

Sevegnani, M., Kabac, M., Calder, M. and McCann, J. A. (2018) Modelling and

Verification of Large-Scale Sensor Network Infrastructures. In: 23rd International

Conference on Engineering of Complex Computer Systems (ICECCS 2018), Melbourne,

Australia, 12-14 Dec 2018, pp. 71-81. ISBN 9781538693414.

There may be differences between this version and the published version. You are

advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/169407/

Deposited on: 21 September 2018

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/169407/
http://eprints.gla.ac.uk/

Modelling and Verification of Large-Scale Sensor
Network Infrastructures

Michele Sevegnani∗, Milan Kabáč†, Muffy Calder∗ and Julie A. McCann†
∗School of Computing Science, University of Glasgow, Glasgow, UK

Email: {michele.sevegnani, muffy.calder}@glasgow.ac.uk
†Department of Computing, Imperial College London, London, UK

Email: {m.kabac, j.mccann}@imperial.ac.uk

Abstract—Large-scale wireless sensor networks (WSN) are
increasingly deployed and an open question is how they can
support multiple applications. Networks and sensing devices are
typically heterogeneous and evolving: topologies change, nodes
drop in and out of the network, and devices are reconfigured.
The key question we address is how to verify that application
requirements are met, individually and collectively, and can
continue to be met, in the context of large-scale, evolving network
and device configurations.

We define a modelling and verification framework based on
Bigraphical Reactive Systems (BRS) for modelling, with bigraph
patterns and temporal logic properties for specifying application
requirements. The bigraph diagrammatic notation provides an
intuitive representation of concepts such as hierarchies, commu-
nication, events and spatial relationships, which are fundamental
to WSNs.

We demonstrate modelling and verification through a real-life
urban environmental monitoring case-study. A novel contribution
is automated online verification using BigraphER and replay of
real-life sensed data streams and network events by the Cooja
network simulator. Performance results for verification of two
application properties running on a WSN with up to 200 nodes
indicate our framework is capable of handling WSNs of that
scale.

Index Terms—Wireless Sensor Networks; modelling; bigraphs;
runtime verification; monitoring.

I. INTRODUCTION

Large-scale wireless sensor networks (WSN) are increas-
ingly deployed and an open question is how they can sup-
port multiple applications. These applications have to meet
requirements, e.g. concerning functional behaviour, security
and quality of service. But it is difficult to verify application
requirements because there are large numbers of connected
devices, and the network and devices are heterogeous and
evolving, as topologies change due to node/network failures,
dynamic application requirements, etc. The key question we
address is how to assure requirements are met, individually
and collectively, and can continue to be met, in the context of
large-scale, evolving network and device configurations.

In contrast with small-scale environments (e.g. homes, of-
fices), at a large-scale, it is crucial to make explicit how large
numbers of devices are grouped into logical network partitions,
to allow reasoning about application-specific objects of interest
(e.g. building, bridge, park) rather than individual sensors or
devices. This is because the requirements of applications, e.g.
the sample rate of sensors (ensuring recognition accuracy),

data delivery, delay tolerance, node density in an area, etc., can
differ between network partitions. Furthermore, the network
infrastructure evolves over time as a result of node/network
failure, battery depletion of nodes, updates, the deployment of
new applications and/or changing environmental conditions.
For example, many large-scale WSNs are deployed in the
open air and thus are subject to node failure caused by harsh
environmental conditions [1]–[3].

We propose a framework based on modelling large-scale
network infrastructures and expressing application require-
ments as logical properties, and then reasoning about those
properties using automated reasoning techniques. The novelty
of our work is our models capture not only the spatial (i.e.
physical hierarchy), operational (i.e. hardware, network, appli-
cation configuration) and application-specific aspects of these
infrastructures, but also their temporal evolution, i.e. dynamic
behaviour. System reconfiguration, i.e. dynamic behaviour,
is event-driven; typical infrastructure events include sensor
measurement, application deployment, node failure. Also, we
consider the different stages of the application life-cycle in
the form of offline (design-time and deployment), online
(monitoring) and predictive analysis. By large-scale, we mean
networks with a significant number of nodes, e.g. over 100;
and while we refer mainly to WSNs this work applies to sensor
networks in general.

The modelling formalism is Bigraphical Reactive Systems
(BRS), a universal computational model defined by Milner [4]
for modelling interacting systems that evolve in time and
space, originally introduced in the field of Cyber-Physical
Systems. This is an ideal formalism for this domain because
it allows us to express how the spatial arrangement of nodes
may drive computational effects within the system. Dynamic
behaviour is defined by rules for rewriting bigraph models,
referred to as reaction rules. Reasoning is based on bigraph
patterns, which were introduced in [5]. BRS have been applied
in various domains, e.g. modelling and verification of Mixed-
Reality systems [5], networking [6], [7], and Cyber-Physical
systems [8].

The contributions of this paper are summarised as follows:
• models of WSN infrastructure and their dynamic be-

haviour using BRS and reaction rules,
• application properties expressed as bigraph patterns for

state predicates and temporal logic properties over bi-

graph patterns for computation paths and transition sys-
tems,

• integration with BigraphER [9] for automated model
evolution and reasoning about bigraph patterns,

• use of Cooja simulator [10] for simulating network events
and generating data streams in a WSN used for experi-
mentation,

• demonstration of the framework through a case-study
based on data streams collected from a real-life deploy-
ment of urban environmental monitoring, involving two
applications running on a WSN of up to 200 nodes and
data collected from the deployment over a period of two
months.

The paper is organised as follows. Section II presents the
case-study that is used for illustration throughout the paper.
Section III presents the basic model for large-scale sensor
network infrastructures using BRS and in Section IV we ex-
tend this to include dynamic behaviour. Section V is dedicated
to reasoning about application requirements (properties). In
Section VI we demonstrate the framework through experimen-
tation with a model of the case-study and an evaluation of the
performance of automated reasoning, using BigraphER, actual
data streams, and Cooja for generating events and data streams
that replay actual network events and data sensing in a WSN.

We consider two (state) properties that can be verified at
run-time and give results for reasoning over WSNs with up to
200 nodes. Related work is presented in Section VII and we
conclude in Section VIII.

II. A LARGE-SCALE SENSOR NETWORK
INFRASTRUCTURE WITH APPLICATIONS

This section presents the case-study used throughout the
paper to illustrate our approach. It is based on our experience
in developing a number of cross-city sensing applications and
deploying sensor network infrastructures in urban areas such
as the microclimate WSN that was deployed in 2017 in the
Queen Elizabeth Olympic Park (London, UK) [3].

Assume a large-scale wireless sensor network infrastruc-
ture distributed over the city, composed of nodes offering
processing capabilities and instrumented with heterogeneous
sensors. This infrastructure is established by the city council
for the purpose of monitoring various common environmental
conditions including pollution, light, vibration, temperature,
wind speed, etc.

Applications. Assume two applications, one is an event-driven
service, the other based on periodic reporting.

Environmental monitoring application (Srv1). To determine
the environmental conditions in frequently visited urban areas
and parks, this application requires data to be collected from
pollution, temperature, humidity and light sensors connected
to microcontroller class devices (nodes). The collected sensor
data are used to compute the environmental status of urban
areas and inform users.

Structural health application (Srv2). This application monitors
the material conditions of buildings and bridges in the city.

Vibration sensors and wind speed sensors are needed to
accurately monitor the structural health conditions of these
objects.

Application Requirements. Application requirements can be
defined at the level of individual network partitions or the
entire sensor network infrastructure.

Data gathering (Req1). Each application requires a minimal
number of sensor nodes in the network to be available per
application-specific partition (e.g. bridge, building, park) to
ensure sufficient data is collected.

Data delivery (Req2). Srv1 is an event-driven service that re-
quires pollution, temperature and humidity data to be delivered
to the application when the measured pollution level exceeds
a safety threshold. Srv2 is a periodic-based reporting service,
requiring vibration and wind measurements to be delivered to
the application at least once a minute.

Data processing (Req3). Apart from collecting sensor mea-
surements, Srv2 requires application-specific computations to
be carried out on the nodes for applying data compression
and filtering. This requirement entails that a node has to have
enough processing power to carry out all computations within
a given time t.

Node resources (Req4). To ensure the correct operation of the
sensor network infrastructure, it is crucial to ensure that the
energy levels of battery-powered nodes do not fall below a
minimum threshold, as sensor devices are known to misread
as the battery depletes.

Node failure (Req5). Node failure may routinely occur in the
infrastructure, it is crucial to ensure that the number of failed
nodes does not exceed a level tolerated by Srv1 and Srv2 .

Finally, we assume that the system is safe, secure and main-
tained over its lifetime, accounting for failure, exactly like data
centre management but using highly limited computational
resources and with the added complexity of cyber-physical
interactions, i.e. where the positioning and environment of
the devices are heavily impacted by the physics of their
environments.

III. MODELLING SENSOR NETWORK INFRASTRUCTURES

Modelling large-scale sensor network infrastructures re-
quires formalisms capable of expressing complex hierarchies
of physical locations as well as connectivity, i.e. the links
among the entities of the system. Moreover, they should
offer support for the temporal evolution of a system and
automated formal reasoning. Finally, compositionality is an
essential feature for enabling modelling at scale. While various
formalisms might fit these criteria to a greater or lesser
extent, we propose that bigraphs, a universal process algebra
that encapsulates both dynamic and spatial behaviour, fit all
these criteria particularly well. Another distinctive feature of
bigraphs is that they bridge formal mathematical modelling
and systems design by supporting equivalent diagrammatic
and algebraic representations. This allows systems designers
to express graphically the spatial arrangement of the systems

under consideration and to use these graphical forms as the
principal modelling representation. In addition, the graphical
form provides a convenient way for reporting feedback and
analysis results to non-expert users.

We now present details of the bigraph model, we begin with
some technical background on bigraphs and then gradually
introduce the model through a series of examples, each one
capturing a different aspect of the system.

A. Modelling with bigraphs

Bigraphs [4] were introduced by Milner as a universal
mathematical model for representing the spatial configuration
of physical or virtual objects and their interaction capabilities.
A bigraph consists of a pair of relations over the same set
of entities: a directed forest, called place graph, representing
topological space in terms of containment and a hyper-graph,
called link graph, expressing the interactions and (non-spatial)
relationships among entities. Each entity is assigned a type1

which determines its arity, i.e. number of links, and whether
it is atomic i.e. it is a leaf in the place graph. Types can also
be parameterised. The bigraphs in our model are abstract,
therefore entities do not have identifiers. We employ singleton
types [11] (types with exactly one value) to uniquely identify
entities. For the purpose of presenting our approach, we
provide only an informal overview of bigraphs. A concise
semantics can be found elsewhere [4].

P.Q Nesting i.e. P contains Q (1a)
P | Q Merge product (1b)
P ‖ Q Parallel product (1c)

id Identity (1d)
Kx,y Entity of type K with names x and y (1e)
/x P Closure of name x (1f)

Fig. 1. Bigraph model of an example hierarchy of physical locations.

Bigraphs can be described in algebraic terms (Formulae 1a-
1f) or with an equivalent rigorous graphical representation.
Fig. 1 shows a bigraph with five entities modelling an example
hierarchy of physical locations. Types are indicated here by
North, Park, Hospital, etc. In general, bigraphs permit any
kind of shape (sometimes coloured) for typed entities. In our
model, we use boxes to denote physical locations. Spatial

1Types are sometimes called controls in bigraphs literature.

(a)

(b)

Fig. 2. Bigraph model of sensor network nodes (a) and corresponding
simplified representation (b).

placement of entities is described by Formulae 1a and 1b.
Nesting is the operation defining the containment relation on
entities; merge product is the operation allowing to place two
entities side-by-side at the same hierarchical level. Hence, in
our example, North contains Bridge and North and South are
at the same level in the spatial hierarchy. Grey rectangles are
called sites and are specified by Formula 1d. They indicate
parts of the model that have been abstracted away. In other
words, an entity containing a site can contain zero or more
entities of any kind. For example, Hospital may contain other
locations specifying the floors and rooms within the building.
Note that entities of atomic types cannot contain sites. Finally,
a dashed rectangle denotes a region of adjacent parts of the
system. Using the algebraic notation, the example bigraph in
Fig. 1 can be expressed as follows:

North.(Bridge | Hospital | Park | id) | South

Connectivity between entities is specified by Formulae 1e
and 1f, and is represented in the graphical notation by green
edges called links as shown by the example bigraph in Fig. 2a.
Links may be only partially specified, in which case they
connect a name. Names are links (or potential links) to other
bigraphs representing the external environment or context.
By convention, names are drawn above the bigraph. In the
example, names x and y are used to indicate incoming and
outgoing links to remote resources. Sensor network nodes are
represented in our model by three kinds of circles: uncoloured,
amber, and dark grey for idle nodes (N), nodes in use (NU),
and failed nodes (NF), respectively. Note the three nodes in
the example may be in different physical locations as they
are contained by three distinct regions. This is specified in
the algebraic notation by Formula 1c. Network connections
between nodes are modelled by binary links between link-
ends. These are entities of type E represented in Fig. 2a as
small green circles. All link-ends of a node are grouped within
an entity of type L. This modelling strategy allows nodes to
be connected to an arbitrary number of links while keeping
the same type, thus the same arity. For purposes of aesthetic
clarity, in the rest of this paper we adopt a simplified graphical
notation in which E and L entities are omitted, as shown in
Fig. 2b. Each node is also linked to its configuration, modelled

Description Type(s) Arity Atomic Notation

Node idle N 1 circle
Node in use NU 1 amber circle
Node failed NF 1 X dark grey circle
Links L 0 —
Link ends E 1 X —
Configuration Conf 1 rounded box
Data/Setting P(x), W(x), . . . 0 X small coloured box
App App(x) 0 oval
App token A(x) 0 X small coloured circle

TABLE I
ENTITY TYPES USED IN BIGRAPH MODEL.

by the Conf rounded boxes in the region on the right. We adopt
a code of small coloured boxes within Conf to represent the
sensors installed on each node: red for atmospheric pressure
(P(x)), green for temperature (T(x)), blue for wind speed
(W(x)), and yellow for vibration (V(x)), etc. Typically, the
types of these entities are parameterised and are used to
carry data. For example, a node configuration may contain
an entity of type P(987.54) to indicate a specific value of
sensed atmospheric pressure. Other types of entity we employ
in our model include MAC(x) and IP(x) to represent MAC
and IP addresses, respectively. Each type in the form MAC(x)
is a singleton type and is used to uniquely identify a node.
In algebraic terms, the bigraph in Fig. 2a can be expressed as
follows:

/l /a /b /c (Na.L.(Ex |Ey |El) ‖ NUb.(L.El |A(1) |A(2)) ‖ NFc

‖ (Confc.(W |T |P) |Confb.(W |V) |Confa.(T |P)))

Fig. 3. Bigraph model of WSN applications.

Various applications may use different sets of nodes of
the network: this is expressed in the model by placing app
tokens (A(x)) inside NU nodes. They are represented as small
coloured circles, where a given colour indicates a specific
application. In Fig. 2 for example, applications Srv1 and Srv2
(defined in the case-study in Sec. II) are assigned the mauve
and yellow colours and are deployed on the amber node.
Application-specific properties and settings are indicated as
in Fig. 3 by the two ovals of type App(1) and App(2). The
mapping between applications and app tokens is defined by
placing a token A(x) in App(x). Note that additional settings
can be stored within the two ovals as they both contain a site.
This example is expressed algebraically as

App(1).(A(1) | id) | App(2).(A(2) | id)

A complete summary of the types defined by our model is
reported in Tab. I. At this stage, the full model of an example
city-wide sensor network infrastructure can be defined by
composing three bigraphs defined as in the three examples

Fig. 4. Bigraph model of example city-wide sensor network infrastructure.
The three regions in the bigraph correspond, from left to right, to the Physical,
Data, and Service perspectives, respectively.

described above (Figs 1, 2, and 3). The result is shown in
Fig. 4. Following the work of Benford et al. [5], we adopt a
modelling approach based on three design perspectives each
of which addresses a different facet of the overall system
in depth: Physical perspective in which we model physical
locations, nodes and their connectivity; Data perspective in
which we model sensed data and node settings; Service
perspective in which we model key aspects of the application
deployed on the network. Each perspective corresponds to a
region in the bigraph.

IV. MODELLING EVOLVING SENSOR NETWORK
INFRASTRUCTURES

The model introduced in the previous section only supports
static configurations: it does not describe the evolution of
a system over time. In our application scenario, temporal
changes are triggered by the occurrence of events, such as
nodes failing, new nodes being installed, new applications be-
ing deployed, etc. We extend the model to encompass dynamic
aspects by representing events arising in WSNs by means
of reaction rules, a form of rewrite rules for bigraphs. We
employ reaction rules in two orthogonal ways: as deterministic
sequences of operations to update a bigraph; as components
of a Bigraphical Reactive System (BRS) that can iteratively
be applied in any order to compute the set of reachable
configurations.

We start by providing a formal definition of reaction rules
and BRS and then illustrate our model of events through four
examples.

A. Events as reaction rules

A reaction rule consists of a pair of bigraphs: the left-hand
side specifies the portions of a bigraph to be changed, while
the right-hand side specifies how those are changed. We use
I to indicate the definition of reaction rules. Like in any

rule-based system, a reaction rule R IR′ is applicable to a
bigraph B when R is an occurrence in B (this is also called
bigraph matching). The result of the application is bigraph B′

which is obtained by substituting (in B) an occurrence of R
with R′. Such a reaction is indicated with B BB′. Finally,
reaction rules can be parameterised.

A BRS consists of a set of reaction rules together with
an initial bigraph on which the rules operate. Its transition
system is a (possibly infinite) graph whose vertices are bi-
graphs representing the reachable states and whose edges
represent state transitions, i.e. reactions over bigraphs. Within
BRS, each reaction rule can be assigned a stochastic rate to
model stochastic events (e.g. node failures). The corresponding
transition system can then be treated as a Continuous Time
Markov Chain (CTMC) [12]. Rule priorities can be introduced
by defining a partial ordering on the reaction rules of a BRS,
as implemented in [9].

Fig. 5. Reaction rule new(x): install a new node.

A simple example reaction rule is shown in Fig. 5. In our
model, it defines the installation of a new idle node at a given
physical location. The two regions represent the Physical and
Data perspectives. In the right-hand side, an entity of type N
(circle) is introduced in Loc and linked to its Conf box. Note
the configuration initially only consists of the node’s MAC
address which is represented by the entity of type MAC(x).
When the rule is instantiated, concrete values for parameter
x are used, e.g. MAC(34:36:3b:6e:ce:38). Each entity of type
Loc could contain other locations or nodes as indicated by the
presence of a site. The reaction rule can be defined in algebraic
terms:

new(x)
def
= Loc ‖ 1

I /a (Loc.(Na.L.1 | id) ‖ (Confa.MAC(x)))

Here 1 is used to denote an empty region. Hence, L.1 means
the entity does not contain a site.

Fig. 6. Reaction rule link(x, y): establish a new communication link
between two idle nodes.

Network topology is modelled by binary connections be-
tween nodes. A new communication link between idle nodes
can be established by applying the reaction rule given in Fig. 6.
In the left-hand side, the two idle nodes (circles) are in two
distinct regions, meaning they can be in different locations
in the physical hierarchy. Each node is linked to an entity of
type Conf in the region corresponding to the Data perspective.
The only relevant settings in the reaction rule are the two IP
addresses represented by the parameterised entities IP(x) and
IP(y). Note that although ignored here, other settings/data may
be present as both Conf boxes contain a site. In the right-hand

side, a new link between the two nodes is established. The
equivalent algebraic representation is

D(x, y)
def
= Confa.(IP(x) | id) | Confb.(IP(y) | id)

L
def
= L.(El | id) | id

link(x, y)
def
= /a /b (Na.(L | id) ‖ Nb.(L | id) ‖ D(x, y))

I /l /a /b (Na.L ‖ Nb.L ‖ D(x, y))

This reaction rule is very general and can be used to represent
(through iterative applications) any network topologies (e.g.
star, mesh, etc.). Similar reaction rules can be defined to handle
NU nodes.

Fig. 7. Reaction rule read(x, v): read sensor data from a node.

Sensing events are naturally modelled within the Data
perspective by reaction rules in the form of the one described
in Fig. 7. In this example, a sensor with IP address x is queried
to get an updated value of atmospheric pressure, indicated
by parameter v. In the left-hand side, type P(∗) is used to
match any value previously recorded by the sensor2. The rule
is specified algebraically as follows

read(x, v)
def
= IP(x) | P(∗) I IP(x) | P(v)

Fig. 8. Reaction rule sub(x, y): subscribe an app to a node.

Finally, the last example shows the encoding of app sub-
scription events. This is represented by the reaction rule in
Fig. 8. The left-hand side is defined in a similar fashion to
the one of reaction rule link(x, y), but with only one idle
node. In the right-hand side, the node is in use, thus its type
is changed to NU (amber circle). Moreover, an app token of
type A(y) (yellow circle) is placed within it. The equivalent
definition using algebraic notation is

sub(x, y)
def
= /a (Na.(L | id) ‖ Confa.(IP(x) | id))

I /a (NUa.(L |A(y) | id) ‖ Confa.(IP(x) | id))

The complete model includes more events such as: drop
a communication link, move a node to a different location,
join a network, battery depletion, deploy a new application on
the system, etc. These can easily be expressed following the
templates of the four reaction rules presented in this section.

2In our model, this is achieved by defining reaction rules equipped
with instantiation maps. See source code at https://github.com/mkabac
/iceccs-2018/blob/master/model/model.big for further details.

https://github.com/mkabac/iceccs-2018/blob/master/model/model.big
https://github.com/mkabac/iceccs-2018/blob/master/model/model.big

V. VERIFICATION OF SENSOR NETWORK
INFRASTRUCTURES

We consider three different paradigms for automated prop-
erty verification:
• checking a (static) property at deployment,
• monitoring properties as the system evolves, either iter-

atively checking (static) properties after every event, or
checking (dynamic) properties in a linear temporal logic
on computation paths,

• checking (dynamic) properties in a branching time logic
on the transition system generated from all possible
future application of reaction rules (i.e. all possible future
events).

Static properties are specified by bigraph patterns, dynamic
properties are specified by (possibly stochastic) temporal log-
ics with bigraph patterns as atoms. The application require-
ments (i.e. Req1 , . . . , Req5) of the case-study presented in
Sec. II serve as examples. The modelling and verification
framework is depicted in Fig. 9; details are below.

A. Static properties with bigraph patterns

Bigraph patterns were introduced in [5] to express static
properties over bigraphs in terms of bigraphs matching: a
pattern ϕ is satisfied by a given bigraph B, if an instance of
ϕ occurs in B. Patterns can also be combined with standard
Boolean operators to form logical formulae; we write > to
denote true, ¬ for negation and ∧ to indicate conjunction. In
our approach, bigraph patterns can be used both at deployment
time and at runtime for monitoring. In the former, they act
as predicates expressing requirements to be checked against a
bigraph representation of the WSN; in the latter, they represent
invariants that are checked at each rewrite step triggered by
the occurrence of an event in the WSN.

An example bigraph pattern is given in Fig. 10. Informally,
ϕ1(Loc) is satisfied by any bigraphs in which location Loc
contains at least three idle nodes. In algebraic terms, the
pattern is given by

ϕ1(Loc)
def
= Loc.(Na | Nb | Nc | id)

Similar patterns can be defined by specifying different loca-
tions or numbers of nodes. These patterns can be combined to
define properties formalising Req1 : there are sufficient nodes
available in every app-specific network partition. An example
is given by the following formula

ϕ1(Bridge) ∧ ϕ1(Park) ∧ ϕ1(Hospital)

We formalise Req4 with predicates that are true if and only
if a given resource is above threshold t in every node. For
instance, when considering battery level (represented by node
B(x)), this is defined by

ϕ2(x, t)
def
= ¬B(x) with x ≤ t

The next following three patterns will be used in conjunction
with temporal and stochastic logics.

A bigraph pattern to check whether there exists a node with
IP address x and timestamp UTC(t) indicating the last time t
a read event was recorded by the node is given by

ϕ3(x, t)
def
= IP(x) | UTC(t)

Finally, the two predicates introduced in Fig. 11 are satisfied
when a node with IP address x is serving app y (ϕ4(x, y))
and when it has failed (ψ4(x)). The corresponding algebraic
formulation is

ϕ4(x, y)
def
= /a (NUa.(A(y) | id) ‖ Confa.(IP(x) | id))

ψ4(x)
def
= /a (NFa ‖ Confa.(IP(x) | id))

B. Monitoring properties in evolving configurations

We define a computation path as a sequence of bigraphs
S0 S1 . . . St in which Si−1 BSi, with i ≤ t. We indicate
St as the current configuration (state) of the WSN and label
each Si with the propositions (i.e. bigraph patterns) that hold
locally. Such sequences emerge at runtime when the current
state is updated iteratively by reaction rules encoding events
and then checked against (static) properties.

The specification of more complex and temporal properties
for monitoring is possible, for instance, by reasoning over
paths in Past-Time Linear-time Temporal Logic (ptLTL) [13].
In this logic the Y (for “Yesterday”) operator, which is the
temporal dual of X (for “Next”) in LTL, refers to the previous
time instant, i.e. St |= Yφ iff St−1 |= φ. Requirements about
the the freshness of data as required in Req2 can easily be
expressed by combining this operator with the bigraph pattern
defined above:

ϕ3(x, t) ∧Yϕ3(x, t
′) with t− t′ ≤ 60s

where x indicates the node’s IP address.

C. Transition systems

For the purposes of illustration, assume we wish to focus on
quantitative aspects of WSNs; for example, rules may encode
the stochastic rates of events such as hardware failure, battery
depletion, and node repair. The generated transition systems
are CTMCs. When defining reaction rules, same care needs
to be taken to generate a finite state space. For instance,
rule priorities may be necessary to avoid adding duplicate
communication links through repeated applications of reaction
rule link(x, y). Similar to labels in paths, the CTMCs are
augmented with labels indicating which bigraph patterns hold
in each state. Quantitative dynamic properties are expressed by
combining bigraph patterns with Continuous Stochastic Logic
(CSL) [14]. The process of generating a labelled CTMC and
verifying dynamic properties against it can be computationally
expensive, so this can be carried out separately from the
monitoring process. Also, when the state space is too large, it
may be necessary to bound the number of transitions within
a given path.

Events
map to

reaction
rules

Properties (bigraph patterns, temporal/stochastic logic)

Sensor network

User

Bigraph model

Reaction rules

new(x)

sub(x,y)

ModellingInfrastructure
App1

App2 Verifiying
evolving

model

Verification

Checking static properties

Req2
Req1

Req3

Checking dynamic properties

S0

S1

S2

S3

...

...

...

S0 S1 S2

Monitoring a path

Computation path

CSV

1
φ

ν

ν1

Req1

App.
requirements

Req2
Req3

Fig. 9. Modelling and verification framework for large-scale sensor network infrastructures.

Fig. 10. Bigraph pattern ϕ1(Loc): a location contains at least three idle
nodes.

(a) (b)

Fig. 11. Bigraph patterns ϕ4(x, y) and ψ4(x): a node is serving an app (a);
a node has failed (b).

Two simple example properties are:

S<0.1 [¬ϕ2(x, t)] (2)
P<0.1 [ϕ4(x, y)U≤t ψ4(x)] (3)

Formula 2 is another formalisation of Req4 : it specifies that the
long-run probability of any node to have battery level x below
threshold t is less than 0.1. S is the CSL steady state operator.
Formula 3 formalises Req5 , which holds if the probability
within t time units of failure of node with IP address x while
serving app y is less than 0.1. This is a transient property with
“Until” operator U. Propositions ϕ4(x, y) and ψ4(x) were
introduced in Fig. 11.

Labelled CTMCs can be further augmented with costs
(rewards) [15] that are associated with states or reactions. In
our approach, this extension can be defined by associating
numerical values to (a subset) of the reaction rules of a BRS.

The two example properties below are defined by associ-
ating costs to the reaction rules modelling the installation of
new nodes in the WSN (see new(x) in Fig. 5). Operator R

works in a similar fashion to the P and S operators.

R{new}=? [C ≤ t] (4)
R{new}=? [S] (5)

Formula 4 (cumulative) computes the expected operational
cost of installing new nodes within t time units, while For-
mula 5 (steady-state) computes the expected long-run cost rate
per unit of time.

VI. EXPERIMENTATION AND EVALUATION

In this section we give some results concerning our case-
study and evaluate the performance of automated reasoning
for monitoring two example properties. Our aim in this work
is threefold.

First, we demonstrate applicability of our approach by mod-
elling an example sensor network infrastructure and expressing
application requirements as properties.

Second, we have developed an experimental set up to reason
about actual or simulated network evolutions. This requires, in
addition to the bigraph model, reaction rules, and application
properties to be proved (or disproved), both a stream of sensed
values (data) and a stream of network events. The data and
network events correspond to reaction rules in the model.

Third, we evaluate automated reasoning performance by
measuring the time taken to update configurations of the
infrastructure model and verify static properties. We focus
on updates that correspond directly to the different events
of interest in the infrastructure: each update involves many
rewrite steps as well as the verification of predicates presented
in Section IV.

A. Modelling a city-wide environmental monitoring infrastruc-
ture

Full details of the bigraph model can be found on a public
repository hosted on GitHub3. The entities are defined using
the types presented in Tab. I. The configuration Conf of

3https://github.com/mkabac/iceccs-2018

https://github.com/mkabac/iceccs-2018

sensor nodes defines the MAC address, IP address, a range
of integrated sensors (temperature, humidity, light, etc.), the
current battery state and the timestamp of the latest sensor
reading. The WSN infrastructure is partitioned into physical
locations presented in Fig. 1, Sec. III-A. The initial state of the
infrastructure is a bigraph that consists of three perspectives:
Physical, Data and Service as shown below.

S0
def
= (North.(Hospital | Bridge | Park) | South | c) ‖ 1 ‖ 1

We denote a link to external resources with name c. Events
are defined as rules, namely, deploy, new, join, link, read
and sub as presented in Sec. IV-A. Application requirements
(properties) Req1 and Req4 are expressed by bigraph patterns
as predicates ϕ1(Loc) and ϕ2(x, t), as defined in Sec. V-A.
Both requirements can be verified on states at runtime.

B. Experimental setup

Fig. 12 depicts the experimental set up, which we describe
in more detail as follows.

BigraphER. For bigraph reasoning, we used a suite of open-
source tools that provide support for rewriting and visualisa-
tion of bigraphs and reaction rules called BigraphER [9]. We
encode both the model and the bigraph patterns in BigraphER.

Event generation. Events can be real-life, or simulated. In
the case of simulation, the stream can be a replay of real
(historical) events, which is the approach we take here.

To generate the simulated events we integrated BigraphER
with Cooja [10], a WSN simulator for the Contiki operating
system [16], which combines low-level emulation of sensor
node hardware with firmware from different vendors and
simulates network and radio model behaviors. The integration
with Cooja allows us to evaluate the performance of our
approach against simulated WSNs at different scales. Here,
we assume a star topology and implement the IPv6 Routing
Protocol for Low-Power and Lossy Networks (RPL), the
closest to a reference standard provided by this community.
The sensor nodes are emulated using firmware for the Tmote
Sky platform. The size of the simulated WSNs range from
from 10 to 200 nodes.

Data values. We use data drawn from a sensor dataset4

collected from the microclimate sensing system deployed in
the Queen Elizabeth Olympic Park in London (see Section II)
over a two-month period in 2017. Observe that this dataset
was collected aperiodially, because the nodes were energy
harvesting, operating in an energy neutral regime. In the exper-
imental setup, the timestamps are not considered. Instead, data
is delivered periodically, at least once every 20 seconds, and
associated with reaction rule read(x, v) (value v at node x).

Workflow. At all times, the bigraph model is a model of the
current (simulated) WSN, so the model evolves, i.e. is updated
by the (reaction rules that correspond to) generated events. The

4https://github.com/mkabac/iceccs-2018/blob/master/data
/input_dataset/ENO_Box_3B06.csv

Simulation
manager

BigraphER

Cooja
simulator

App.
reqs.

CSV

1
φ

ν

ν1

.props

1
φ

ν

ν1

Sim.setup/
launch

Sim.
output

Data
stream

Socket

CSV

1
φ

ν

ν1

.big

ν

ν1

User

Feedback

4

3 2

5

Importing
data

CSV

1
φ

ν

ν1

CSV

ν

{;}

1

Bigraph
model

Sensor
dataset

Fig. 12. The experimental setup for evaluating the framework with actual
data and network events replayed by Cooja. Cooja can be replaced by an
actual network.

predicates are repeatedly checked on the evolving model. In
the following, numbers refer to arrows in Fig. 12.

We used OCaml for interfacing BigraphER with Cooja as
well as for implementing the pre-processing of data streams.
The data stream for the experiment is generated from a dataset
imported from a CSV file using the simulation manager (1).
The WSN is configured and launched in a script, which is
provided to a simulation manager component in Cooja (2).
The output of the simulator is collected and mapped to
events (3); these include update events such as a new sensor
node joining the network, a new link between nodes, sensor
measurement, etc. The simulator can be replaced easily by an
actual network, no modifications are required. The interaction
between the (simulated) WSNs and BigraphER is ensured
via TCP sockets (4). The evolving configurations of bigraph
models are presented to users through diagrams and datasets
in the JSON format (5).

Hardware. The evaluation has been carried out on a computer
equipped with a 3.40GHz Intel Core i7-4770 processor and
16GB of RAM. Both Cooja and the BigraphER implementa-
tion ran simultaneously.

C. Experimental results

The results of the performance evaluation are presented in
Tab. II. Each row in the table provides, respectively, (1) the
size of the simulated WSN in terms of sensors, (2) the size
of the sensor network model in terms of bigraph entities, (3)
the number of rewriting steps needed for graph reconfiguration
over the duration of the experiment and (4) - (9) the average
time for completing reaction rules encoding WSN events into
the model. These performance measurements include the time
needed for completion of reaction rules to encode events from
WSNs into the bigraph model as well as the time needed for
the execution of predicates for the verification of application
requirements Req1 and Req4 as defined in Sec. II. The reaction
rules new, join, sub, link and read, have been triggered
once per sensor node in each experiment. The deploy reaction
rule has been triggered only twice to encode the deployment
of services Srv1 and Srv2 . We considered WSNs up to size
200 nodes. Cooja was the limiting factor: we were unable

https://github.com/mkabac/iceccs-2018/blob/master/data/input_dataset/ENO_Box_3B06.csv
https://github.com/mkabac/iceccs-2018/blob/master/data/input_dataset/ENO_Box_3B06.csv

WSN Final model Rewriting deploy new join sub link read

size (sensors) size (entities) steps (ms) (ms) (ms) (ms) (ms) (ms)

10 223 108 0.352 1.337 1.633 2.152 9.713 10.260
50 987 440 0.366 5.936 8.141 11.120 54.063 102.050
100 2023 905 0.429 16.020 21.452 30.420 162.793 422.689
150 2969 1337 0.298 29.620 38.588 55.508 298.086 828.165
200 3810 1624 0.298 47.488 60.174 87.592 451.759 1158.441

TABLE II
PERFORMANCE MEASUREMENTS FOR THE MODELLING AND VERIFICATION OF SIMULATED WSNS AT DIFFERENT SCALES.

Fig. 13. Performance evaluation for WSN with 100 nodes. [x] execution time
(hh:mm), [left y] event processing time (ms), [right y] model size (bigraph
entities).

to simulate larger WSNs with Cooja as the simulation speed
decreased to 1% of its normal operation.

The events of interest were generated in the same order as
they are defined in Tab. II. Generally, we observe that the
time it takes to complete reaction rules increases over the
course of the experiment for each simulated WSN. This is
because the execution of reaction rules is done over a model
that is gradually increasing in size, causing later reaction rules
(e.g. link, read) to require more time for bigraph matching
compared to reaction rules applied to a smaller model at an
early stage (e.g. deploy, new). Furthermore, scaling up the
WSN naturally provides larger bigraph models and gradually
increases execution time for the majority of reaction rules.
The relation between the size of the bigraph model and the
execution time of reaction rules is shown in Fig. 13 for the
experiment carried out over a WSN with 100 nodes.

These preliminary results indicate that the prototype reason-
ing implementation can support modelling and online verifica-
tion of sensor network infrastructures comprising of up to 200
nodes. We note that our case-study applications (environmental
monitoring, structural health) are delay-tolerant applications
without hard real-time requirements.

VII. RELATED WORK

Modelling and verification in the context of sensor networks
and cyber-physical systems has been addressed in various

works, at different levels of abstraction. We divide the re-
lated work into approaches targeting the modelling of spaces,
network-level and node-level aspects of these environments.

Spaces. Mottola et al. [17] propose logical neighbourhoods, a
programming abstraction that defines the notion of proximity
according to functionality related characteristics of sensor
nodes, including both static and dynamic properties. This
programming abstraction is supported by a routing protocol
and a language allowing developers to define neighbourhoods
declaratively. This work focuses on providing an abstraction
for mapping nodes to neighbourhoods and capturing the set of
nodes with functionally related characteristics. The abstraction
is used to ensure efficient routing strategies. In contrast, the
modelling in our approach allows us to express not only the
spatial properties of the infrastructure but also the dynamic
behaviour of sensor network infrastructures.

The works by Tsigkanos et al. [8] and Calder et al. [6] are
the most similar to ours. In the work by Tsigkanos et al. [8],
the authors presented a methodology and a BRS framework for
the modelling of evolving Cyber-Physical Spaces (CPS) (e.g.
offices, buildings, cities) and reasoning about spatio-temporal
properties. Calder et al. [6] presented a BRS approach for
modelling home wireless network infrastructures, focussing on
modelling and reasoning about spatial and temporal behaviour
of network interactions and network policies. Compared with
these approaches, our work provides models that are tailored
to large-scale sensor network infrastructures and define com-
plex relationships between sensor nodes, their configurations,
hierarchies of physical locations and deployed application
services. These models are augmented with domain-specific
requirements that can be expressed with a combination of
spatial, temporal and stochastic logics.

Network. Modelling and verification at the network level is
frequently used to analyse network protocols and algorithms.
We mention two approaches dedicated to the modelling and
verification of network-level supports in the context of WSN.
The work by Olveczky et al. [18] presented an approach for
the modelling, simulation, and model checking of advanced
WSN algorithms. The authors presented a language and tool
for the formal specification and analysis of real-time systems
called Real-Time Maude, which uses a formalism based on
an extension of rewriting logic that can be used for specify-
ing distributed real-time systems in an object-oriented style.

Fehnker et al. [19] reported on the modelling and verification
of a medium access control protocol for WSNs called LMAC.
The authors analysed the ability of the LMAC protocol to
detect and resolve collision using a timed automaton model
and the UPPAAL model checker.

Sensors. At the level of sensors, modelling and verification is
needed to make guarantees on the code running on sensors. For
example, in the work by Bucur et al. [20], authors presented
the first tool dedicated to the pre-deployment verification of
multithreaded, adaptive applications written in nesC for the
TinyOS platform. To do so, the approach performs static
verification of a TinyOS application running on a sensor
node against a context-aware safety specification requiring
the program to be in a safe state with respect to actuation
and memory configuration. Kleenet [21] is an alternative tool
for the pre-deployment testing of sensor network applications
based on the KLEE symbolic virtual machine. Kleenet is
designed to detect bugs resulting from complex interactions
of multiple nodes, non-deterministic events in the network,
and unpredictable data inputs.

The approaches listed at the level of the network and
sensors are complementary to our work. Our contribution
pertains to different levels of abstraction and defines models
of infrastructure for verifying application requirements at run-
time. Currently, our approach verifies application requirements
pertaining to all three levels of abstraction, such as node
density per location (i.e. space), frequency for delivering
sensor data (i.e. network) and current battery state on nodes
(i.e. sensors).

VIII. CONCLUSION

We have presented a modelling and verification framework
for wireless sensor network infrastructures at a large scale
to support reasoning about their spatial, operational and be-
havioural aspects. We have established a general approach
based on BRS for modelling and formal verification that
includes bigraph patterns for expressing and monitoring spatial
properties on bigraphs, past time linear temporal logic for
reasoning over computation paths, and stochastic logic for
reasoning about future configurations.

The bigraph model encapsulates three modelling perspec-
tives: the Physical perspective in which we model physical
locations, nodes and their connectivity; the Data perspective in
which we model sensed data and node settings; and the Service
perspective in which we model key aspects of the applications.
Each perspective corresponds to a region in the bigraph, which
makes the diagrammatic form especially intuitive.

Throughout, we have used an environmental monitoring
cases-study for illustration and we provided both algebraic
and diagrammatic representations of the bigraphs.

For experimentation and evaluation of our approach for
on-line verification, we implemented a prototype automated
reasoning set-up based on the open-source BigraphER tool
and the Cooja network simulator for generation of events. The
events were a replay of real-life data. The results indicate our

approach is capable of handling online verification of large-
scale infrastructures comprising of up to 200 nodes.

Future work includes evaluation with events streamed from
a live sensor network infrastructure such as the FIT IoT-Lab
testbed [22]. Finally, we are working on a domain-specific
language to improve the usability of our approach by enabling
formal algebraic representations to be generated from domain
specific, high-level specifications.

ACKNOWLEDGMENT

This work is supported by the Engineering and Physical
Sciences Research Council, under grant EP/N007565/1 S4:
Science of Sensor Systems Software, and by the Intel Collab-
orative Research Institute in Urban IoT. We also thank Greg
Jackson for providing the dataset collected from the microcli-
mate WSN deployment in the Queen Elizabeth Olympic Park.

REFERENCES

[1] R. Hartung, U. Kulau, B. Gernert, S. Rottmann, and L. Wolf, “On
the experiences with testbeds and applications in precision farming,”
in International Workshop on the Engineering of Reliable, Robust, and
Secure Embedded Wireless Sensing Systems (FAILSAFE’17). ACM,
2017.

[2] X. Fang and I. Bate, “Issues of using wireless sensor network to
monitor urban air quality,” in International Workshop on the Engineering
of Reliable, Robust, and Secure Embedded Wireless Sensing Systems
(FAILSAFE’17). ACM, 2017.

[3] G. Jackson, S. Gallacher, D. Wilson, and J. A. McCann, “Tales from
the wild: Lessons learned from creating a living lab,” in International
Workshop on the Engineering of Reliable, Robust, and Secure Embedded
Wireless Sensing Systems (FAILSAFE’17). ACM, 2017.

[4] R. Milner, The space and motion of communicating agents. Cambridge
University Press, 2009.

[5] S. Benford, M. Calder, T. Rodden, and M. Sevegnani, “On lions, impala,
and bigraphs: Modelling interactions in physical/virtual spaces,” ACM
Trans. Comput.-Hum. Interact., vol. 23, no. 2, 2016.

[6] M. Calder, A. Koliousis, M. Sevegnani, and J. Sventek, “Real-time
verification of wireless home networks using bigraphs with sharing,”
Science of Computer Programming, vol. 80, Part B, no. 0, 2014.

[7] M. Calder and M. Sevegnani, “Modelling IEEE 802.11 CSMA/CA
RTS/CTS with stochastic bigraphs with sharing,” Formal Aspects of
Computing, vol. 26, no. 3, 2014.

[8] C. Tsigkanos, T. Kehrer, and C. Ghezzi, “Modeling and verification of
evolving cyber-physical spaces,” in Foundations of Software Engineer-
ing, ser. ESEC/FSE 2017, 2017.

[9] M. Sevegnani and M. Calder, “BigraphER: Rewriting and analysis
engine for bigraphs,” in International Conference on Computer Aided
Verification (CAV’16). Springer, 2016.

[10] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-
level sensor network simulation with Cooja,” in IEEE Conference on
Local Computer Networks, 2006.

[11] S. Hayashi, “Singleton, union and intersection types for program extrac-
tion,” in Theoretical Aspects of Computer Software. Springer Berlin
Heidelberg, 1991.

[12] J. Krivine, R. Milner, and A. Troina, “Stochastic bigraphs,” Electronic
Notes in Theoretical Computer Science, vol. 218, pp. 73–96, 2008.

[13] O. Lichtenstein, A. Pnueli, and L. Zuck, “The glory of the past,” in
Logics of Programs. Springer Berlin Heidelberg, 1985.

[14] C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen, “Model-
Checking Algorithms for Continuous-Time Markov Chains,” IEEE
Trans. Software Eng., vol. 29, no. 6, 2003.

[15] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification
of probabilistic real-time systems,” in International Conference on
Computer Aided Verification (CAV’11). Springer, 2011.

[16] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flex-
ible operating system for tiny networked sensors,” in IEEE International
Conference on Local Computer Networks, 2004.

[17] L. Mottola and G. P. Picco, “Logical neighborhoods: a programming
abstraction for wireless sensor networks,” in IEEE international confer-
ence on Distributed Computing in Sensor Systems (DCOSS), 2006.

[18] P. C. Olveczky and S. Thorvaldsen, “Formal modeling, performance
estimation, and model checking of wireless sensor network algorithms
in real-time maude,” Theoretical Computer Science, vol. 410, no. 2,
2009.

[19] A. Fehnker, L. van Hoesel, and A. Mader, “Modelling and verification
of the lmac protocol for wireless sensor networks,” in Integrated Formal
Methods. Springer Berlin Heidelberg, 2007.

[20] D. Bucur and M. Kwiatkowska, “Bug-free sensors: The automatic ver-

ification of context-aware tinyos applications,” in Ambient Intelligence.
Springer Berlin Heidelberg, 2009.

[21] R. Sasnauskas, O. Landsiedel, M. H. Alizai, C. Weise, S. Kowalewski,
and K. Wehrle, “Kleenet: Discovering insidious interaction bugs in wire-
less sensor networks before deployment,” in ACM/IEEE International
Conference on Information Processing in Sensor Networks, ser. IPSN
’10, 2010.

[22] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel,
R. Pissard-Gibollet, F. Saint-Marcel, G. Schreiner, J. Vandaele et al.,
“FIT IoT-Lab: A large scale open experimental IoT testbed,” in World
Forum on Internet of Things (WF-IoT). IEEE, 2015.

	Introduction
	A Large-Scale Sensor Network Infrastructure with Applications
	Modelling Sensor Network Infrastructures
	Modelling with bigraphs

	Modelling Evolving Sensor Network Infrastructures
	Events as reaction rules

	Verification of Sensor Network Infrastructures
	Static properties with bigraph patterns
	Monitoring properties in evolving configurations
	Transition systems

	Experimentation and evaluation
	Modelling a city-wide environmental monitoring infrastructure
	Experimental setup
	Experimental results

	Related Work
	Conclusion
	References

