
Toward New Unit-Testing Techniques for
Shared-Memory Concurrent Programs

Sung-Shik Jongmans
Department of Computer Science, Open University of the Netherlands

Centrum Wiskunde & Informatica (CWI), the Netherlands Foundation of Scientific Research Institutes (NWO-I)
Heerlen, the Netherlands

ssj@ou.nl

unicore multi-core

waterfall

agile

1999

2019: 32-core processors
(e.g., AMD Ryzen Threadripper)

2005: 2-core processors
(e.g., AMD Athlon 64 X2)

2013:
90% agile

adoption [1]

Fig. 1. Paradigm shifts in computing: hardware eng. (x) vs. software eng. (y)

Abstract—Following advances in hardware engineering (multi-
core processors) and software engineering (agile practices), there
is now a large demand for unit-testing techniques for concurrent
code. This paper presents the motivation, problem, proposed
solution, first results, and open challenges of an early-stage
research project (2019–2022) that aims to develop innovative such
techniques. Founded on existing work on coordination models
and languages, the project’s idea is to use a combination of
domain-specific language, compilation, and model-checking to
build a fully automated framework for unit-testing concurrency.

Index Terms—coordination, domain-specific language, compi-
lation, model-checking

I. MOTIVATION

Figure 1 illustrates two major—seemingly unrelated—
paradigm shifts in computing of the past decades: in hardware
engineering (x-axis), chip manufacturers shifted from produc-
ing unicore processors to developing multi-core architectures;
meanwhile, in software engineering (x-axis), development
teams shifted from abiding by waterfall practices to adopting
agile methods. These shifts impact a vast population of “com-
mon” software engineers: the shift to multi-core means they
now need to write concurrent code; the shift to agile means
they now need to write unit tests.1 As a result, there is now a
large demand for unit-testing techniques for concurrent code.

A substantial amount of research has been conducted on
testing techniques for concurrent code in general, and unit-
testing techniques in particular (e.g., [3]–[8]). Testing of con-
current code is substantially more complex than testing of non-

Funded by the Netherlands Organisation of Scientific Research (NWO):
016.Veni.192.103

1“The idea that any new code must be accompanied by new tests [...] is
one of the major contributions of agile methods.” [2]

concurrent code due to the exponentially many interleavings
in which threads may be scheduled. The difficulty is to attain
the highest coverage (i.e., check many schedules) with the
lowest effort (i.e., spend few resources); accordingly, existing
unit-testing techniques for concurrent code “mainly focus on
re-executing existing test cases with different schedules” [8].

The premise of this project is that typical concurrent code,
written in a typical general-purpose language (GPL), actually
exhibits too little structure to effectively unit-test a significant
class of functionality; and moreover, that more structure
can make the complicated approach of “re-executing existing
test cases with different schedules” avoidable. The objectives
of this project are therefore to develop: (1) declarative pro-
gramming techniques to add more structure to concurrent
code, along with (2) complementary unit-testing techniques
to exploit that structure. The guiding principle is to raise the
level of abstraction as far as possible (e.g., beyond P/P# [9],
[10]), to maximize programmability and testability; then, the
key challenge is to achieve competitive performance—of both
code and unit tests—at the resulting high level of abstraction.2

II. PROBLEM

To illustrate the lack of structure in typical concurrent
code, and why it is problematic, imagine a concurrent chess
program that consists of two threads, W (White, the human
player) and B (Black, the computer player), and two message
queues through which W and B communicate (one in every
direction). Each thread has a local copy of the board and runs
a loop until it reaches a final configuration. In each iteration:
• W receives a move from B; then updates (its local copy

of) the board accordingly; then writes the board to the
terminal (output to the user); then reads the next move
from the terminal (input from the user); then updates the
board accordingly; then sends its move to B.

• B analyses (its local copy of) the board to precompute
possible next moves (before learning about W ’s move);
then receives a move from W ; then updates the board

2The focus of this project is on shared-memory concurrency; challenges
that pertain specifically to distribution and networking (e.g., dealing with
failures [11], [12]), are beyond the scope of this project. However, the project’s
aim and techniques to avoid “re-executing existing test cases with different
schedules” seem novel (cf., for instance, model-based testing of networked
systems [13]) and applicable to distributed and networked applications as well.

1 publicpublicpublic classclassclass Board { ... }
2 publicpublicpublic classclassclass Move { ... }

3 publicpublicpublic staticstaticstatic voidvoidvoid runWhite(BlockingQueue fromBlack,
4 BlockingQueue toBlack) {
5 Board b = newnewnew Board();
6 whilewhilewhile (!board.final()) {
7 ififif (!board.initial()) {
8 Move mBlack = (Move) fromBlack.take(); // blocking
9 b.update(mBlack);

10 ififif (board.final()) breakbreakbreak;
11 }
12 b.writeTo(System.out);
13 Move mWhite = b.readMoveFrom(System.in);
14 b.update(mWhite);
15 toBlack.put(mWhite);
16 } }

17 publicpublicpublic staticstaticstatic voidvoidvoid runBlack(BlockingQueue fromWhite
18 BlockingQueue toWhite) {
19 Board b = newnewnew Board();
20 whilewhilewhile (!board.final()) {
21 b.analyse(); // long-running call
22 Move mWhite = (Move) fromWhite.take(); // blocking
23 b.update(mWhite);
24 ififif (board.final()) breakbreakbreak;
25 Move mBlack = b.decide();
26 b.update(mBlack);
27 toWhite.put(mBlack);
28 } }

29 publicpublicpublic staticstaticstatic voidvoidvoid main(String[] args) {
30 BlockingQueue q1 = newnewnew LinkedBlockingQueue();
31 BlockingQueue q2 = newnewnew LinkedBlockingQueue();
32 newnewnew Thread(() -> runWhite(q1, q2)).start();
33 newnewnew Thread(() -> runBlack(q2, q1)).start();
34 }

Fig. 2. Concurrent chess program (gray fragments: turn-taking code)

accordingly; then decides its move based on the preceding
analysis (after learning about W ’s move); then updates
the board accordingly; then sends its move to W .

Figure 2 shows an implementation of this program in Java.3

Intuitively, White’s turn is between lines 8–15, while Black’s
turn is between lines 22–27. Notably, Black’s board analysis
on line 21 can run already during White’s turn, concurrently.

The non-concurrent code of the program can readily be
unit-tested with traditional techniques, because it is adequately
structured using traditional abstractions (i.e., classes and meth-
ods). For instance, JUnit can be used to test that method
Board.update updates the board as expected, or that method
Board.readMoveFrom returns only legal moves.

In contrast, it is problematic to unit-test the concurrent
code that coordinates W and B toward proper turn-taking,
simply because—as the gray fragments show—it has not been
isolated in a separate module. Because of this lack of structure,
turn-taking can be tested only indirectly (e.g., test if W ’s and
B’s local copies of the board reach expected configurations
after n moves; if they do, then probably turn-taking is fine),
but this requires many different schedules to be checked (e.g.,
re-execute the test case for each interleaving of W and B), and
it is too imprecise for debugging (e.g., if the test case fails, it
remains unclear if the bug is in the turn-taking or elsewhere).

Turn-taking is an example of a protocol among threads. Pro-
tocols codify the rules of interaction (i.e., synchronization and

3Thread, BlockingQueue, LinkedBlockingQueue, and System
are part of the standard Java libraries.

communication) that threads must abide by, and they are an es-
sential ingredient of any non-trivial concurrent program (e.g.,
if turn-taking is implemented incorrectly, the concurrent chess
program is fundamentally flawed). Despite the importance of
protocols, however, typical GPLs do not provide abstractions
to adequately structure concurrent code and isolate protocol
implementations in separate modules. Thus, this significant
class of functionality cannot be unit-tested effectively, which
is problematic: protocols are notoriously hard to get right,
while deadlocks and data races continue to plague software
engineers [14], so unit-testing is all the more important.

III. PROPOSED SOLUTION

The aim of this project is to enable software engineers to add
more structure to concurrent code by developing declarative,
high-level abstractions for programming and unit-testing of
protocols. The main components to achieve this are: a domain-
specific language (DSL) to offer the abstractions; a compiler
to translate code and unit tests from the DSL to the GPL; and
an adaptation-based software model checker [15] to efficiently
execute the resulting unit tests in the GPL.

A. Programmming

The envisioned programming workflow is that software
engineers continue to write all code and unit tests in the GPL,
except all code and unit tests that pertain to synchronization or
communication; those should be initially written in the DSL,
subsequently compiled to the GPL, and finally integrated with
the rest of the concurrent program and unit test suite. To make
it practically feasible to really separate the actions that threads
perform (i.e., computations; GPL) from their interactions (i.e.,
synchronizations and communications; DSL), and to minimize
the final integration effort, the workflow must be supported by
the programming model as well. It works as follows.

The idea is that every thread runs in an opaque environment.
Threads are aware of, and can exchange messages with, their
environments, but they are oblivious to their environments’
contents. Specifically, when threads exchange messages with
their environments, they know neither where received mes-
sages comes from, nor where sent messages go to. The only
thing threads can do, is indicate to their environments that they
want to interact, but not when, how, or with whom; it is left to
the environments to decide which interactions are enacted, in
accordance with the protocols (exogenous coordination [16]).

Thus, threads request environments to enact interactions,
while environments respond by enacting interactions among
threads. Since these responsibilities are clearly divided in the
programming model, their implementations can be clearly
separated, too: threads can be implemented in terms of ac-
tions (incl. requests) in the GPL, while environments can be
implemented in terms of interactions, as protocols, in the DSL.

A notable instance of this programming model is the one
where each environment is a channel with queue-like behavior.
Several modern GPLs support such channel-based concurrency
over shared memory (e.g., Go, Rust, Clojure).

B. Unit-Testing

Following the envisioned programming workflow and pro-
gramming model, after the final integration effort, the full
concurrent program in the GPL consists of three types of
modules of code (e.g., classes and methods): pure action mod-
ules, hand-written, perform only computations; impure action
modules, hand-written, perform both computations and re-
quests; and interaction modules, from-DSL-to-GPL-compiled,
perform only synchronizations/computations in response to
requests. The first generic observation is that all modules,
including interaction modules that implement protocols,
can be unit-tested. Two more specific observations follow next.

First, the execution of a pure action module in one thread
cannot affect, nor be affected by, the concurrent execution of
any module in another thread (i.e., its result is interleaving-
independent); otherwise, it must contain a form of synchro-
nization or communication (e.g., use of shared locks or data),
but this is precluded by definition.4 Notably, this rules out
harmful interference that would otherwise cause deadlocks or
data races. Thus, unit tests for pure action modules do not need
to be re-executed with different schedules; pure action modules
are not only structurally separate, but also behaviorally.

Second, and in contrast, the execution of an interaction
module in one thread can affect, and be affected by, the con-
current executions of impure action modules in other threads
(i.e., its result is interleaving-dependent: the order in which
requests are made may affect the order in which interactions
can be enacted). Thus, unit tests for interaction modules must
be re-executed to attain high coverage; interaction modules are
structurally separate, but not behaviorally. To facilitate this,
the compiler includes a custom model checker in its output:
when an interaction unit test is executed, the model checker
efficiently verifies that each execution of the interaction mod-
ule yields the expected result. Importantly, the model checker
does not verify a formal state space built from abstract DSL
code (pre-compilation), but the actual state space built from
concrete GPL code (post-compilation). Thus, the code tested
in development, is the same code run in production.

IV. FIRST RESULTS

Development of an initial proof-of-concept DSL, compiler,
and model checker has started (in progress), to explore the de-
sign/implementation space in a basic setting; the next section
discusses future plans, built upon this preliminary effort. The
presentation in this section is example-driven; to save space,
formal definitions and other details appear in Sects. A–B.

A. DSL

Inspired by support in several modern GPLs (e.g., Go, Rust,
Clojure), the DSL is based on channel-based message-passing
between threads; it offers declarative, high-level abstractions
for programming and unit-testing of protocols in terms of
communications. Figure 3 shows an example.

4It is a separate issue to ensure/check that an action module is indeed pure.

1 protocolprotocolprotocol Chess {
2 repeatrepeatrepeat {
3 Move fromfromfrom W tototo B;
4 Move fromfromfrom B tototo W;
5 }
6 optoptopt {
7 Move fromfromfrom W tototo B;
8 } }

9 unittestunittestunittest TurnTaking {
10 [][][]((Move tototo B) ->->-> XXX((!!!(Move tototo B)) WWW (Move tototo W))) /\/\/\
11 [][][]((Move tototo W) ->->-> XXX((!!!(Move tototo W)) WWW (Move tototo B)))
12 }

0

1

2

3

4

5

6
[W
,B
] !

Mo
ve

[W,B]?
Move

[B
,W
] !

Mo
ve [B,W]?
Move

[W
,B
] !

Mo
ve

[W,B]?
Move[B

,W
] !

Mo
ve

Fig. 3. Chess protocol (syntax; semantics) and turn-taking unit test (syntax)

1 publicpublicpublic interfaceinterfaceinterface Env {
2 Optional exch(Optional box);
3 defaultdefaultdefault voidvoidvoid send(Object m) { exch(Optional.of(m)); }
4 defaultdefaultdefault Object recv() {
5 returnreturnreturn exch(Optional.empty()).get();
6 } }

7 publicpublicpublic interfaceinterfaceinterface Pr {
8 Env env(String threadName);
9 String[] threadNames(); // helper method to get all

10 // participating thread names
11 Object[] dummies(); // helper method to get a dummy
12 // value of each relevant type
13 Pr deepClone(); // helper method to deep-clone
14 }

Fig. 4. API to interface interaction modules and (impure) action modules

Lines 1–8 implement the chess protocol: it prescribes a finite
repetition of (asynchronous, reliable, FIFO-ordered) commu-
nications of messages of type Move from W to B and from B
to W (if Black makes the final move), optionally followed by a
communication from W to B (if White makes the final move).
Lines 9–12 implement the turn-taking unit test: line 10 asserts
that always if a move is sent to Black (White made a move), no
next move is sent to Black either until a move is sent to White
(Black makes a move) or never (White made the final move);
line 11 asserts the symmetric case. The labeled transition
system (LTS) shows the semantics of the protocol code: labels
[p,q] !t and [p,q]?t prescribe the send and receive of a message
of type t through the channel from thread p to thread q.
Notably, the syntax for protocols is declarative to enhance
programmability (it states what interactions transpire: “White
and Black communicate”), while its semantics is imperative to
support compilation (it states how interactions transpire: “first
White sends to Black; then Black receives from White).

The syntax for protocols is inspired by Scribble [17] and its
semantics by Basic Process Algebra with unary iteration; the
syntax for unit tests is inspired by Spin [18] and its semantics
by Linear Temporal Logic. The calculus that formalizes this
initial proof-of-concept DSL appears in Sect. A.

B. Compiler

The behavior of the compiler depends on whether it com-
piles protocol code or unit test code.

For protocol code, the compiler first builds the LTS and
then generates a corresponding state machine in Java; the
result is an interaction module that implements the protocol
in the GPL. The key concern is the interface between this
interaction module and the (impure) action modules that use

1 publicpublicpublic staticstaticstatic voidvoidvoid runWhite(Env e) {
2 Board b = newnewnew Board();
3 whilewhilewhile (!board.final()) {
4 ififif (!board.initial()) {
5 Move mBlack = (Move) e.recv();
6 b.update(mBlack);
7 ififif (board.final()) breakbreakbreak;
8 }
9 b.writeTo(System.out);

10 Move mWhite = b.readMoveFrom(System.in);
11 b.update(mWhite);
12 e.send(mWhite);
13 } }

14 publicpublicpublic staticstaticstatic voidvoidvoid runBlack(Env e) { ... }

15 publicpublicpublic staticstaticstatic voidvoidvoid main(String[] args) {
16 Pr p = newnewnew ChessPr();
17 newnewnew Thread(() -> runWhite(p.env("W"))).start();
18 newnewnew Thread(() -> runBlack(p.env("B"))).start();
19 }

Fig. 5. Concurrent chess program, modified (API calls greyed)

1 publicpublicpublic classclassclass ChessPr implementsimplementsimplements Pr {
2 privateprivateprivate volatilevolatilevolatile intintint state = 0;
3 privateprivateprivate Object monitor = thisthisthis;
4 privateprivateprivate BlockingQueue q1 = newnewnew LinkedBlockingQueue();
5 privateprivateprivate BlockingQueue q2 = newnewnew LinkedBlockingQueue();

6 publicpublicpublic Env env(String threadName) {
7 switchswitchswitch (threadName) {
8 casecasecase "W": returnreturnreturn newnewnew Env() {
9 publicpublicpublic Optional exch(Optional box) {

10 synchronizedsynchronizedsynchronized (monitor) {
11 whilewhilewhile (truetruetrue) {
12 switchswitchswitch (state) {
13 casecasecase 0: monitor.notifyAll(); state = 1;
14 q1.put(box.get());
15 returnreturnreturn newnewnew Optional.empty();
16 casecasecase 1: monitor.wait();
17 breakbreakbreak;
18 casecasecase 2: monitor.wait();
19 breakbreakbreak;
20 casecasecase 3: monitor.notifyAll(); state = 4;
21 Object m = q2.take();
22 returnreturnreturn newnewnew Optional.of(m);
23 ...
24 } } } } };
25 casecasecase "B": returnreturnreturn newnewnew Env() { ... };
26 } }

27 publicpublicpublic String[] threadNames() {
28 returnreturnreturn newnewnew String[] { "W", "B" }; }
29 publicpublicpublic Object[] dummies() {
30 returnreturnreturn newnewnew Object[] { newnewnew Move() }; }

31 publicpublicpublic Pr deepClone() { ... }
32 }

Fig. 6. Generated interaction module (for the protocol code in Figure 3)

it. For this, the API shown in Figure 4 is used. It is designed
to closely mimic the programming model: interface Env repre-
sents environments; method Env.exch represents requests to
enact interactions (exchanges with the environment); methods
Env.send and Env.recv are “macros” for common requests;
and interface Pr represents protocols as sets of environments.

Now, the idea is that: (a) the compiler encapsulates the state
machine in an implementation of Pr, (b) each thread gets
access to its own custom Env that implements for each state
if/how requests of that particular thread can be responded to,
and (c) when Env.exch is called, the state machine makes a
transition if it can, or the call remains pending and the thread
becomes blocked if it cannot. Figures 5–6 show an example.

1 publicpublicpublic classclassclass ChessPrTest {
2 privateprivateprivate booleanbooleanboolean check(ChessPr p, String formula) { ... }

3 @Test // JUnit annotation
4 publicpublicpublic voidvoidvoid testTurnTaking {
5 ChessPr p = newnewnew ChessPr();
6 String formula =
7 "[]((Move to B) -> X((!(Move to B)) U (Move to W))) /\" +
8 "[]((Move to W) -> X((!(Move to W)) U (Move to B)))"
9 assertTrue(check(p, formula)); // JUnit call

10 } }

Fig. 7. Generated JUnit test case (for the unit test code in Figure 3)

For unit test code, the compiler generates a JUnit test case
(straightforward to add to an existing JUnit test suite); it uses
the model checker to verify the actual LTS built from concrete
Java code (i.e., not the formal LTS built from abstract DSL
code by the compiler). Figure 7 shows an example.

C. Model Checker

Conceptually, the model checker works in two main steps:
(i) build the LTS; (ii) run an algorithm for automata-theoretic
model-checking, based on nested depth-first search [19].5 Step
(ii) is straightforward to implement; step (i) less so.

The key observation is that at any point in time, a Pr-object
p comprehensively represents a state s in the LTS (i.e., it has
a state id and channel contents as its attributes). Moreover, to
compute Pr-objects for the successors of s, the model checker
just needs to deep-clone p for each possible send/receive and
perform that operation on the clone via an Env-object; each
time this succeeds, a successor state is discovered. The whole
LTS can be generated in this way as Pr-objects, noninvasive,
by running the same code as the code run in production.6

Because interactions are formulated in terms of (finitely
many) message types instead of (possibly infinitely many)
message values, no further data abstractions are needed; every
possible send/receive can be enumerated in finite time.

V. OPEN CHALLENGES

There are two fundamental research challenges. The first
one concerns expressiveness and performance: to be actually
useful in practice, the DSL should support at least parallel
composition, parametrization, and data dependencies. Such
extensions require research and development of more powerful
calculi and new protocol-based reduction techniques to achieve
competitive performance of both code and unit tests; here, the
main difficulty is the high level of abstraction (i.e., there is a
large gap for the compiler to cross from DSL to GPL).

The second challenge concerns integration-testing: while
unit-testing of protocols as proposed in this paper can guaran-
tee safety (i.e., “bad” interactions never transpire: if a request
is made, then the response is fine), it cannot guarantee liveness
(i.e., “good” interactions eventually transpire: requests are
made often enough). To guarantee liveness, complementary

5These steps are often intertwined to yield an on-the-fly model-checking
approach; it is omitted here for simplicity, but straightforward to implement.

6Checking whether a send or receive succeeds is actually non-trivial; the
problem and a solution are clarified in Sect. B

integration-testing techniques need to be researched and devel-
oped; here, the main difficulty is the fact that liveness pertains
not to a single module (cf. safety), but to many. A promising
direction is the use of linearity (cf. session types [20]).

REFERENCES

[1] “Agile is the new normal,” Hewlett Packard Enterprise, Tech. Rep.
4AA5-7619ENW, 2017.

[2] B. Meyer, Agile! – The Good, the Hype, and the Ugly. Springer, 2014.
[3] B. Long, D. Hoffman, and P. A. Strooper, “Tool support for testing

concurrent java components,” IEEE Trans. Software Eng., vol. 29, no. 6,
pp. 555–566, 2003.

[4] W. Pugh and N. Ayewah, “Unit testing concurrent software,” in ASE.
ACM, 2007, pp. 513–516.

[5] K. Coons, S. Burckhardt, and M. Musuvathi, “GAMBIT: effective unit
testing for concurrency libraries,” in PPOPP. ACM, 2010, pp. 15–24.

[6] V. Jagannath, M. Gligoric, D. Jin, Q. Luo, G. Rosu, and D. Marinov,
“Improved multithreaded unit testing,” in SIGSOFT FSE. ACM, 2011,
pp. 223–233.

[7] A. Nistor, Q. Luo, M. Pradel, T. R. Gross, and D. Marinov, “Ballerina:
Automatic generation and clustering of efficient random unit tests for
multithreaded code,” in ICSE, 2012, pp. 727–737.

[8] S. Steenbuck and G. Fraser, “Generating unit tests for concurrent
classes,” in ICST. IEEE Computer Society, 2013, pp. 144–153.

[9] A. Desai, V. Gupta, E. K. Jackson, S. Qadeer, S. K. Rajamani, and
D. Zufferey, “P: safe asynchronous event-driven programming,” in PLDI.
ACM, 2013, pp. 321–332.

[10] P. Deligiannis, A. F. Donaldson, J. Ketema, A. Lal, and P. Thomson,
“Asynchronous programming, analysis and testing with state machines,”
in PLDI. ACM, 2015, pp. 154–164.

[11] T. Leesatapornwongsa, M. Hao, P. Joshi, J. F. Lukman, and H. S.
Gunawi, “SAMC: semantic-aware model checking for fast discovery
of deep bugs in cloud systems,” in OSDI. USENIX Association, 2014,
pp. 399–414.

[12] T. Leesatapornwongsa and H. S. Gunawi, “SAMC: a fast model checker
for finding heisenbugs in distributed systems (demo),” in ISSTA. ACM,
2015, pp. 423–427.

[13] C. Artho, Q. Gros, G. Rousset, K. Banzai, L. Ma, T. Kitamura,
M. Hagiya, Y. Tanabe, and M. Yamamoto, “Model-based API testing
of apache zookeeper,” in ICST. IEEE Computer Society, 2017, pp.
288–298.

[14] S. A. Asadollah, D. Sundmark, S. Eldh, and H. Hansson, “Concurrency
bugs in open source software: a case study,” J. Internet Services and
Applications, vol. 8, no. 1, pp. 4:1–4:15, 2017.

[15] P. Godefroid and K. Sen, “Combining model checking and testing,” in
Handbook of Model Checking. Springer, 2018, pp. 613–649.

[16] K. Lau, P. V. Elizondo, and Z. Wang, “Exogenous connectors for soft-
ware components,” in CBSE, ser. Lecture Notes in Computer Science,
vol. 3489. Springer, 2005, pp. 90–106.

[17] R. Hu and N. Yoshida, “Hybrid session verification through endpoint
API generation,” in FASE, ser. Lecture Notes in Computer Science, vol.
9633. Springer, 2016, pp. 401–418.

[18] G. J. Holzmann, “The model checker SPIN,” IEEE Trans. Software Eng.,
vol. 23, no. 5, pp. 279–295, 1997.

[19] R. Gerth, D. A. Peled, M. Y. Vardi, and P. Wolper, “Simple on-the-
fly automatic verification of linear temporal logic,” in PSTV, ser. IFIP
Conference Proceedings, vol. 38. Chapman & Hall, 1995, pp. 3–18.

[20] K. Honda, N. Yoshida, and M. Carbone, “Multiparty asynchronous
session types,” J. ACM, vol. 63, no. 1, pp. 9:1–9:67, 2016.

[21] J. C. M. Baeten, F. Corradini, and C. Grabmayer, “A characterization
of regular expressions under bisimulation,” J. ACM, vol. 54, no. 2, p. 6,
2007.

[22] A. Pnueli, “The temporal logic of programs,” in FOCS, 1977, pp. 46–57.

APPENDIX A
DSL

The calculus that formalizes the DSL is defined as follows.
Let P denote a set of thread names, ranged over by p, q, r. Let
T denote a set of message types, ranged over by t. Let PROT

α
α−→ 1 1 ↓

Pi
α−→ P ′ and i ∈ {1, 2}
(P1 + P2)

α−→ P ′
Pi ↓ and i ∈ {1, 2}

(P1 + P2) ↓

P1
α−→ P ′1

(P1 · P2)
α−→ (P ′1 · P2)

P1 ↓ and P2
α−→ P ′2

(P1 · P2)
α−→ P ′2

P1 ↓ and P2 ↓
(P1 · P2) ↓

P
α−→ P ′

P ∗
α−→ P ′ · P ∗ P ∗ ↓

Fig. 8. Transition relation for protocols

P, i |= >
α = β for all P(i) β−→ P(i+1)

P, i |= α

not P, i |= T

P, i |= ¬T

P, i |= T1 or P, i |= T2

P, i |= T1 ∨ T2
P, i+1 |= T

P, i |= XXXT[[
P, j |= T1 for all i ≤ j < n

]
and P, n |= T2

]
for some n ≥ i

P, i |= T1 UUU T2

Fig. 9. Satisfaction relation for unit tests

and TEST denote the sets of protocols and unit tests, ranged
over by P and T , generated by the following grammar:

α ::= [p,q] !t
∣∣ [p,q]?t

P ::= 0
∣∣ 1

∣∣ α ∣∣ P1 + P2

∣∣ P1 · P2

∣∣ P ∗
T ::= α

∣∣ ¬T ∣∣ T1 ∨ T2 ∣∣ XXXT
∣∣ T1UUU T2 ∣∣ >

Actions [p,q] !t and [p,q]?t represent the send/receive of a
message typed t through the channel from thread p to thread q.

Protocols are essentially BPA∗0,1 processes [21] over sends
and receives: informally, protocol 0 prescribes deadlock; proto-
col 1 prescribes skip; protocol α prescribes a send or receive;
protocols P1 + P2 and P1 · P2 prescribe the alternative and
sequential composition of P1 and P2; protocol P ∗ prescribes
a finite iteration of P . Formally, P α−→ P ′ means P performs
α and makes a transition to P ′, while P ↓ means P termi-
nates; they are defined as the smallest relations induced by
the rules in Figure 8. Run P of protocol P is a sequence
P = P0P1P2 · · ·Pn such that P = P0, and Pi

αi−→ Pi+1 for
all 0 ≤ i < n, and Pn ↓, for some α0, . . . , αn−1; each Pi is a
state of P , denoted as P(i).

Unit tests are essentially LTL formulas [22] over sends and
receives, and their meaning is defined relative to run P and
time index i: informally, test α asserts that next state P[i+1]
is reached from current state P[i] by performing α; tests >,
¬T , and T1 ∨ T2 assert tautology, the negation of T , and
the disjunction of T1 and T2 in the current state; test XXXT
asserts that T holds in the next state; test T1UUU T2 asserts
that T1 holds until T2 holds. In particular, >UUU T asserts that
T eventually holds, while ¬(>UUU ¬T) asserts that T always
holds. Formally, P, i |= T means test T holds on run P at time
index i; it is defined as the smallest relation induced by the
rules in Figure 9. Run P passes test T iff P, 0 |= T ; protocol
P passes T if each of P ’s runs passes T . A run that does not
pass T is a counterexample.

TABLE I
FROM DSL TO CALCULUS (PROTOCOLS)

DSL Calculus

t from p to q ; [p,q] !t · [p,q]?t
{P1 }or{P2 } P1 + P2

P1 P2 P1 · P2

loop{P } P ∗

opt{P1 }P2 (P1 · P2) + P2

P1 opt{P2 } P1 + (P1 · P2)

TABLE II
FROM DSL TO CALCULUS (UNIT TESTS)

DSL Calculus

t from p [p,r1] !t ∨ · · · ∨ [p,rn] !t
t to q [r1,q]?t ∨ · · · ∨ [rn,q]?t
!T ¬T
T1 \/ T2 T1 ∨ T2
T1 /\ T2 ¬(¬T1 ∨ ¬T2)
T1 -> T2 ¬T1 ∨ T2
XT XXXT
T1 U T2 T1 UUU T2
T1 W T2 (T1 UUU T2) ∨ (¬(>UUU ¬T1))
T1 V T2 ¬(¬T1 UUU ¬T2)
<>T >UUU T
[]T ¬(>UUU ¬T)

Tables I–II show the mapping from protocols and unit tests
in the DSL to those in the calculus. In Table II, cases t from
p and t to q, thread names r1, . . . , rn are those that occur in
the protocol for which the unit test is written.

APPENDIX B
MODEL CHECKER

The non-trivial bit of building the actual LTS from the
concrete Java code is detecting whether a send or receive has
succeeded. The problem is that methods send and recv return
only once the underlying put or take (on the internal message
queue) is actually done: if the Pr-object does not permit this
(because it would violate the protocol), the thread becomes
blocked and basically gets stuck. One way to solve this, is
to add non-blocking send/receive methods to the generated
state machine code for the sole purpose of model-checking.
However, this would violate the principle of building the LTS
by running the same code as the code run in production.

Instead, to detect if a send or receive has succeeded, the
code in Figure 10 is used. It works as follows for sends (lines
8-24); it works similarly for receives. For each thread name
and dummy value of a relevant type (i.e., a type that occurs in
the protocol code in the DSL), a deep clone is created of the
Pr-object, as a tentative successor. Then, the current thread
(curThread) acquires a lock and spawns an auxiliary thread
(auxThread) that tries to acquire the same lock. Then, the
current thread performs a send, and two things can happen:
• If the send is permitted, the underlying put is performed,

so the send succeeds, and a successor is found (and added
to the list). The current thread then releases the lock,
and waits until the auxiliary thread has terminated. The

1 publicpublicpublic classclassclass ModelChecker {

2 ...

3 publicpublicpublic staticstaticstatic List<Pr> getSuccessors(Pr p) {
4 List<Pr> successors = newnewnew ArrayList<>();
5 forforfor (String r : p.threadNames()) {
6 // try sends:
7 forforfor (Object d : p.dummies()) {
8 Pr successor = p.deepClone();
9 synchronizedsynchronizedsynchronized (successor) {

10 Thread curThread = Thread.currentThread();
11 Thread auxThread = newnewnew Thread(() -> {
12 synchronizedsynchronizedsynchronized (successor) {
13 thread.interrupt();
14 }
15 });
16 auxThread.start();
17 trytrytry {
18 successor.env(r).send(d);
19 successors.add(successor);
20 } catchcatchcatch (InterruptedException e) {}
21 }
22 trytrytry {
23 auxThread.join();
24 } catchcatchcatch (InterruptedException e) {}
25 } }
26 // try receives (similar to lines 8-24):
27 ...
28 }
29 returnreturnreturn successors;
30 } }

Fig. 10. Method to generate successors

auxiliary thread can then acquire the lock and interrupts
the current thread; however, this interrupt can safely be
ignored, because the current thread already knows the
send has succeeded (and added the successor to the list).

• If the send is not permitted, the underlying put is not
performed. Instead, inside method send (line 18), the
current thread calls wait on a monitor backed by the
same lock that it already acquired previously. Thus, the
lock is now free for the auxiliary thread to acquire, and
after having done so, the auxiliary thread interrupts the
current thread. The current thread accordingly unblocks,
catches the corresponding exception, and then knows
that the send was not permitted and will never succeed.
Accordingly, it does not add successor to the list.

