
Modelling hybrid train speed controller using proof
and refinement

Paulius Stankaitis∗, Guillaume Dupont†, Neeraj Kumar Singh†, Yamine Aı̈t-Ameur†,
Alexei Iliasov∗, Alexander Romanovsky∗

∗School of Computing, Newcastle University, Newcastle upon Tyne, UK
{p.stankaitis, alexei.iliasov, alexander.romanovsky}@newcastle.ac.uk
†INPT–ENSEEIHT, 2 Rue Charles Camichel, Toulouse, France
{guillaume.dupont, neeraj.singh, yamine }@enseeiht.fr

Abstract—The modern radio-based railway signalling systems
aim to increase network’s capacity by enabling trains to run
closer to each other. At the core of such systems is train’s
on-board computer (discrete) responsible for computing and
controlling the speed (continuous) of the train. Such systems
are best captured by hybrid models, which capture discrete
and continuous system’s aspects. Hybrid models are notoriously
difficult to model and verify, in our research we address this
problem by applying hybrid systems’ modelling patterns and
stepwise refinement for developing hybrid train speed controller
model.

Index Terms—hybrid systems, railway signalling, Event-B,
refinement, proofs

I. INTRODUCTION

In the last few decades, modern signalling systems (e.g. [1]
and [2]) have been proposed and progressively refined as a
way to safely increase networks’ capacity. In the radio-based
signalling systems, trains regularly receive data about the
distance they are permitted to travel (movement authority); an
on-board computer then calculates the fitting speed profile for
the train to comply to this authority. The whole system relies
extensively on algorithms and computation (for calculating the
speed profile), which being a part of the safety-critical system
requires the highest level of trust. To achieve such a high
level of safety assurance for those complex speed controlling
systems, scenario-based testing methods are far from being
sufficient, although very much used in the industry. On the
other hand, formal methods have been successfully applied to
the railway domain (e.g. [3], [4]) and seem quite fitting for
dealing with programs.

For the highest level of assurance, trains should be modelled
as hybrid systems, that is, systems that integrate both discrete
and continuous types of behaviour. Modelling and certifying
hybrid systems is known to be a difficult task [5] as standard
formal methods often deal with purely discrete models. To
overcome this, we chose to use the Event-B method, which
proved successful in handling continuous concepts [6]–[8]
while providing a convenient and well-adapted methodology,
framework and tool to model those systems.

In this work we aim to develop a generic train speed
controller model with a continuous train dynamics in the
Event-B [9] formal modelling framework. The Event-B is a
proof and stepwise based modelling method for developing

correct-by-construction systems which has been used widely
for modelling railway systems (e.g. [10]–[12]). However, con-
tinuous railway system aspects could not be modelled due to
inability to extend the Event-B specification language with the
additional theories. To overcome this issue the Theory plug-
in [13] was developed which allowed developers to include
additional theories. In a paper by Dupont et al. [7] authors
utilized Theory plug-in and developed a modelling framework
together with theories for modelling hybrid systems in Event-
B. This paper presents an application of this method for de-
veloping hybrid railway signalling models. The generic hybrid
railway signalling model is primarily based on specifications
and requirements for European Train Control Systems [1].
Related Work In the work by Berger et al. [14] the authors
use a real-time modelling approach to develop and verify
the ERTMS model. A multifaceted formalism is introduced
in [15] to reason about real-time systems with a case study
on railway crossings. In the work by Cimatti et al. [16] the
authors propose a different logic based on the temporal logic
with regular expressions and use it for requirement validation
of hybrid railway systems. Their verification approach, based
on a state-exploration, is used to demonstrate the desired and
safe behaviour of the model. Halchin et al. [17], [18] propose
a certified translation from B formal language to HLL for
developing railway software. In this work, the Isabelle/HOL
theorem prover is used to check the correctness of the trans-
lation process, and the train localization in a CBTC system
is used to illustrate the overall approach and the developed
tool B2HLL. Even though, the model-checking approaches are
desirable due to their push-button verification advantage, the
approach rarely scales for realistic scenarios, particularly in
the hybrid domain. In the other strand of works an alternative
to model checking - proof based modelling is used to verify
European and Chinese Train Control Systems Level 3 [19]–
[21]. These studies are more related to our work as the authors
consider most of the signalling parts (only level crossings [15])
and validate systems through proofs. We would like to note
here that our approach is based on the stepwise refinement,
which reduces the proof effort and also enables to further
refine the model for a specific signalling configuration (or a
protocol).

The following section provides background information

on the Event-B specification language and theory extension
process. In the Section III we recall the main modelling
features of the modelling framework for hybrid systems in
Event-B developed by Dupont et al. [7]. Section IV overviews
the developed formal hybrid railway signalling model. The
final sections discusses modelling and verification challenges,
and outlines future work directions.

II. BACKGROUND

A. Event-B

The Event-B mathematical language used in the system
development and analysis is an evolution of the classical B
method [22] and Action Systems [23]. The formal specification
language offers a fairly high-level mathematical language
based on a first-order logic and Zermelo-Fraenkel set theory
as well as an economical yet expressive modelling notation.
The formalism belongs to a family of state-based modelling
languages where a state of a discrete system is simply a
collection of variables and constants whereas the transition
is a guarded variable transformation.

CONTEXT
ctxtid2

EXTENDS
ctxt id 1

SETS
s

CONSTANTS
c

AXIOMS
A(s, c)

THEOREMS
Tc(s, c)

END

MACHINE
mchid2

REFINES
mch id 1

SEES
ctxid2

VARIABLES
v

INVARIANTS
I(s, c, v)

THEOREMS
Tm(s, c, v)

VARIANT
V (s, c, v)

EVENTS
Event evt

Any
x

Where
G(s, c, v, x)

Then
v : |BA(s, c, v, x, v′)

End
END

Fig. 1: Event-B Model Structure

A cornerstone of the Event-B method is the step-wise
development that facilitates a gradual design of a system
implementation through a number of correctness preserving
refinement steps. The model development starts with a creation
of a very abstract specification and the model is completed
when all requirements and specifications are covered. The
Event-B model is made of two key components - machines
and contexts which respectively describe dynamic and static
parts of the system (see Fig. 1). The context contains modeler
declared constants and associated axioms which can be made
visible in machines. The dynamic part of the model contains
variables which are constrained by invariants and initialised
by an action. The state variables are then transformed by
actions which are part of events and the modeler may use
predicate guards to denote when event is triggered. Specifying

a model is not sufficient, one must provide evidence about the
correctness of the model as well. The Event-B method is a
proof driven specification language where model correctness is
demonstrated by generating and discharging proof obligations
- theorems in the first-order logic. Table I shows the important
proof obligations of the Event-B language. More details related
to the modeling language and proof obligations can be found
in [9]. The model is considered to be correct when all proof
obligations are discharged.

Theorems A(s, c)⇒ Tc(s, c)
A(s, c) ∧ I(s, c, v)

⇒Tm(s, c, v)
Invariant A(s, c) ∧ I(s, c, v)
preservation ∧G(s, c, v, x)

∧BA(s, c, v, x, v′)
⇒I(s, c, v′)

Event A(s, c) ∧ I(s, c, v)
feasibility ∧G(s, c, v, x)

⇒∃v′.BA(s, c, v, x, v′)
Variant A(s, c) ∧ I(s, c, v)
progress ∧G(s, c, v, x)

∧BA(s, c, v, x, v′)
⇒V (s, c, v′) < V (s, c, v)

TABLE I: Proof Obligations

Rodin [24] is an open source Eclipse based integrated
development environment (IDE) for Event-B model devel-
opment. The Rodin is a core set of plug-ins for project
management, formal development, syntactic analysis, proof
assistance and proof-based verification. Moreover, it also al-
lows extension points for supporting a range of additional
plugins to provide different functionalities and features related
to model checking, animation, code generation, additional
proof capabilities using SMTs and external theorem provers
(i.e., Why3, Isabelle), UML-B, Theory plug-ins, composition
and decomposition, refactoring framework, and model editors.

B. Extending Event-B with external theories

Even though, the Event-B mathematical language is ex-
pressive enough for a lot of useful mathematical concepts it
is still desirable to allow users extending the language. For
that reason a theory extension process has been developed
and realized as a Rodin platform plug-in1. With the theory
extension approach new theories which include datatypes,
operators and proof rules can be defined and proved to be
sound through generated proof obligations.

A theory of real number is of particular interest for rea-
soning about hybrid systems properties. This work reuses the
theory of dense reals originally developed by Abrial and Butler
[25], and then extended by Dupont et al. [7] to support the
theory of continuous functions, ordinary differential equations.
etc.

III. MODELLING PATTERNS FOR HYBRID SYSTEMS

In this section we overview the main modelling features
of the framework for hybrid systems in Event-B. We first

1http://wiki.event-b.org/index.php/Theory Plug-in#Standard Library

describe a theory for differential equations, then expose a
generic hybrid model as well as a methodology for deriving a
specific controller.

A. A Theory for Differential Equations

To handle a hybrid system we need to employ both discrete
and continuous concepts. If discrete parts are in essence
”natively” supported by Event-B, it is not really the case as
for continuous features. To that extent, we make use of the
theory plug-in presented in Section II-B.

THEORY
TYPE PARAMETERS E ,F
DATA TYPES

DE (F)
CONSTRUCTORS

ode (fun :P(R× F × F) , i n i t i a l :F , i n i t i a l A r g :R)
OPERATORS

solutionOf <p r e d i c a t e> (DR : P(R) ,η : DR → F , eq : DE(F))
Solvable <p r e d i c a t e> (DR : P(R) , eq : DE(F))

d i r e c t d e f i n i t i o n
∃x · x ∈ (DR → F) ∧ solutionOf(DR, x, eq)

. . .
END

Fig. 2: Differential Equation Theory Snippet

Listing 2 gives an excerpt of the theory defined and used
through out the Event-B development. It defines in particular:
• DE(S), the set of differential equations valued in S (the

continuous state space).
• solutionOf(D,η,eq), with η ∈ DR → S and eq ∈

DE(S), predicate indicating that η is a solution of eq
(on domain D).

• Solvable(D,eq), predicate indicating that there exists a
solution to equation eq on domain D.

• ode(F ,η0,t0), the ordinary differential equation (ODE)
η̇(t) = F (t, η(t)) with initial condition η(t0) = η0.

B. A Generic Hybrid Model in Event-B

The methodology used to design hybrid system has been
first presented in [7]. It is mostly based on the diagram
presented in Figure 3 and relies on a generic Event-B model,
aimed at being refined.

VARIABLES t ,xp ,xs

INVARIANTS
i nv1 : t ∈ R+

i nv2 : xs ∈ STATES
inv3 : xp ∈ R+R→ S

EVENTS
. . .
P r o g r e s s
THEN

a c t 1 : t :| t < t′

a) Variables and State
Spaces: A hybrid system is
modelled through two variables:
its discrete state xs (usually
corresponding to some mode
in a mode automaton) and its

Ctrl Plant

sense

actuate

environmentcommand

Fig. 3: Generic Hybrid System Representation

continuous state xp, which is a
function of time and valued in

some state space S (usually a real vector space).
As we will need it in later proofs or properties, we also

model time with a single read-only variable, t, which is
“simulated” by the Progress event.

The behaviour of hybrid systems is then modelled through
4 types of events.

T r a n s i t i o n
ANY s
WHERE

grd1 : s ∈ P1 (STATES)
THEN

a c t 1 : xs :∈ s
END

b) Transition Events: Model
internal decisions of the con-
troller. This typically corresponds
to discrete changes happening in
the program or decisions made by
the user.
Sense
ANY s , p
WHERE

grd1 : s ∈ P1 (STATES)
grd2 : p ∈ P (STATES×R× S)
g rd3 : (xs 7→ t 7→ xp(t)) ∈ p

THEN
a c t 1 : xs :∈ s

END

c) Sensing Events:
Represent changes in
the controller induced
by changes in the plant,
typically detected through
sensors. This event is similar
to Transition except its

guards generally involve xp.

Behave
ANY e
WHERE

grd1 : e ∈ DE(S)
grd2 : Solvable([t,+∞[, eq)

THEN
a c t 1 : xp :|
x′p ∈ R+ → S∧
[0, t[C x′p = [0, t[C xp∧
solutionOf([t,+∞[, [t,+∞[C x′p, e)

END

d) Behave
Events: Symbolize
spurious changes
in the plant, or
perturbations in
other words.

This particular
event modifies the
continuous state (xp)
which is a function of time. To ensure coherence, we need to
state that the past of the system remains the same; that is,
the function does not change on [0, tR[.

The future of the system ([t,+∞R[) is then set to be a
solution of the given equation.

A c t u a t e
ANY e , s
WHERE

grd1 : e ∈ DE(S)
grd2 : Solvable([t,+∞[, eq)
grd3 : s ⊆ STATES
grd4 : xs ∈ s

THEN
a c t 1 : xp :| x′p ∈ R+ → S∧

[0, t[C x′p = [0, t[C xp∧
solutionOf([t,+∞[, [t,+∞[C x′p, e)

END

e) Actuation
Events: Models
the action of the
controller on the
plant, achieved
thanks to actuators.

This event is
shaped on Behave
from which it differs
by the presence of

additional guards to relate it to the controller’s state.

C. Deriving specific controlled systems

The generic model described in the previous section is used
as the entry point of a method for designing hybrid systems.
Indeed, hybrid models should instantiate this generic model
through refinement, using the following steps:

1) Describe the set of discrete states, STATES. This usu-
ally corresponds to the places or modes of the hybrid
automaton.

2) Describe the continuous state space, S. Generally, it is
of the form Rn with n ∈ N.

3) Define the plant’s variables as functions of time.
4) Describe every event of the system as a refinement of

one of the generic events.
5) Provide witnesses for disappearing event parameters.

In particular, this is where the differential equations
describing the system are given.

IV. HYBRID RAILWAY MODEL IN EVENT-B
This section describes the formal signalling model devel-

oped by instantiating the previously described hybrid model.
We begin by formalizing requirements for the signalling model
presented in Section 2. Further we present the instantiated
events of the hybrid system modelling framework.

A. Modelling continuous system features

The model focuses on one train of acceleration, speed and
position (resp.) ta, tv and tp. We control the engine’s power,
which in fine yields an input acceleration denoted f .

The trains obey a first order non-linear differential equation
called the Davis Equation given in Equation 1. This equation
is parameterized by constants a, b and c which are given and
fixed (and generally depends on the rails, train mass, etc.).{

ṫv(t) = f − (a+ b · tv(t) + c · tv(t)2)
ṫp(t) = tv(t)

(1)

The train is provided with an end of movement authority
(EoA) which evolves in the time.

Additionally, the system is able to sense its distance to
EoA, and in particular determine if, given current speed and
acceleration, it can stop before it. As long as it can, the train
is said to be in free mode, and it can chose arbitrary values for
f . Whenever it cannot anymore, it goes into restricted mode
and is then required to provide values for f so that it can stop
before EoA.

The stopping distance computation is generally done by a
complex algorithm on the on-board computer. It is abstracted
by a StopDist function which takes the current acceleration
ta(t) and speed tv(t) as parameters.

B. Signalling model requirements

The model we developed can be split in two parts. The
first part captures the role of the on-board train computer,
responsible for the train speed supervision. Particularly in the
moving block signalling systems the absence of head to tail
train collisions rely not only on correctly issued movement
authority but also on-board speed controller. One can express
the safety property as: at all times the train must remain
within the issued movement authority. Additionally one
needs to prove properties about the plant. For example, one
must prove that speed be always positive or traction force will
remain within the minimum and maximum interval.

SAF1 ∀t · t ∈ R+ ⇒ tp(t) ≤ EoA
PLT1 ∀t · t ∈ R+ ⇒ tv(t) ≥ 0
PLT2 f ≥ fmin ∧ f ≤ fmax

C. Hybrid signalling model in Event-B
Context and Theories. As the behaviour of train is gen-
erally common to several models, we decided to create a
reusable Trains theory. This theory defines the Davis equa-
tion with initial condition tv(t0) = tv0, tp(t0) = tp0
(DavisEquation(a,b,c, f ,t0,tv0,tp0)). In the theory file we
also define other related theorems on the mathematical proper-
ties of this equation that will be useful for completing proofs.

CONTEXT S i g n a l l i n g
EXTENDS C o n t r o l l e d S y s t e m C t x
CONSTANTS

f ree move , r e s t r i c t e d m o v e
S t o p D i s t
a ,b ,c
fmin ,fmax ,fdec min

AXIOMS
p a r t i t i o n (STATES,{ f ree move

} ,{ r e s t r i c t e d m o v e })
S t o p D i s t ∈ (R× R) 7→ R
S t o p D i s t (0 7→ 0) = 0
· · ·

END

Listing 1: Signalling Event-B
Model

In addition we created
a context in the model
(see excerpt in Listing 1)
which defines several con-
stants of the system as
well as constraints on them.
In particular, we axioma-
tise the StopDist func-
tion, the Davis equation pa-
rameters and boundary for
the engine’s traction power:
minimum power (fmin),
maximum power (fmax)
and minimum deceleration

power (fdec min), i.e. the minimum strength with which the
train can decelerate. And finally we declare train controller
modes (free move and restricted move) with an enumerated
set.
Machine Events. In the first refinement of the generic hybrid
model we introduce several new events which instantiate
generic events presented in the Section 4.2. However due to
space limitations we only provide a single event for each of
the generic event type. As specified in the previous subsec-
tion in this refinement we model the speed controller where
the end movement authority is continuously updated without
specifying how at this level of abstraction.

Transition restricted move event models the change in the
speed controller by adjusting trains traction effort when train
is in the restricted move mode. The event is simply guarded
by a single predicate which enables event if and only if the
status variable xs is set to restricted move. To control train’s
speed we created a variable f which denotes the traction force
and is modified by the action such that the stopping distance
would not overshoot the end of the movement authority. One
must then prove an open proof obligation that such traction
force value can be found.

T r a n s i t i o n r e s t r i c t e d m o v e
REFINES T r a n s i t i o n
WHERE

grd1 : xs = r e s t r i c t e d m o v e
WITH

s : s ={ r e s t r i c t e d m o v e}
THEN

a c t 1 : f :| tp(t) + StopDist(f ′ 7→ tv(t)) ≤ EoA
END

Listing 2: Event restricting train’s movement (transition type)

Another internal controller event which changes controllers
mode based on the input from the plant is sense event -

Sense to restricted. The one out of two sense events will
change the train state variable xs if the end of movement
authority has not been extended and train must decelerate in
order to remain within issued movement authority.

S e n s e t o r e s t r i c t e d
REFINES Sense
WHERE

grd1 : tp(t) + StopDist(ta(t) 7→ tv(t))) ≥ EoA
WITH

s : s = { r e s t r i c t e d m o v e}
p : p = STATES×R× {v∗ 7→ p∗ |

p∗ + StopDist(fdec min 7→ v∗) ≥ EoA}
THEN

a c t 1 : xs := r e s t r i c t e d m o v e
END

Listing 3: Event train controller’s state (sense type)

As previously described the other set of events define the
evolution of the plant. The two events provided below model
the environment and the plant influenced by the controller.
The first event modifies plant variables based on some solvable
differential equation which describes the environment.

The dynamic protocol parts, such as messages exchanges,
are modelled as variables and events computing next variable
states and contained in a machine.

Behave REFINES Behave
ANY e
WHERE

grd1 : e ∈ DE(S)
grd2 : Solvable([t,+∞] , e)

WITH
x′p : x′p = bind(tv′, tp′)

THEN
a c t 1 : tv, tp :| tv′ ∈ R+ → S ∧ tp′ ∈ R+ → S∧

[0, t[C tv′ = [0, t[C tv ∧ [0, t[C tp′ = [0, t[C tp∧
solutionOf([t,+∞[, [t,+∞[C bind(tv′, tp′), e)

END

Listing 4: Event updating train plant (behave type)

Similarly the Actuate move event updates plant variables tp,
tv, tp. However, in this instance, variable are updated based
on the Davis equation with traction force variable f value as
one of the parameters.

V. DISCUSSION

One of the main objectives of this research was to further
demonstrate the general applicability of the proposed method
[7] for modelling hybrid systems. The generic model is proved
once and for all, and in this work we refined the abstract
hybrid controller model. The hybrid railway signalling model
is itself a reusable artifact, which could be further refined to
capture a specific signalling configurations (e.g. by defining a
specific railway schema) or modelling railway protocols (e.g.
signalling handover).

As discussed by Alur in [5], the verification of hybrid
systems remains a challenge. The verification approaches
based on the reachability analysis aim to provide a fully
automatic verification approach, but due to the real-valued

Actuate move
REFINES A c t u a t e
WHERE

grd1 : >
WITH
x′p : x′p = bind(tv′, tp′)
e : e = DavisEquation(a, b, c, f, t, tv(t), tp(t))
s : s = STATES

THEN
a c t 1 : tv, tp :| tv′ ∈ R+ → S ∧ tp′ ∈ R+ → S∧

[0, t[C tv′ = [0, t[C tv ∧ [0, t[C tp′ = [0, t[C tp∧
solutionOf(

[t,+∞[,
[t,+∞[C bind(tv′, tp′),
DavisEquation(a, b, c, f, t, tv(t), tp(t))

)
END

Listing 5: Event updating train’s plant (actuate type)

variables, these approaches are limited to linear systems. In
this and other related works, authors have tried to address
the verification scalability problem, by developing alternative
proof-based verification approaches. Still, as our verification
results suggest (Table II) and also similar works [7], [26], [27],
the proof automation of hybrid Event-B models is still low and
must be improved for a more practical applications. In spite
of improved verification tooling, a refinement plan for hybrid
models should be reconsidered, perhaps, a top-down approach
is one suitable (particularly, for this model), where continuous
system’s aspects should be introduced as late as possible in
the model.

Model |POs| Auto. Inter.
hybrid model (4m. + 1c.) 61 23 38

communication model (1m. + 8c.) 49 18 31
Total 110 41 69

TABLE II: Event-B protocol model proof statistics

An important feature of this hybrid system development
approach is the requirement of explicitly stating system’s
dynamic properties. In our opinion, this problem is often
overlooked and could lead to mis-communication between, for
instance, control engineers and software engineers. With our
proposed approach, a formal hybrid artifact is created, which
can be used between different types of engineers. On the other
hand, the approach currently requires some understanding of
formal methods (e.g. mathematical syntax) and could benefit
with connection to more visual widely used tool like Simulink
or other similar tools via Functional Mock-Up Interface [28].

VI. CONCLUSIONS AND FUTURE WORK

In this paper we addressed the challenge of modelling
and verification of hybrid systems. This work builds on the
recent development of the Rodin Theory plug-in, which allows
users to extend the Event-B specification language and the
Event-B modelling framework for hybrid systems. The main
technical objective of this research was to demonstrate that
the modelling framework for hybrid systems could be used
for modelling systems with more complex dynamics.

In the paper, we demonstrated how a generic hybrid model
could be refined with train specific dynamics. The work
included developing a new, reusable continuous theory, for
the train plant, which is defined by the Davis equation as
well as other associated Event-B context files for aspects
such as stopping distance function. As stated before the main
invariants we need to prove is that the train must remain
within its movement authority and that the plant variables
must remain within their limits. One of the future work
directions is to address the verification problem by exploiting
the previously developed Rodin verification extension based on
the Why3 umbrella prover [29]. To achieved that a new real
theory together with definitions of operator used in this work
could be re-defined in a new Why3 theory. Another direction
for the hybrid model validation we would like to explore is
co-simulation of discrete-continuous models via Functional
Mock-Up Interface [28].

Acknowledgements. The work is partially supported by an
iCASE studentship (EPSRC/UK and Siemens Rail Automa-
tion) and the EPSRC/UK STRATA platform grant.

REFERENCES

[1] ERTMS User Group, “UNISIG: ERTMS/ETCS system requirements
specification. version 2.2.2 (2002).”

[2] IEEE Std 1474.1-2004, “IEEE standard for Communications-Based
Train Control (CBTC) performance and functional requirements,” 2005.

[3] F. Badeau and A. Amelot, “Using b as a high level programming
language in an industrial project: Roissy val,” in ZB 2005: Formal
Specification and Development in Z and B, H. Treharne, S. King,
M. Henson, and S. Schneider, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 334–354.

[4] P. Behm, P. Benoit, A. Faivre, and J.-M. Meynadier, “Météor: A
successful application of b in a large project,” in FM’99 — Formal
Methods, J. M. Wing, J. Woodcock, and J. Davies, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1999, pp. 369–387.

[5] R. Alur, “Formal verification of hybrid systems,” in Proceedings of
the Ninth ACM International Conference on Embedded Software, ser.
EMSOFT ’11. New York, NY, USA: ACM, 2011, pp. 273–278.

[6] W. Su, J.-R. Abrial, and H. Zhu, “Formalizing hybrid systems with
Event-B and the rodin platform,” Science of Computer Programming,
vol. 94, no. Part 2, pp. 164 – 202, 2014, abstract State Machines, Alloy,
B, VDM, and Z.

[7] G. Dupont, Y. Aı̈t-Ameur, M. Pantel, and N. K. Singh, “Proof-based
approach to hybrid systems development: Dynamic logic and event-b,”
in Abstract State Machines, Alloy, B, TLA, VDM, and Z, M. Butler,
A. Raschke, T. S. Hoang, and K. Reichl, Eds. Cham: Springer
International Publishing, 2018, pp. 155–170.

[8] ——, “Hybrid systems and Event-B: A formal approach to signalised
left-turn assist,” in New Trends in Model and Data Engineering.
Springer International Publishing, 2018, pp. 153–158.

[9] J.-R. Abrial, Modeling in Event-B: System and Software Engineering.
New York, NY, USA: Cambridge University Press, 2013.

[10] T. S. Hoang, M. Butler, and K. Reichl, “The hybrid ertms/etcs level
3 case study,” in Abstract State Machines, Alloy, B, TLA, VDM, and
Z, M. Butler, A. Raschke, T. S. Hoang, and K. Reichl, Eds. Cham:
Springer International Publishing, 2018, pp. 251–261.

[11] M. Butler, “A system-based approach to the formal development of
embedded controllers for a railway,” Design Automation for Embedded
Systems, vol. 6, no. 4, pp. 355–366, Jul. 2002.

[12] T. Kiss and K. T. Jánosi-Rancz, “Developing railway interlocking
systems with session types and event-b,” in Proceedings of the IEEE
11th International Symposium on Applied Computational Intelligence
and Informatics (SACI), May 2016, pp. 93–98.

[13] M. Butler and I. Maamria, Practical Theory Extension in Event-B.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 67–81.

[14] U. Berger, P. James, A. Lawrence, M. Roggenbach, and M. Seisenberger,
“Verification of the european rail traffic management system in real-time
maude,” Science of Computer Programming, vol. 154, pp. 61 – 88, 2018,
formal Techniques for Safety-Critical Systems 2015.

[15] J. Hoenicke and E. Olderog, “CSP-OZ-DC: A combination of specifica-
tion techniques for processes, data and time,” Nord. J. Comput., vol. 9,
no. 4, pp. 301–334, 2002.

[16] A. Cimatti, M. Roveri, and S. Tonetta, “Requirements validation for
hybrid systems,” in Proceedings of the 21st International Conference on
Computer Aided Verification, ser. CAV ’09. Springer-Verlag, 2009, pp.
188–203.

[17] A. Halchin, A. Feliachi, N. K. Singh, Y. A. Ameur, and J. Or-
dioni, “B-perfect - applying the PERF approach to B based sys-
tem developments,” in Reliability, Safety, and Security of Railway
Systems. Modelling, Analysis, Verification, and Certification - Second
International Conference, RSSRail 2017, Pistoia, Italy, November 14-16,
2017, Proceedings, 2017, pp. 160–172.

[18] A. Halchin, Y. A. Ameur, N. K. Singh, A. Feliachi, and J. Ordioni,
“Certified Embedding of B Models in an Integrated Verification Frame-
work,” in 2019 13th International Symposium on Theoretical Aspects
of Software Engineering (TASE), Jul. 2019.

[19] A. Platzer and J.-D. Quesel, “European train control system: A case
study in formal verification,” in Proceedings of the International
Conference on Formal Engineering Methods. Springer, 2009, pp. 246–
265.

[20] L. Zou, J. Lv, S. Wang, N. Zhan, T. Tang, L. Yuan, and Y. Liu,
“Verifying chinese train control system under a combined scenario by
theorem proving,” in Verified Software: Theories, Tools, Experiments,
E. Cohen and A. Rybalchenko, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, pp. 262–280.

[21] R. Banach, M. Butler, S. Qin, N. Verma, and H. Zhu, “Core hy-
brid event-b i: Single hybrid event-b machines,” Science of Computer
Programming, vol. 105, pp. 92 – 123, 2015.

[22] J.-R. Abrial, The B-book: Assigning Programs to Meanings. New York,
NY, USA: Cambridge University Press, 1996.

[23] R.-J. Back, “Refinement calculus, part ii: Parallel and reactive pro-
grams,” in Proceedings on Stepwise Refinement of Distributed Systems:
Models, Formalisms, Correctness, ser. REX workshop. New York, NY,
USA: Springer-Verlag New York, Inc., 1990, pp. 67–93.

[24] J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and
L. Voisin, “Rodin: An open toolset for modelling and reasoning in event-
b,” Int. J. Softw. Tools Technol. Transf., vol. 12, no. 6, pp. 447–466,
Nov. 2010.

[25] M. Butler, J.-R. Abrial, and R. Banach, From Action Systems to
Distributed Systems: The Refinement Approach, ser. Computer and
Information Science Series. Chapman and Hall/CRC, Apr. 2016, ch.
Modelling and Refining Hybrid Systems in Event-B and Rodin, pp. 29–
42.

[26] G. Babin, Y. Aı̈t-Ameur, S. Nakajima, and M. Pantel, “Refinement
and proof based development of systems characterized by continu-
ous functions,” in International Symposium on Dependable Software
Engineering: Theories, Tools, and Applications. Springer, 2015, pp.
55–70.

[27] C. Bogdiukiewicz, M. Butler, T. S. Hoang, M. Paxton, J. Snook, X. Wal-
dron, and T. Wilkinson, “Formal development of policing functions for
intelligent systems,” in 2017 IEEE 28th International Symposium on
Software Reliability Engineering (ISSRE), Oct 2017, pp. 194–204.

[28] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clau, H. Elmqvist,
A. Junghanns, J. Mauss, M. Monteiro, T. Neidhold, D. Neumerkel,
H. Olsson, J. v. Peetz, S. Wolf, A. S. Gmbh, Q. Berlin, F. Scai, and
S. Augustin, “The functional mockup interface for tool independent
exchange of simulation models,” in Proceedings of the 8th International
Modelica Conference, 2011.

[29] A. Iliasov, P. Stankaitis, D. Adjepon-Yamoah, and A. Romanovsky,
“Rodin platform why3 plug-in,” in Abstract State Machines, Alloy, B,
TLA, VDM, and Z, M. Butler, K.-D. Schewe, A. Mashkoor, and M. Biro,
Eds. Cham: Springer International Publishing, 2016, pp. 275–281.

	Introduction
	Background
	Event-B
	Extending Event-B with external theories

	Modelling Patterns for Hybrid Systems
	A Theory for Differential Equations
	A Generic Hybrid Model in Event-B
	Deriving specific controlled systems

	Hybrid Railway Model in Event-B
	Modelling continuous system features
	Signalling model requirements
	Hybrid signalling model in Event-B

	Discussion
	Conclusions and Future Work
	References

