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ABSTRACT
This paper discusses a low-power spike detection circuit,
which reduces bandwidth from neural recordings by only
outputting a short pulse at each neural spike time. Commu-
nication bandwidth is dramatically reduced to the number of
spikes. The principal idea is to use two low pass filters, one
with a higher cutoff frequency to remove high frequency
noise and the other with a lower cutoff frequency to create a
local average. When the difference between the signal and
the local average rises above a threshold a spike is detected.
The circuit uses subthreshold CMOS to keep the power con-
sumption low enough for integration of many channels in
an implanted device. This spike detection method shows
promising results towards a robust and unsupervised algo-
rithm that is lower power and more compact than existing
spike detection methods.

1. INTRODUCTION

Brain-machine interfaces (BMI) [1] and other applications
require ultra-low power neural instrumentation electronics,
such as spike detection circuitry, to be implanted within
the body. Low power is necessary due to the difficulty of
charging or changing implanted batteries. No external wires
should pass through the skin due to the risk of infection,
thus the required implantation. Implantation also requires a
robust spike detection method and circuit implementation.
BMI systems place strong constraints on the wireless trans-
mission because hundreds of channels are recorded.

This paper specifically refers to spike detection for a
BMI device that could ultimately allow a quadriplegic to
control a robotic arm with his or her brain signals. BMI
devices currently record from over a hundred channels and
are working towards adding more. Since spikes are sparse
in neural data, only transmitting the time of the detected
spike, and not the entire signal, could significantly reduce
the bandwidth of transmission but would not allow for spike
sorting. All BMI systems currently use a human tuned and
computationally intensive spike sorting process, which re-
covers several individual neural signals from each electrode

at the cost of additional power consumption, increased size,
and a larger communication bandwidth. Recent results sug-
gest that the spike sorting step may be eliminated without
severe degradation of BMI performance [1] thus lending
credibility to solely using spike detection.

Robustness is necessary for long-term implantation be-
cause of varying noise sources, SNR fluctuations, and DC
drift. The electrodes drift over time, which causes the dis-
tance from each neuron to each electrode to change. These
fluctuations affect the SNR strength because the closer a
neuron is to the electrode the stronger its signal. Noise is
also affected because distant neurons are lumped together
to form noise, correlated with the signal. DC drift occurs
as the electrode moves through the brain tissue over time.
An implanted circuit must be robust enough to operate over
these wide ranges of fluctuations.

Spike detection is a classical problem in neuroscience,
with many proposed algorithms in the literature. Popu-
lar spike detection methods include amplitude threshold-
ing, wavelets, matched filters, and template matching. Cur-
rently, there is no consensus in the community as to the best
approach to spike detection, particularly for robust, unsu-
pervised, and computationally simple methods.

Lewicki [2] provides a thorough review of most of these
spike detection methods. Each of the proposed detection
techniques has shortcomings. The simplest method, ampli-
tude thresholding, quickly begins to fail as SNR drops and
is not robust to DC drift. Wavelets have been used for off-
line analysis but are presently too computational expensive
for real-time implantable devices. Template matching and
matched filtering are two of the most accurate spike detec-
tion methods, but they require intensive computation. They
also require supervision because they lack robustness to-
ward any change of shape in neural signals that will occur
as the electrode drifts over time.

This paper describes an analog spike detection method
that is low power and robust. The circuitry is described in
Section 2. Matlab simulations in Section 3 use recorded
neural data to evaluate the performance of this spike detec-
tion method.
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2. CIRCUITRY

The basic operating principal for the analog spike detec-
tor is inspired by the auditory onset detection scheme of
Smith [3]. Thus, it will be referred to as the onset detection
method. The difference of two low-pass filters is used to
enhance the spike. One filter has a higher cutoff frequency
to remove high frequency noise and the other has a lower
cutoff frequency to create a local average. When the differ-
ence between the signal and the local average rises above
a threshold, a spike is detected. This method is robust to
changes in the noise level as well as DC offsets, both of
which are common for long term neural recordings. The
basic circuit blocks are shown in Fig. 1.

Figure 1: Circuit Diagram

An operational transconductance amplifier (OTA) is
configured as a follower integrator for the first-order low-
pass filters. The OTAs are run in the subthreshold region
to reduce power [4][5]. The τ bias voltages are set off chip
to enable adjustment of the cutoff frequencies after fabrica-
tion. The desired cut-off frequencies for the two filters were
found to be 1.4kHz and 5.3kHz from Matlab simulations
described in Section 3.2. With the transconductance ampli-
fiers’ bias voltages set for a gm of 150nA/V , C1 = 22.5pF
and C2 = 4.9pF . The threshold is set with Vbias but re-
quires an autonomous method for multiple channels.

Low power consumption is critical because the circuit
must be implanted. Cadence SpectreS simulations show the
circuit consumes an average of 1µW of power.

3. SIMULATED AND MEASURED RESULTS

3.1. Data

High SNR neural recordings, sampled at 20kHz, were used
to increase the confidence of the ground truth spikes times
determined from the data set. Then, white Gaussian noise
was added to give the detection problem a more realistic
SNR level. A slowing varying 1Hz, 10mV amplitude si-
nusoid was also added to the signal to simulate the slowly

varying DC offset. Fig. 2 (a) shows the original neural data
waveform and (b) shows the 0dB SNR waveform with an
offset. SNR was calculated as the average spike magnitude
divided by the average noise magnitude.
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Figure 2: (a) original waveform (b) 0dB SNR waveform
with offset. Column two is zoomed in from column one.

3.2. Matlab Simulations

Receiver operating characteristic (ROC) curves are typi-
cally used to quantify the performance of detection algo-
rithms [6]. There is always a trade-off between the optimal
detection of all the spikes and the erroneous detection of
noise as a spike. This detection problem also requires spike
time estimation. A detection was considered correct if it oc-
curred within 300µs of the actual spike time. Fig. 3 shows
that as a larger percentage of spikes are detected more noise
will be falsely detected as a spike (also known as a false
alarm). The ratio of correct detections to incorrect detec-
tions can be set to the desired operating point on the ROC
curve by choosing the corresponding threshold level.

To determine the desired circuit cut-off frequencies,
ROC curves were constructed from nested cut-off frequency
iterations. The circuit’s cut-off frequencies were chosen
with the minimum number of false alarms at 90% correct
detection, 1.4kHz and 5.3kHz.

The onset detection method was compared to the thresh-
old method at 0dB SNR with the results shown in Fig. 3.
For comparison purposes the two methods were examined
at their 90% correct detection operating point. The onset
method outperformed the amplitude threshold method by
over 30dB in terms of false alarm rate. Because spikes are
sparse in neural data the probability of a false alarm needs
to be a fraction of a percent not to swamp the number of
correct detections.
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Figure 3: ROC Curves, 0dB SNR

The data used has an average spiking rate of 76Hz so
during one second of data at 90% correct detections there
should be 68 correct detections out of 76. At 0dB the onset
method had a 2 × 10−4 probability of a false alarm, 4 false
detections per second. The incorrect detection probability
for the onset detector was 6%. For the amplitude threshold
method there were 230 false detections per second, so its
incorrect detection percentage is much greater at 76%.

The onset detection method consistently outperformed
the amplitude threshold method over varying SNR values.
Once the SNR became too low, -2dB, neither method per-
formed well. Here the onset method degraded to 25% in-
correct detections and the amplitude threshold method was
extremely poor at 82% incorrect detections.

Second-order filters were simulated for the onset spike
detection circuit but their performance over first-order filters
was negligible. Since they require additional chip area and
power without noticeable performance improvement, they
were not investigated further.

Analysis of the Matlab simulation results showed that
at 90% correct detection almost all of the false alarms came
from noise riding on the second peak of the action poten-
tial. Spike-like noise over other parts of the signal was only
detected 2% of the time a false alarm occurred. The ma-
jor portion of false alarms could be reduced by blinding the
detector for a short period after it detects a spike. The trade-
off to this would be the detector losing resolution between
spikes. The amount of time the detector is blinded equals
the minimum time required between spikes for detection.

3.3. Chip Results

The onset spike detector chip was fabricated using AMI
0.5µm CMOS technology. The chip was 1.5mm× 1.5mm
with 253µm × 223µm of circuit area.

Due to the difficulty of testing the chip with real neural
data, the chip was tested with two basic signal generators to

crudely approximate neural data. A square wave was used
to mimic the spike and a high frequency sine wave was used
to simulate noise on the signal. The input signal was based
on three characteristics of real neurons: spike width, time
between spikes, and amplitude.

Neural spike widths vary between 0.3ms to 3ms depend-
ing on the species, the brain area, and whether the record-
ing is near the axon or the dendrite. Because the circuit
detects the onset of the spike, the effective spike width is
the width of the first rise in the action potential. With in-
finite SNR, this would mean approximately half the action
potential time, but as SNR degrades it reduces. The chips
functionality was tested with pulse widths of 100 − 400µs.

The second signal characteristic is the time between
spikes. Individual neurons have a refractory period, which
sets a minimum time between spikes. Without spike sort-
ing multiple neurons can contribute to one waveform and
the refractory period is not a determining factor in the min-
imum time between spikes. It is then optimal to detect a
spike as close the previous one as possible since superim-
posed spikes can not be discriminated between. The filter
speeds and the time to charge the load capacitance are the
two factors which determine the minimum detectable time
between spikes for the circuit.

Amplitude is the third characteristic of the input signal.
Extracellular neural signals have peak-to-peak amplitudes
of 50µV −500µV . This small signal must first be amplified
to give a larger voltage swing for the analog spike detection
circuit to be more accurate. Today, low noise, low power
neural amplifiers can achieve a gain of up to 100, so the
input signal amplitude ranges between 5 and 50mV [7].

The result of a 35mV square wave with a 125µs pulse
width at 25% duty cycle combined with a 15mV high fre-
quency sine wave (to mimic neural noise) is shown in Fig. 4
as the bottom waveform. It shows that 10µs after the input
spikes the output goes high for a short period.

The chip was tested over a wide range of input sig-
nal characteristics loosely patterned after neural data. The
threshold voltage allows the chip to be adjusted to change
the false alarm penalty, and correspondingly its probability
of correct detection, in accordance with its ROC curve. The
chip detected the crude neural signal representation down
to about 25mV with 15mV of noise. The minimum de-
tectable amplitude is not a fixed value because it depends
on the SNR and the duration of the spike. Jitter measure-
ments were not performed because the output jitter is neg-
ligible with the standard 100ms bins used to decrease the
sparseness of neural data before further processing.

These initial chip testing results are in no way exhaus-
tive and the crude signal approximations used for these tests
is not an adequate performance measure. Currently, work to
obtain a neural signal simulator to more accurately quantify
the chip’s performance is being pursued.
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Figure 4: Chip results (bottom signal) for input (top signal).

4. CONCLUSION

The onset spike detector is an excellent compromise be-
tween power, transmission bandwidth, area, and robustness.
Cadence SpectreS simulations showed the chip only con-
sumes 1µW of power. Since the amplitude threshold is
a subset of the onset method’s circuitry, it will consume
less power. However, its lack of robustness to low SNR
and slowly varying DC offsets hinders its performance for
BMI devices. Matlab simulations with real neural record-
ings showed that with 90% correct detections at 5dB SNR
the onset method outperformed the amplitude thresholding
method with 1% incorrect detections versus the 71% incor-
rect detections respectively. This performance continued for
lower SNR such as 0db with the onset detector having only
a 6% incorrect detection rate while that of the amplitude
threshold method was 76%. Though the results of compu-
tationally intensive methods such as matched filtering and
template matching were not examined, they are sure to pro-
vide better results given enough information is known about
the signal. However, even if enough information about the
signals were known their power consumption and required
supervision to adjust parameters as spike shapes and noise
change over time prohibits implantation.

All spike detectors offer a tremendous reduction in
wireless transmission bandwidth. For the presented data
(76Hz average spiking rate) the onset detector would asyn-
chronously transmit 76 spikes per second. The traditional
pulse communication system necessary for spike sorting
needs 120kbps assuming a Nyquist sampling rate of 10Hz
and 12 bit data. The bandwidth reduction provides a strong
motivation to consider dropping spike-sorting for applica-

tions whose performance will not suffer as a result.
The best spike detection method will be the one that still

allows the patients to learn to control their neural prostheses
while consuming the least power. These trade-offs will be
addressed when spike detection methods are tested with real
data from BMI type experiments. More extensive data sets
are also needed to better examine the robustness of the on-
set spike detector under different real world noise conditions
with a variety of spike shapes from different patients. The
onset spike detector has demonstrated a promising compro-
mise between performance and power consumption when
implantation is necessary.
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