all update a single set variable to
indicate completion. In order to make model exploration more
efficient, in our experiments, instead of using one separate
flag per event, we refined the model to strictly order the
events according to the index of the VSS. Since this is a valid
refinement that reduces non-determinism, safety properties are
not affected. Possible implementations are reduced since any
implementation should obey this arbitrarily chosen ordering.
However, since these events are annotated as internal, their
order is not checked during conformance testing using these
scenarios.

2) Model Transformation: The native modeling formalism
of MoMuT is object oriented action systems (OOAS). There-
fore, in order to apply test case generation, an automatic
transformation from Event-B to OOAS was implemented.
While OOAS and Event-B are similar, the modeling formalism
have a few differences in their workings and semantics. Firstly,
in Event-B, types of event parameters are implicitly given
by constraints like set membership, whereas in OOAS, types,
including list sizes, need to be explicitly given. Secondly, in
Event-B, the right hand side of assignments always refers to
the value before activating the event, whereas in OOAS, the
right hand side of an assignment immediately updates the
value of variables. Therefore, ordering of assignments plays
a role. Thirdly, in Event-B, sets are heavily used, whereas
in OOAS sets are not available as a primitive data type.
Instead, the transformation emulates sets with lists. MoMuT
explores models in an explicit state and enumerative manner.
This makes constructs like nested set comprehensions — which
are heavily used in Event-B— especially for larger sets or
numeric value ranges, very inefficient. To address this issue,
we manually reformulated these constructs to use nested fold
operations without set comprehension.

3) Scenario recording: In lieu of a finalised transformation
from Gherkin or from the persistence format of the scenario
checker to the test format of MoMuT, the tests were recorded
using MoMuT’s text interface based animation feature.

4) Coverage Analysis and Incremental Test Case Gener-
ation: In a first round of experiments, the test suite was
extended by four scenarios, improving coverage and strong
kills. Analysis of not covered model parts exposed a mistake
in the model that made part of the model unreachable. Fixing
this led to a changed model with a slightly higher number of
mutants (before: 2366, now 2370).

In the second round of experiments, mutation coverage of
the manual scenarios has been evaluated again; 3 manual



Scen Strong Fail Weak Equiv Missed Steps
ml 16.03 1.1 4.05 17.85  60.97 253
m2 743 0.89 6.37 16.2 69.11 244
m3 8.69 131 1.14 21.9 66.96 311
m4 7.22 097 291 1122 77.68 165
m5 1.01 0.68 4.35 1473 79.24 219
mo6 591 093 3.76 13.92 7549 206
m7 1.39 072 245 1338 82.07 209
m8 1.6 034  1.77 11.31 84.98 474
m9 1.43 0.68 3.16 1228 8245 363
man. 50.72 2.03 899 29.66  8.61 2444
gen. 30.3 0.0 0.93 2.66 66.12 15416
all 57.97 207 119 27.09 097 17860
TABLE T

COVERAGE AND SIZE DATA OF MANUAL AND GENERATED SCENARIOS

scenarios have been added, and 75 additional scenarios have
been generated automatically to increase the coverage. Table
I summarizes coverage for the original manual scenarios
(ml ... m9), combined original manual scenarios (man.),
combined new manual and generated scenarios (gen.), and the
combination of all scenarios (all).

For each row, the following values are given in percentages
of mutants with respect to the total number of mutants (2370):
Strong kills (Strong) shows how many mutants changed
behaviour on the outputs. Failures (Fail) shows how many
mutants were defective and produce e.g. overflows. Weak kills
(Weak) show how many mutants change the inner status of
the model, but do not propagate this change to the outputs.
Locally equivalent (Equiv) shows how many mutants do not
diverge from the original model in inner state for the given
scenarios. Missed shows how many mutants were not visited
at all by the scenario. Finally, Steps shows the (combined)
length of the test (test suite).

The final set of scenarios significantly improves the test
suite by reducing the missed mutants from 8.61% down to
0.97% and increasing strong kill coverage up from 50.72% to
57.97%.

The manual scenarios do not visit the mutants of four events
at all. The generated scenarios now visit all of these events.
Similarly, the initial manual scenarios do not kill any mutants
of 12 events. The generated scenarios kill mutants of six of
these events.

The test case generation takes several hours on reasonably
strong servers. Additional scenario generation campaigns with
varied exploration parameters could produce further improved
results, pushing some mutants from being weak kills or locally
equivalent to strong kills, but will also increase generation time
substantially. Several of the locally equivalent mutants might
be globally equivalent and cannot be killed by a scenario at
all.

5) Validation of model transformation: Both the manual
changes to the OOAS model and the manual recording of the
scenarios are a potential source of mistakes. In order to catch
problems introduced in these steps, the manual and generated
scenarios were automatically run against an animation of
the Event-B model using ProB’s API. This validation step
was crucial in model and model transformation development,

since it revealed bugs that could then be fixed. All manual
scenarios worked correctly for the final version of both models.
However, the generated scenarios exposed another difference
between the OOAS model and the Event-B model. This shows
the value of this validation step, as well as the automatic
generation of additional scenarios, in practice.

6) Validation of generated scenarios: The effort for manual
validation of the generated scenarios is reasonable. While
reviewing 75 scenarios might seem a lot, the overall number of
steps in the generated scenarios is around six times the number
of steps in the manual scenarios. Since the generated scenarios
share large prefixes with manual scenarios and among each
other, making this visible to the reviewer of the test would
further ease the review process. As the scenarios are needed
to achieve the wanted coverage of the model, the alternative
to review would be writing those scenarios, which is clearly
more effort.

V. FUTURE WORK

Future work will focus on the two contrasting areas dis-
cussed in this paper.

1) Research into abstract scenarios will include looking
at how they can be synthesised and whether they can be
used to guide the modelling process. While it is clear that
concrete scenarios help to explain the detailed requirements,
it is less clear how abstract scenarios can be derived and
used to direct the modelling. Nevertheless, our abstraction
based modelling process would benefit from more abstract
explanations of the reasons for specification details. This work
requires experimental research.

2) Tool and technology improvements are needed to better
support the management and use of scenarios for verification
and validation. The use of scenarios was clearly beneficial
in this case study but limited by the need for more integrated
tool support. The three tools (Scenario Checker, Cucumber for
Event-B, MoMuT) currently use different syntax for persisting
scenarios. It would clearly be of benefit to share a common
serialisation (or provide bi-directional transformation) to in-
crease the efficiency of sharing scenarios between tools.

Further work is needed to improve MoMuT’s support for
Event-B language elements such as relations and to optimize
the generator for typical structures produced by iUML-B. We
will also investigate the characteristics of mutation operators
for Event-B and compare with classic coverage measures such
as MC/DC.

Our case study has not yet reached the implementation stage
(Section III) steps 6 and 7). We plan to illustrate these steps
by decomposing the model into subsystems representing a)
the VBD to be implemented and b) the environment that it
operates in (including train movement and RBC). We could
then ‘implement’ the VBD subsystem by modelling it in a
Modellica modelling tool from which an FMI can be exported.
The scenarios can then be used for conformance testing using
the co-simulation tools developed by Savicks et al. [16] to
animate both the FMI encapsulating the implementation and
the environment model still in Event-B.



VI. CONCLUSION

A behaviour driven approach to formal modelling relies
heavily on animating scenarios and the case study has high-
lighted this, driving us to develop better tools for running and
managing scenario scripts. The approach has clear benefits
in verifying the model behaviour when the model is first
constructed and subsequently in validation by stakeholders.
During behaviour verification a number of anomalies were
discovered by running the scenarios provided in the specifica-
tion. For example, scenario 8 highlighted a misunderstanding
in our model where the update of VSS in response to reporting
of position must be done separately from responses to TTD
triggers. An example of a discrepancy that was not covered by
the provided scenarios is when a propagation timer changes
the state of a VSS that is already allocated in a train’s FS
MA. In other cases, areas of concern in the specification
were identified while attempting to prove safety invariants
about FS MA and these were addressed in a new version
of the European Train Control System (ETCS) specification
illustrating the importance of formal verification by proof.
We were able to demonstrate the model to interested parties
including railway experts and operators at an open event
organised by the Enable-S3 project in Graz, Austria, as well
as at the RSSRail 2019 conference in Lille, France.

The case study highlighted a mismatch with the Event-B
abstraction approach when only detailed concrete scenarios
are available. We were not able to test the full scenarios
until the model had been fully developed to that level. To
address this, we propose a technique of abstracting from the
concrete scenarios to obtain more abstract scenarios that are
appropriate for particular refinement levels. This will allow
domain experts to engage in the modelling process at an early
stage and guide its development. Full automation of replaying
scenarios and checking that the expected state is obtained,
would allow them to be used in a ‘regression testing’ mode as
used in continuous integration. Further research is needed to
discover whether abstract scenarios can be used to drive the
abstractions or whether it is better to let the model determine
the abstraction of scenarios.
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