

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor de la comunicación de congreso publicada en:
This is an author produced version of a paper published in:

13th IEEE International Conference on Electronics, Circuits and Systems,

ICECS 2006, IEEE, 2006. 1244-1247

DOI: http://dx.doi.org/10.1109/ICECS.2006.379687

Copyright: © 2006 IEEE

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1109/ICECS.2006.379687

A Hardware Library for Sensors/Actuators
Interfaces in Sensor Networks

J. Portilla, J.L. Buron, T. Riesgo
Departamento de Automática, Ingeniería Electrónica e

Informática Industrial, DIE
Universidad Politécnica de Madrid

Madrid, Spain
e-mail: {jportilla, triesgo}@etsii.upm.es

A. de Castro
Departamento de Ingeniería Informática

Universidad Autónoma de Madrid
Madrid, Spain

e-mail: angel.decastro@uam.es

Abstract— Sensor networks have reached a great relevance
during the last years. The idea is to use a high number of nodes
measuring different physical parameters in several
environments, which implies different research challenges (low
power consumption, communication protocols, platform
hardware design, etc). There is a tendency to use modular
hardware nodes in order to make easier rapid prototyping as
well as to be able to redesign faster and reuse part of the
hardware modules. One of the main obstacles for rapid
prototyping is that sensors present heterogeneous interfaces. In
this paper, a VHDL library for sensors/actuators interfaces is
proposed in order to have a set of different sensor interfaces
that include the most common in the sensors/actuators world,
enabling a rapid connection to a new sensor/actuator.

I. INTRODUCTION

Sensor networks discipline has reached a notable
importance recently. Several fields are involved here, like
sensor technology, communication protocols, low power
consumption techniques, hardware design of the nodes,
algorithms, etc [1]. The tendency is promising, and it is
expected that the sensor networks market will grow up to
$43 billion in 2008 [2].

The hardware node design becomes critical in sensor
networks, in order to achieve the targets commented before.
In this way, several approaches exist in the state of the art,
but there is a tendency to make the node hardware platform
modular [3], [4], [5]. With a modular approach, it is easy to
redesign the platform to adapt the system to different
scenarios and applications. Moreover, modularity allows
rapid prototyping. This concept was developed in previous
works of this research group, and a modular platform is
actually available as a niche for researching and developing
[6] (Fig. 4).

This modular platform is divided in four functional
layers: communication, processing, power supply and
sensing/actuating layer. The processing layer includes a µC
and an FPGA, which gives much processing power to the
platform, as well as flexibility. Modularity in the hardware
node must be combined with flexibility in the processing
devices in order to obtain the maximum adaptability. In this
context, sensors present heterogeneous interfaces, which
make difficult developing applications in a fast way. When

adopting a new sensor, most of the work must be started
from scratch.

Different works have been done in order to minimize this
fact, the most of them with a software point of view [7]. It
would be desirable to standardize in some manner sensor
interfaces to accelerate development time. Some efforts have
been done as the IEEE 1451 standards family, for smart
sensors [8].

In this paper, a VHDL library for transducers (sensors or
actuators) interfaces is presented, which allows
implementation in any custom hardware device (FPGA or
ASIC). Different common interfaces for actual sensors have
been chosen, like PWM or I2C among others. The purpose is
to minimize redesign time when new sensors must be
integrated in the system, because the interface is
standardized. The designer treats each transducer as a
“channel”, but all the channels are treated in the same way
independently of the actual interface that transducer has.

II. LIBRARY OF INTERFACES FOR SENSORS/ACTUATORS

At the present time, there are a lot of different
transducers (sensors/actuators) interfaces. Although there are
some interfaces that have reached much diffusion, like I2C,
probably there will never be a common unique interface for
all the transducers due to commercial interests and special
features of every transducer or application.

In order to simplify the connection and use of
transducers, it would be desirable to have a library with the
most common interfaces for sensors, and to improve and to
extend this library with more interfaces for new transducers
in the market. This situation would make easier rapid
prototyping and redesign.

A VHDL library has been developed in order to achieve
this purpose. Different interfaces have been described in
VHDL, which makes the solution independent of the final
implementation as long as it is based on custom hardware
(FPGA or ASIC). The library is composed of different
modules which deal directly with every transducer (analog or
digital) and present a common interface with the rest of the
circuit independently of the specific transducer. The
transducer is connected to the corresponding module of the
library, which is different for every interface, and finally this

module is connected through the common interface to the
rest of the circuit (Fig. 1). The signals that compose this
interface are the following ones:

 Inputs
o NTrigCh (1 bit): Used to request the module to take

a measure from a sensor or to write a value in an
actuator.

o DataToDAC (8 bits): The data to be written in the
actuator is received by this bus (not included in
sensor channels).

 Outputs
o NAckCh (1 bit): Acknowledge that shows that a

sensor has been read or a value has been written in
an actuator.

o ReadN (1 bit): Used to request data to be written in
the actuator (not included in sensor channels).

o WriteN (1 bit): Used to alert that a value read from
a sensor is put in the bus DataFromADC (not
included in actuator channels).

o ByteNumber (8 bits): Used to assign a number to
each byte sent by DataFromADC or received from
DataToDAC. Each data can include up to 256 bytes.

o DataFromADC (8 bits): The data to be read from
the sensors is received by this bus (not included in
actuator channels).

Every module has been designed following a philosophy
inspired in the IEEE 1451 family of standards, but can also
be used without being compatible with them. Each
transducer is “seen” as a channel (or set of channels) by the
transducer controller. Two kinds of channels are recognized:
sensor channel and actuator channel. Some sensors, like the
SHT11 from Sensirion, supply different measures (in this
case, humidity and temperature). So, for the same sensor two
different channels are needed. This will be explained in
further detail in the next section.

The heart of every module is a set of nested FSMs (Finite
States Machines). At the top, there is a principal state
machine, TrigStates (Fig. 2), common to every module,
which responds to the trigger signal. It controls the lower
level FSMs and the acknowledge signal. This FSM follows
the 1451 philosophy. At a second level there is another FSM,
DataStates, that controls the data acquisition process and the
communication through the common interface with the rest
of the system. This second FSM exists in all the modules of
the library, but changes from module to module depending

on the specific needs of each interface. Finally, some
modules use a third or even fourth FSM if the
communication with the transducer is complex. This will be
commented in section III.

The different modules developed in the proposed library
are used for the following transducer interfaces:

 PWM
 Frequency/Period modulation
 I2C
 Sensirion interface (similar to I2C)
 Interface for analog transducers (module to

interact with ADCs and DACs).

There are other notable interfaces to be developed, like
SPI and 1-Wire. These will be added in the future.

III. TRANSDUCER INTERFACES

In this section, more detailed information of every
transducer interface is given.

A. PWM

Some sensors in the market give their measurements
using PWM (Pulse Width Modulation). Basically, the sensor
generates a signal with fixed period and variable duty cycle
depending on the value of the measurement.

Reading this signal demands a lot of resources if done via
software. The microprocessor should be reading it
continuously during at least one cycle, which is usually in
the order of tenths or thousands of µs, or even ms, stopping
the rest of tasks during this time. In the other side, an FPGA
can process this signal in parallel with the rest of system,
without stopping it, and with higher precision thanks to its
high processing speed. Therefore, this is a good example of
the benefits of implementing transducer interfaces in
hardware.

A module for the family of accelerometers ADXL from
Analog Devices has been developed. This module may be
adapted to any other sensor with PWM interface with a
minimal effort.

The acceleration would be normally calculated using the
value T1/T2 (where T1 is the time during which the output
signal is ‘1’ and T2 is the period) which implies including a
divider in the design, that consumes many resources in
hardware terms. In order to avoid the divider, it has been

Fig.2. Top FSM, TrigStates.

Transducer
control

DataToDAC

DataFromADC

NTrigCh

ReadN
8

8

8

WriteN
ByteNumber

NAckCh

Transducer
DataFromADC

Transducer
interface dependent Common

interface

Transducer
control

DataToDAC

DataFromADC

NTrigCh

ReadN
8

8

8

WriteN
ByteNumber

NAckCh

Transducer
DataFromADC

Transducer
interface dependent Common

interface

Fig.1. General structure chosen for the control of a transducer.

supposed that T2 is constant. This supposition is valid once
RSET is fixed. A parameter that represents T2 is included in
the module as a constant, so adjusting the module to a
different period only needs correcting this constant, but there
is no divider circuit.

B. Period/Frequency

There are a lot of sensors whose output is codified in
period or frequency. The library includes modules designed
for these coding strategies, which have been applied to two
specific temperature sensors. These sensors are MAX6576
and MAX6577 from Maxim. The former gives the
temperature codified in period and the latter in frequency.
The modules in the library are easily adaptable to other
sensors with similar outputs.

If a period interface is used, the measurement consists on
counting the number of clock cycles in each output cycle. In
the case of the frequency coding strategy, the same interface
could be used, calculating the inverse of the period.
However, in order to avoid the divider, which demands a lot
of hardware resources, a different measurement method has
been used. It is based on counting the number of output
cycles in a certain constant time, as this number is
proportional to the frequency.

C. I2C

I2C (Inter-Integrated Circuit) is a serial bidirectional bus
developed by Philips which uses two lines (SCL or clock and
SDA or data). It was thought to make easier the
communication between peripherals in a motherboard or an
embedded system.

This kind of interface is very usual in sensors today,
probably the most popular, so it has been included in the
library. As an example, a module for the DS1629
temperature sensor from Maxim has been designed. This
temperature sensor also includes a real time clock.

The sensor is treated as two sensor channels (temperature
and real time clock) and an actuator channel (for
programming the clock), using the IEEE 1451 philosophy:
including a different channel for each functionality (Fig. 4).

Due to the complexity of this interface compared to the
previous ones, the structure of this module uses four levels of
nested FSMs. Each level has the next functionality:

 Attending triggers from each channel. There is a
separate TrigStates FSM for each channel but, as the
I2C interface is shared, if all the channels are
triggered simultaneously they receive access to the
interface depending on their priority level, which is
set in the module.

 Managing the requests to the sensor. This second
level (DataStates) is common in all the modules of
the library. The difference is that, in this case, it is
not in charge of controlling directly the interface
signals due to the complexity of the process. Its task
is managing the FSMs at lower levels.

 Sending and receiving I2C frames. The third level is
in charge of managing the frames sent or received
from the sensor. Two different FSMs control each
kind of frame: ReadStates for receiving data and
WriteStates for sending data.

 Sending and receiving bytes. As all the information
in I2C is sent in separate bytes, the task of sending or
receiving each individual byte is done in this fourth
level. Again, there are two FSMs: SendStates, for
sending a byte to the sensor, and ReceiveStates, for
receiving a byte from the sensor.

D. Sensirion interface (similar to I2C)

There is a series of sensors (SHT1x/SHT7X) from
Sensirion that use an interface similar to I2C. These sensors
are very common in sensor networks applications due to
their low size and digital output. The Sensirion interface
presents mainly the following differences from I2C. Signals
are named SCK and DATA, instead of SCL and SDA. SCK
is not open-drain, and its default value is ‘0’ instead of ‘1’.
The “start” sequence is also different and there is no “stop”
sequence in the Sensirion interface. The communication
finishes when there is no acknowledge to a byte.

The chosen sensor, SHT11, is treated as two different
channels, because it includes two different measurements:
temperature and humidity. In this case, a three level FSMs
strategy was used, instead of the four level strategy in the
I2C module. However, the idea is almost the same.

E. Analog transducers

Many sensors in the market have analog outputs. Because
of this, the interfaces library must include a way of dealing
with these sensors.

All the previous modules deal with digital signals, so a
VHDL implementation can be in charge of them directly.
However, for analog transducers an ADC or a DAC will be
necessary, depending on whether it is a sensor or an actuator
respectively. Therefore, the control of an analog transducer is
equivalent to the control of an ADC or a DAC.

In the library, modules for controlling two different
ADCs and a DAC have been included. The ADCs have been
chosen because they represent the two most usual interfaces
in ADCs. Next, every control module is explained in more
detail:

DS1629

Temp.
sensor

RTC

I2C Mod. Ctrl

Trigger
manag.

Sensor Channel
Temperature

Sensor Channel
Real Time Clock

Actuator Channel
Clock Configuration

Trigger
manag.

Trigger
manag.

DS1629

Temp.
sensor

RTC

I2C Mod. Ctrl

Trigger
manag.

Sensor Channel
Temperature

Sensor Channel
Real Time Clock

Actuator Channel
Clock Configuration

Trigger
manag.

Trigger
manag.

Fig. 3. Module structure for I2C interface.

a) AD0808: this ADC has 8 analog multiplexed
inputs. This is a problem if every analog input has to be
defined as a sensor channel. The reason is that the number
of signals in the interface with the rest of the system would
be multiplied by 8. The solution was to include an actuator
channel in order to tell the interface module which input
must be used at each time. In this way, the controller can set
the active input from the ADC. Regarding the conversion
interface, it is controlled through two signals: “start of
conversion” and “end of conversion”.

b) HI5805: this ADC converts its input continuously.
It only needs an external clock input (0.5-5 MHz) as
interface. The analog to digital conversion is done using a
pipelined flash structure, which introduces a latency of 3
clock cycles. This is taken into account in the module to
synchronize the measurement with high accuracy.

c) DAC8562: this DAC has a 12-bit parallel input. It
has a 12-bit latch controlled by the CE signal, and an
additional clear signal.

All these three modules include two FSMs, TrigStates
and DataStates, as explained in the previous section.

IV. VERIFICATION AND EXPERIMENTAL RESULTS

All the modules in the library have been tested using a
Xilinx Spartan 3 XC3S200 FPGA. But before starting with
the experimental verification, exhaustive simulations have
been carried out for each module. In order to do so, a
functional model of each sensor has been written in VHDL.
This model is connected with its respective module, and the
test bench generates the different values that are measured by
the model of the sensor. Furthermore, the test bench is also
in charge of the signals for every channel, such as the trigger.

Then, two kinds of simulations have been accomplished
for every module. The first simulation is a simple one, just to
know if the module works correctly with its sensor. This
simulation was verified watching the waveforms. The second
simulation guarantees that the module works appropriately
even in strange conditions. For instance, conditions such as
simultaneous triggers of different channels, rapid changes in
the sensor values for synchronization verification, errors in
the sensor communication, etc, were tested. Very long
simulations were necessary for these exhaustive

verifications, so visual inspection of waveforms was
inappropriate. Therefore, automatic verification mechanisms
were included in the test bench, making use of VHDL
procedures and functions. All these conditions were reported
through text messages. The simulation tool was ModelSim.

After simulations were correct, experimental tests were
made in hardware using real sensors. In this way, the
modules were synthesized in the FPGA and the different
sensors were attached to the system. In order to complete the
hardware verification, additional VHDL blocks were
developed for managing the channels of each module and
showing the results through LEDs and displays.

The last step is to include these interfaces in the modular
platform for wireless sensor networks (Fig. 4).

V. CONCLUSIONS

A VHDL library for sensor/actuator interfaces has been
presented. The library is used on a modular platform for
wireless sensor networks. The library makes the sensor
almost transparent for the user, who always sees the same
signals independently of the sensor being used.

Exhaustive simulations have been carried out in order to
make sure that the modules are correct. Furthermore,
experimental tests have also been accomplished for every
module in the library. Finally, the transducer interface
modules have been integrated in the modular platform for
wireless sensor networks.

REFERENCES
[1] Chee-Yee Chong, Srikanta P. Kumar, “Sensor Networks: Evolution,

Opportunities and Challenges,” Proc. of the IEEE, vol. 91, Nº 8, Aug.
2003, pp. 1247–1256.

[2] Y. Zhang, Y. Gu, V. Vlatkovic, X. Wang, “Progress of Smart Sensors
and Smart Sensor Networks,” Proc. of the 5th IEEE World Congress
on Inteligent Control and Automation, Jun. 2004, pp. 3600–3606.

[3] A.Y. Benbasat, J.A. Paradiso, “A Compact Modular Wireless Sensor
Platform,” Proc. of the 4th IEEE International Symposium on
Information Processing in Sensor Networks, Apr. 2005, pp. 410–415.

[4] L. Nachman, R. Kling, R. Adler, J. Huang, V. Hummel, “The Intel
Mote Platform: a Bluetooth-Based Sensor Network for Industrial
Monitoring,” Proceedings of the 4th IEEE International Symposium
on Information Processing in Sensor Networks, Apr. 2005, pp. 437-
442.

[5] S. Yamshita, T. Shimura, K. Aiki, K. Ara, Y. Ogata, I. Shimokawa,
T. Tanaka, H. Kuriyama, K. Shimada, K. Yano, “A 15x15, 1 µA,
Reliable Sensor-Net Module: Enabling Application-Specific Nodes,”
Proc. of the 5th IEEE/ACM International Conference on Information
Processing in Sensor Networks, Apr. 2006, pp. 383–390.

[6] Kept blank for blind revision.

[7] D. Chu, K. Lin, A. Linares, G. Nguyen, J. M. Hellerstein, "Sdlib: a
Sensor Network Data and Communications Library for Rapid and
Robust Application Development," Proc. of the 5th IEEE/ACM
International Conference on Information Processing in Sensor
Networks, April 2006, pp. 432–440.

[8] K. B. Lee, R. D. Schneeman, “Distributed measurement and control
based on the IEEE 1451 smart transducer interface standards,” IEEE
Transactions on Instrumentation and Measurement, vol. 49, issue 3,
pp. 621–627, Jun. 2000.

Fig.4. Modular platform for wireless sensor networks and sensor layer with

ADXL213 accelerometer, MAX 6576, DS18S20 and DS1629
temperature sensors.

