
Hindawi Publishing Corporation
VLSI Design
Volume 2008, Article ID 892370, 12 pages
doi:10.1155/2008/892370

Research Article
A Time-Consistent Video Segmentation Algorithm Designed
for Real-Time Implementation

M. El Hassani,1 S. Jehan-Besson,2 L. Brun,2 M. Revenu,2 M. Duranton,3 D. Tschumperlé,2 and D. Rivasseau1
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We propose a time-consistent video segmentation algorithm designed for real-time implementation. Our algorithm is based on a
region merging process that combines both spatial and motion information. The spatial segmentation takes benefit of an adaptive
decision rule and a specific order of merging. Our method has proven to be efficient for the segmentation of natural images with
few parameters to be set. Temporal consistency of the segmentation is ensured by incorporating motion information through the
use of an improved change-detection mask. This mask is designed using both illumination differences between frames and region
segmentation of the previous frame. By considering both pixel and region levels, we obtain a particularly efficient algorithm at a
low computational cost, allowing its implementation in real-time on the TriMedia processor for CIF image sequences.
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1. INTRODUCTION

The segmentation of each frame of a video into homo-
geneous regions is an important issue for many video
applications such as region-based motion estimation, image
enhancement (since different processing may be applied on
different regions), 2D to 3D conversion. These applications
require two main features from segmentation: accuracy of
regions boundaries in the spatial segmentation and temporal
stability of the segmentation from frame to frame.

As far as spatial segmentation is concerned, it can be
classified into two main categories, namely, contour-based
and region-based methods. In the first category, edges are
computed and connected components are extracted [1]. One
of the drawbacks of such an approach is that the computation
of the gradient is prone to large errors especially on noisy
images. Moreover, the closure of the edges in order to
create connected regions is a difficult task and an efficient
resolution of such a problem may induce cumbersome
computations. Finally, such an approach cannot take benefit
of statistical properties of the considered image regions. The
region-based segmentation methods avoid these drawbacks
by considering regions as basic elements. Among region-
based segmentation methods [2–6], we are interested here
in a bottom-up segmentation approach where regions are

grown using a merging process. In such approaches, similar
neighbouring regions are merged according to a decision
rule [7, 8]. The initial regions can be the pixels or an
over-segmentation of the image which can be obtained
by a watershed algorithm [9, 10]. As mentioned by [11],
bottom-up algorithms rely on three notions: a model for the
description of a region, a merging predicate, and a merging
order. This gives rise to numerous heuristics according to the
different choices performed on these three steps [4, 7, 12–
14]. Compared to other classical approaches, for example,
[7, 12, 13], the authors of [4] have proposed recently an
adaptive threshold justified by statistical inequalities. They
obtain good results with few parameters to tune. However,
in the context of a real-time implementation, their merging
predicate still requires too many computations. Moreover,
their algorithm is dedicated to the segmentation of still
images and so, it does not take into account the temporal
dimension of video sequences.

When dealing with video segmentation, various algo-
rithms have been tested in the literature. The first class
of approaches proposes to perform a 3D segmentation
by considering the spatiotemporal data as a volume. We
can cite the work of [15] that takes benefit of the 3D
structures tensor for segmentation. Some other recent works
propose 3D approaches using a mean-shift-based analysis
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[16, 17]. Let us note that if each shot is segmented as a 3D
volume, the number of frames to store for each segmentation
may be unbounded. On the other hand, if the number of
stored frames is artificially limited by the available memory,
some 3D regions may be artificially split on long shots.
Therefore, 3D approaches require the storage of several
frames in memory and necessitate a high bandwidth which
is a drawback for the design of electronic devices.

The second class of methods concerns frame-by-frame
algorithms. In these approaches, the spatial segmentation of
the second frame is deduced from the spatial segmentation of
the first frame using motion estimation [13, 18–20]. Regions
from adjacent frames are then merged according to motion
similarity, colour similarity, or localisation similarity. In such
approaches, a matching is performed between regions of the
different frames. All the regions are then linked and video
objects tracking algorithms [20] may then take benefit of
such a correspondence between regions.

On the other hand, some applications, such as image
enhancement or video compression, may need a coherent
segmentation between frames without requiring an exact
tracking of each region from frame to frame. In this paper,
we propose a segmentation algorithm devoted to such
applications. The first aim of our algorithm is thus not to
match the regions of two consecutive frames but only to take
benefit of the spatial segmentation of the first frame in order
to construct a coherent spatial segmentation of the second
one.

Our contributions may be divided in three points.

(i) Spatial segmentation: our spatial segmentation takes
benefit of both an adaptive decision rule and an
original order of merging. As in [4], the adaptive
threshold is computed using a statistical modelisation
of the region combined with the statistical inequality
of McDiarmid [21]. However, in our approach, each
pixel is modelled as a single random variable (in [4],
the authors model each pixel as a sum of M random
variables). This method gives a simpler predicate that
is more adapted to real-time implementation. Good
results are obtained for spatial segmentation with few
parameters to be set.

(ii) Temporal consistency: another contribution is the
design of a region segmentation that does not
encounter strong variations over time. We propose
to simply take benefit of scene-change detection, that
is widely used in video segmentation [22–24], rather
than motion estimation that remains a real bottleneck
for real-time implementation. We construct a coherent
segmentation from frame to frame by combining both
pixel and region information through the use of an
improved change detection mask (CDM) that takes
benefit of the region segmentation of the previous
frame. Experimental results conducted on real video
sequences demonstrate a good temporal consistency.

(iii) Hardware implementation: as far as the implementa-
tion is concerned, we exploit the data level parallelism
(DLP) by processing some basic treatments in parallel.
Moreover, the classical union-find data structure [25]

is improved by using local registers to reduce the access
time of find operations. We obtain an efficient algo-
rithm for video segmentation at a low computational
cost. Our method runs in real time on the TriMedia
processor for CIF image sequences.

The paper is organised as follows. The spatial segmen-
tation method is detailed in Section 2. The temporal consis-
tency improvement is explained in Section 3. In Section 4, we
discuss the implementation of the algorithm. Experimental
results and measures are given in Section 5.

2. SPATIAL SEGMENTATION

Let us consider an image I , the notation |·| represents the
cardinal and I(p,n) the pixel intensity at position p = (x, y)T

in the frame n.
A region-based segmentation problem aims at finding

a relevant partition of the image domain in m regions
{S1, S2, . . . , Sm}.We focus here on region-merging algorithms
where a decision criterion determines whether two regions
must be merged or not. In this paper, we first introduce a
statistical model for the regions. We then detail how these
statistical tools are used for the computation of the merging
predicate. We finally explain the whole merging algorithm
and especially the order of merging.

2.1. Statistical model

Images are corrupted by noise which gives random values
(r.v.) to pixel intensities. Due to this random part in image
acquisition systems, an image I is classically considered to
be an observation of a perfect statistical image I∗. The
intensity I(p) of a pixel p = (x, y)T is then modelled as the
observation of a random vector Xi whose values belong to
the interval [0, g] (e.g., g = 255 for 8 bits images). An ideal
region S∗ is then represented by a vector of independent r.v.
(X1,X2, . . . ,Xn), where n = |S∗|. Let us denote by S the real
region associated to S∗, that is, composed of the same set of
pixels as S∗. The intensity of the ith pixel of S within I is
then considered as an observation of the r.v. Xi. Following
[4], we define a partition of I∗ into homogeneous regions
{S∗1 , . . . , S∗m} by the following requirements:

(1) all the pixels of any statistical region should have the
same expectation

∀i ∈ {1, . . . ,m}, ∀(p, q) ∈ (S∗i )2,

E(I∗(p)) = E(I∗(q));
(1)

(2) two adjacent pixels belonging to different statistical
regions should have different expectations

∀(i, j) ∈ ∈ {1, . . . ,m}2, ∀(p, q) ∈ S∗i × S∗j ,

E(I∗(p)) /=E(I∗(q))
(2)

Such a definition may be easily extended to multichannel
images [4] by requiring that the pixel expectations are equal
on each channel within one region and that the expectation
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of at least one channel differs between pixels belonging to
different regions.

Note that according to our definition, all the pixels
of one region should have the same expectation. The
regions extracted by a segmentation algorithm based on
this definition should thus be composed of pixels with a
nearly constant intensity (we thus assume an underlying flat
facet model). This criterion may be justified by the reflective
properties of surfaces. Indeed, the reflection of light under
a surface is determined by a Lambertian and a specular
component [26]. The specular component produces specular
spikes often characterised by regions with a nearly maximal
intensity. The specular component decreases abruptly and
may be neglected, within a segmentation scheme, outside
the specular spikes. The intensity of a Lambertian surface
varies slowly according to its normals. A region of the image
with a nearly constant value correspond thus either to a
specular spike or to a Lambertian surface with an almost
constant normal. Such a segmentation scheme provides thus
a partition which resumes the main physical and geometrical
properties of a 3D scene. Higher-level processes such as the
segmentation of the image into objects or the segmentation
of textured objects [27] would require to input within the
algorithm a priori knowledge about what are the expected
objects of the scene or what a textured area is.

In order to be selfcontent, let us now introduce the very
useful statistical inequality proposed by [21] and introduced
within the region segmentation framework by [4]. We take
benefit of this inequality for the computation of the merging
predicate.

Theorem 1 (McDiarmid’s inequality). If {Xl} areN indepen-
dent random variables whose observations xl take their values
in a measurable space A, and f : AN �→ R is a function that
satisfies the following constraint for 1 ≤ l ≤ N :

sup
∣
∣ f (x1, . . . , xN )− f (x1, . . . , xl−1, x′l , xl+1, . . . , xN )

∣
∣ < cl,

(3)

where xl and x′l are two different possibilities for the lth
component of an observation vector (x1, . . . , xN ) ∈ AN. Then
for every ε > 0,

P
(∣
∣ f (X1, . . . ,XN )− E( f (X1, . . . ,XN ))

∣
∣ > ε

)

≤ 2 exp

(

−2ε2

∑N
l=1c

2
l

)

.
(4)

2.2. Merging predicate

In order to compute a merging predicate, we consider two
regions S1 and S2 of a current partition. The associated vec-
tors of r.v. in the ideal image I∗ are respectively denoted by
Y1 and Y2. The r.v. μ1(Y1) and μ2(Y2) denote respectively the
means of Y1 and Y2. We suppose that Y1 and Y2 belong to the
same homogeneous region of I∗. Our default decision rule
consists thus to merge the two regions S1 and S2, respectively
associated to Y1 and Y2. However, under the hypothesis that
Y1 and Y2 are included in the same homogeneous region of

I∗, the probability that |μ1(Y1) − μ2(Y2)| is greater than a
given value is bounded by Theorem 1. If this probability falls
under a given threshold, we refuse the hypothesis and thus
do not merge the two regions S1 and S2.

More precisely, let us consider the vector

Y = (Y1, Y2) = (I∗(p1), . . . , I∗(p|S1|)
︸ ︷︷ ︸

Y1

, (I∗(p′1), . . . , I∗(p′|S2|)
︸ ︷︷ ︸

)

Y2

(5)

and the mean functions

μi(Yi) = 1
|S∗i |

k=|Si|∑

k=1

I∗i (pk), i = 1, 2. (6)

Our merging decision rule is based on the following theorem.

Theorem 2. Let one consider two vectors of r.v. Y1 and Y2

encoding the intensities of two connected regions of an ideal
image I∗. Under the hypothesis that Y1 and Y2 are included
into the same homogeneous region and using the previously
defined notations, one has

P(|μ1(Y1)− μ2(Y2)| > ε) ≤ 2 exp
( −2ε2|Y1||Y2|
g2(|Y1| + |Y2|)

)

, (7)

where (|Y j|) j∈{1,2} denotes the size of vector Y j (i.e. the cardinal

of the associated region Sj).

Proof. Let us consider the vector y = (x1, . . . , xN ) in [0, g]N .
This vector may be considered as an outcome of the r.v. Y.
In order to apply the McDiarmid theorem we define the
following function:

f (y) = f
(

x1, . . . , xN
) = (μ1

(

y1
)− μ2

(

y2
))

, (8)

where N = |Y1| + |Y2|, y1 = (x1, . . . , x|Y1|) and y2 =
(x|Y1|+1, . . . , xN ).

Let us compute the variation of the function. If we make
a variation on the intensity of one xl with l ≤ |S1|. We have

sup | f (x1, . . . , xn)− f (x1, . . . , x′l , . . . , xn)| ≤ g

|S1| . (9)

This gives us the value of the bounding coefficients cl =
g/|Y1| for the |Y1| first variables. Similarly, if we make a
variation on the intensity of xl, l ∈ {[Y1| + 1, . . . ,N}, we
obtain cl = g/|Y2|. We then compute the sum over all the
variables:

N
∑

l=1

c2
l = g2

(
1
|Y1| +

1
|Y2|

)

. (10)

Moreover, according to our hypothesis, if Y1 and Y2

belong to the same homogeneous region of I∗, all the pixels
of Y1 and Y2 have the same expectation. We have thus,
E( f (Y)) = E(μ1(Y1) − μ2(Y2)) = 0 and we obtain the
expected result using conjointly Theorem 1 and (10).
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Note that the bounds on the probability provided by
Theorem 2 may be equivalently represented by

P(|μ1(Y1)− μ2(Y2)| > F−1(δ)) ≤ δ

with δ = F(ε) = 2 exp
( −2ε2|Y1||Y2|
g2(|Y1| + |Y2|)

)

.
(11)

After some basic calculus we find that, under the assumption
that Y1 and Y2 are included into the same homogeneous
region of I∗, we have with a probability at most δ

∣
∣μ1(Y1)− μ2(Y2)

∣
∣ > gQ

√

|Y1| + |Y2|
|Y1||Y2| (12)

with Q = √(1/2)ln(2/δ).
Below the probability δ, which is supposed to be low, we

consider that the event |μ1(Y1) − μ2(Y2)| > F−1(δ) is not
probable. In this case, we refuse the initial hypothesis stating
that Y1 and Y2 belong to the same homogeneous region of
I∗ and thus do not merge the two regions. Our merging
predicate may thus be stated as follows:

P(S1, S2) =

⎧

⎪⎪⎨

⎪⎪⎩

true if |μ1 − μ2| ≤ Qg

√

|S1| + |S2|
|S1||S2| ,

false otherwise,
(13)

where μ1 and μ2 denote respectively the values of μ1(Y1) and
μ2(Y2) for the observation I . These two terms represent the
mean value of the two regions S1 and S2. The term g denotes
the maximum level of I (g = 255 for gray-scale images).

Note that our merge criterion is equivalent to

|S1||S2|
|S1| + |S2| (μ1 − μ2)2 ≤ (Qg)2. (14)

The left member of this last equation corresponds to the
difference between the squared error of S1 ∪ S2 and the sum
of the squared errors of S1 and S2 [28]. Our merge criterion
may thus be also interpreted as a bound on the increase of
the squared errors of the regions.

Our criterion may be adapted to multichannel images as
follows:

P(S1, S2) =

⎧

⎪⎪⎨

⎪⎪⎩

true if max
c∈{a,b,c}

|c1 − c2|
gc

≤ Q

√

|S1| + |S2|
|S1||S2| ,

false otherwise,
(15)

where ci represents the mean value of the region Si for the
channel c taken in the set of channels {a, b, c} and gc denotes
the maximum value on channel c. We take the maximum of
the values obtained for each channel as a criterion. Indeed, if
the predicate is true, it will be true for all the channels and
so the merge hypothesis is accepted. In this paper, we have
chosen the YUV space which is the native colour space of
video sequences.

Both our method and the one of Nock [4] are based on
the McDiarmid inequality. However, Nock models each pixel

of the ideal image I∗ as a sum ofM random variables whereas
our method only uses one r.v. per pixel. The approach
proposed by Nock consists to fix the probability δ and to
use M in order to vary the merge threshold. To our point
of view, the probability δ below which we refuse the merge
hypothesis has a more straightforward interpretation than
the variable M. The resulting criteria are slightly different,
our criterion differs by a factor 1/

√
M from the one first

proposed by Nock. Our criterion is also significantly different
from the second Nock criterion which uses an estimate of
the number of final regions whose cardinal is equal to a
given value. However, both our criterion and the final Nock
criterion may be related, our one being more strict than the
one of Nock [4] for a given probability δ.

Let us note finally that the way we derived our criterion
provides an alternative explanation to the eventual over-
merging produced both by our algorithm and the one of
Nock. Indeed, our basic hypothesis consists to suppose that
Y1 and Y2 belong to the same homogeneous region of I∗.
As in a contrario approaches first introduced by [29], we
refuse this hypothesis only when we observe an event which
has a low probability (according to δ) to occur under this
hypothesis. We may thus merge regions corresponding to
different homogeneous regions of I∗ if our observation does
not contradict our hypothesis.

2.3. Merging order

An edge e denotes a couple of adjacent pixels (p, p′) in a 4-
connectivity scheme. The set of edges of an image is denoted
byAe and the number of edges byNe. The order of merging is
built on the edges weights as in [4, 12]. The idea behind this
order of merging is to merge first similar regions rather than
different ones. The similarity between pixels is measured by
computing the distance between two pixel colours as follows:

w(p, p′,n) = ∣∣I(p,n)− I(p′,n)
∣
∣. (16)

For colour images, the edge weight becomes

w(p, p′,n) =
√

∑

I∈{a,b,c}
(I(p,n)− I(p′,n))2, (17)

where a, b, c denote the three channels of a particular colour
space.

Note that alternative weight may be designed. For
example, one may balance the distance along each axis
of a color space by some weight (or equivalently scale
each axis according to its weight). Numerous colour space
with different properties may be chosen in (17). For our
algorithm, we consider the YUV colour space which is the
native colour space of CIF sequences. The colour space
(L∗a∗b∗) provides partitions with a little greater subjective
quality but with a higher computational cost.

The edges are sorted in an increasing order of their
weights and corresponding couples of pixels are processed
in this order for merging. This sorting step only requires two
traversals of the image: the first traversal allows to compute
the histogram of edge weights. The second traversal stores
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for i := 1 to Ne do
Read the ith edge: (p1, p2)
S1 = FIND(p1)
S2 = FIND(p2)
if P(S1, S2) = True then

UNION(S1, S2)
end if

end for

Algorithm 1: Merging regions algorithm.

each edge in an array associated to its weight. The amount
of memory required for each array is deduced from the
histogram of edge weights. This sorting step is similar to the
one usually used within the watershed algorithm [9].

2.4. Merging algorithm

Our spatial segmentation could be divided in three steps.
In the first one, we compute the weights of edges and their
histogram. In the second step, we sort edges increasingly
according to their weights. In the last step, we merge pixels or
regions connected by edges following their order. Algorithm
1 describes more particularly the merging loop.

The term Ne represents the number of edges within the
image I in the 4-connectivity. In the merging process, we
use the union-find data structure [25]. The union function
merges two disjoint regions into one region, and the find
function identifies the region to which a certain pixel
belongs. Implementation details are given in Section 4.

3. TIME CONSISTENCY IMPROVEMENT

In video segmentation, the quality of the spatial segmen-
tation is not the only requirement, time consistency is
also a very important one. If, in two successive frames,
one region is segmented very differently because of noise,
occlusion or deocclusion, results of segmentation would
be very difficult to exploit for any application like image
enhancement, depth estimation, and motion estimation.
Many works, see for example [19], use motion estimation to
improve time consistency in video segmentation. However,
motion estimation [30] is a real bottleneck for real-time
implementation and is even sometimes unreliable. In this
paper, we combine an improved change detection mask
(CDM) with spatial segmentation in order to improve the
temporal consistency of our segmentation.

3.1. Change detection mask

The CDM is designed using both illumination differences
between frames and region segmentation of the previous
frame.

We first detect changing pixels using the frame difference.
Then, we take benefit of the region segmentation of the
previous frame in order to classify the pixels not only at a
pixel level but also at a region level.

Given the current frame I(:,n) and the previous one
I(:,n− 1), the frame difference FD is given by

FD(n, p) = |I(p,n)− I(p,n− 1)|. (18)

Classically, FD is thresholded in order to distinguish chang-
ing pixels from noise. The pixel label is given by

L(n, p) =
⎧

⎨

⎩

0 if FD(n, p) ≤ tr1,

1 otherwise,
(19)

where tr1 is a positive constant chosen according to the noise
level of the image. This threshold may be set experimentally
(Section 5) or estimated according to any measure of the
image noise. A pixel p, with L(n, p) = 1, is considered as
a changing pixel. We then use the previous segmentation in
order to convert the CDM from the pixel level to a region
level which is more reliable [23]. For each region Si in the
previous segmentation, we compute Ni,changing:

Ni,changing = |{p ∈ Si,L(n, p) = 1}| (20)

which denotes the number of changing pixels of the current
image whose (x, y) coordinates belong to Si in the previous
segmentation. We then compute τ(Si) = Ni,changing/|Si|
which represents the ratio of changing pixels between the
previous and the current image in the region Si. Pixels are
then classified using three categories:

CDM(n, p) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if (τ(Si) ≤ tr2),

1 if (τ(Si) > tr2) , (L(n, p) = 0),

2 if (τ(Si) > tr2) , (L(n, p) = 1),

(21)

where tr2 is a positive constant. In the experiments, we take
tr2 = 0.01 (i.e. a region is a changing region when it contains
at least 1% of changing pixels). The value of the threshold is
chosen so that we do not miss any changing region.

Every pixel of regions qualified as static is labelled using
CDM(n, p) = 0. The two other labels concern pixels
within changing regions. Depending on the value of the
frame difference, the pixel is qualified as a changing one
(CDM(n, p) = 2) or as a one (CDM(n, p) = 1). Such a
classification is then used to segment the current frame. An
example of classification is given in Figure 1 for the video
sequence “Table”.

3.2. Merging process

The merging process is now divided in three main steps.
Firstly, static regions are kept as they were segmented in the
previous frame. Secondly, we apply a connected component
labelling (CCL) algorithm [31] to extract connected com-
ponents of pixels with CDM(n, p) = 1. This second step
builds seeds from the segmentation of the previous frame.
These seeds link the current segmentation to the previous
one in a time-consistent way. Thirdly, we apply the spatial
segmentation only on edges (p, p′) connecting a changing
pixel within a changing region (CDM(n, p) = 2) to a pixel
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Last image (n− 1)

Current image (n)

Segmentation

L(n, p)
computing

CDM
computing

CDM

−

Static pixel within a static region (CDM = 0)
Static pixel within a changing region (CDM = 1)
Changing pixel within a changing region (CDM = 2)

Figure 1: Computation of the CDM using the difference between the current image and the previous one and the region segmentation of
the previous frame.

belonging to a changing region. This last pixel may be either
changing or static (CDM(n, p) ∈ {1, 2}). Note that static
pixels within changing regions have been connected in the
second step by a CCL algorithm.

The whole process can be formalised as follows. Con-
sidering an edge (pi, p′i ) between two pixels, we define the
following function:

ϕ(n, (pi, p′i )) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if CDM(n, pi)CDM(n, p′i ) = 0,

1 if CDM(n, pi)CDM(n, p′i ) = 1,

2 if CDM(n, pi)CDM(n, p′i ) ≥ 2.
(22)

The ϕ function allows us to classify the edges in the
following three categories (a brief summary is provided by
Figure 2).

(i) The first category (ϕ(n, a) = 0) (Figure 2(a)) cor-
responds to the edges which have at least one pixel
belonging to a static region. These edges are not
considered for the segmentation of the current image
n. Static regions are then segmented in the same way
between two successive images n− 1 and n.

(ii) The second category (ϕ(n, a) = 1) (Figure 2(b))
corresponds to the edges that connect two non chang-
ing pixels in changing regions. For these edges, we
simply apply a connected component labelling (CCL)
algorithm [31].

(iii) The third category (ϕ(n, a) ≥ 2) (Figure 2(c)) corre-
sponds to the edges which have at least one pixel that
is considered as a changing one (i.e. CDM(n, pi) = 2).
These edges are processed using the merging order and
the merging predicate defined in Section 2.2. Edges
belonging to this category are denoted by Au.

Figure 3 describes the three steps corresponding to the
process of the three categories of edges.

In Section 5, we propose the computation of an objective
measure for temporal consistency. The measures obtained
on real video sequences demonstrate a real improvement

(a) ϕ(n, a) = 0 (b) ϕ(n, a) = 1 (c) ϕ(n, a) = 2

Figure 2: The figure gives the different combinations of pixels
available for each category. The pixels are designed as follows : black
pixel (CDM(n, p) = 0), gray pixel (CDM(n, p) = 1), white pixel
(CDM(n, p) = 2).

(a) The different values of CDM (b) Segmentation of static regions
(ϕ(n, a) = o)

(c) CCL (ϕ(n, a) = 1) and static
regions

(d) Segmentation of changing
pixels

Figure 3: Description of the three steps of the segmentation process
for the video “Table”. (a) Gives the different values of the CDM. (b),
(c), and (d) describe the evolution of the process of the edges a with
respectively ϕ(n, a) = 0,ϕ(n, a) = 1, and ϕ(n, a) = 2. In these three
last figures, black pixels are pixels that have not yet been classified,
whereas white pixels correspond to region boundaries found at each
step.
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Current frame

Previous frame

Computation of edges
weights and their

histogram
Sorting edges Merging edges

Output

Change detection mask
computing

Figure 4: The general diagram of video segmentation.

of temporal consistency. Moreover, the way we exploit the
CDM decreases also the computational cost of the algorithm
since the edges in static area are not reconsidered, and those
linking the “no changing pixels” in changing area are simply
processed by a CCL algorithm.

When successive images are not correlated (in the case of
a scene cut, e.g.), the set Au contains most of the edges of the
image which leads to a new spatial segmentation as shown in
the example of a shot cut given in Figure 11. Our algorithm
handles, thus, naturally the shot cuts and does not need to be
combined with a shot cuts detection algorithm.

4. IMPLEMENTATION CONSIDERATIONS

In this section, we propose to describe optimisations that
have been made to allow a real-time treatment. The whole
algorithm of video segmentation is summarised in Figure 4.

Apart from the merging loop, all other functions access
pixels data in a predictable way (e.g., from top to bottom left
to right). The cache memory benefits from this regularity,
since it exploits spatial and temporal locality of data,
and consequently causes less cache misses. In the merging
loop, the union-find data structure is unpredictable, and
consequently causes an important data cache stalls. To reduce
the data cache stalls cycles, we investigate some optimisations
that are detailed in the following sections and we take
benefit of the TriMedia processor to exploit the data level
parallelism (DLP) and instruction level parallelism (ILP) of
our algorithm.

4.1. Organisation of data

Our organisation of data should allow an efficient compu-
tation of both our merge criterion (13) and our union and
find operations. Let us recall that when using an union-find
merging scheme each region of the image is encoded by a
spanning tree whose vertices are the pixels of the region.
These tree data structures are usually encoded by storing for
each pixel the index of its parent within the spanning tree.
The information about the region are associated to the root
of the trees and both the roots and the region information
are updated during an union operation.

Since our merge criterion only uses the mean color
(y,u, v) and the cardinal |S| of the regions, one simple
organisation of our data would consist in associating each

pixel p with the fields (y,u, v, |S|, father), where father
denotes the father of p within the tree.

However, grouping the region data and the father
index would require to manipulate the whole vector
(y,u, v, |S|, father) within find operations. Since only the
father field is required by the find operation such an
organisation of the data would induce the storage of useless
data within the cache memory.

We thus decided to store into two separate arrays the
data required for the merge operations (namely the vector
(y,u, v, |S|)) and the encoding of the trees. More precisely,
our organization of data is as follows:

(1) one array Data which stores for each created region its
(y,u, v, |S|) fields;

(2) one array Father which encodes our sequence of union
operations;

(3) one array Label of size |I| initialised to a special flag
indicating that each pixel is initially its own father.

If a region is reduced to a single pixel p, Label (p) is set
to a special flag and the data of the region retrieved from the
image I . We thus decide to create a new entry within the array
Data only if the associated region is composed of at least 2
pixels. More precisely, if a merge of two pixels p1 and p2 is
decided by our merge criterion,

(1) a new entry l is created within the array Data and
initialised according to I(p1) and I(p2);

(2) label (p1) and Label (p2) are set to l;
(3) father (l) is set to a special flag indicating that l has yet

no father.

Our data structure is further updated in the two follow-
ing cases.

(1) One pixel p is aggregated to an already created region
labelled by l. In this case, Label (p) is set to l and
Data (l) is updated according to I(p). The array Father
remains unchanged.

(2) Two already created regions with respective labels l1
and l2 are merged. In this case, one of the labels (say
l1) survives, Data (l1) is updated according to Data (l2)
and Father (l2) is set to l1.

Figure 5(b) illustrates the state of our different data
structures after the segmentation of Figure 5(a). Two pixels
in Figure 5(a) are merged if they have the same label. In this
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Figure 5: The data structures used to compute union-find opera-
tions and our merge criterion.

example, we first considered horizontal edges between pixels
and then vertical ones. Both horizontal and vertical edges
have been considered using a scan line order. Note that the
array Data is completely filled by the four regions created
during the union operations. We only get three final regions
as encoded by the array Father where all labels, except label
2, are their own father.

Since all regions encoded by the array Data are composed
of at least 2 pixels, the maximal number of entries within
this array is equal to |I|/2. Moreover, the vertices of the trees
encoded by the array Father correspond to regions composed
of at least 2 pixels. The maximal size of the array Father is
thus also equal to |I|/2. Note that this upper bound may be
reached if we first decompose the image into regions made of
2 adjacent pixels and then order the merges in such a way that
the tree encoding the union of all these elementary regions is
linear.

Note that when using such an organisation of data, all
the required memory is allocated before union and find
operations. We thus avoid the risk of a memory overflow.

4.2. TriMedia processor

We experimented this data organisation on the TriMedia
processor [32]. The cache memory of this particular TriMe-
dia is 128 KByte, 4 way associative, with block of 128 Byte.
The replacement algorithm used is LRU.

In order to increase the computational efficiency, we
propose to take benefit of the data level parallelism (DLP)
provided by our algorithm (computation of edge’s weight,
frame difference, classification of pixels in CDM). This allows
to increase the throughput (i.e., amount of pixels processed
per unit time) by processing data in parallel when it is
possible. The core of TriMedia is a VLIW architecture with
5 issues slots. Each slot has some functional unit, and each
functional unit could process 4 bytes in parallel (SIMD
mode). The instruction level parallelism (ILP) is extracted
by the compiler, while the DLP could be exploited through
the use of custom operations, loop unrolling, and grafting.
So we use these optimisations to exploit the DLP available in
our algorithm.

5. EXPERIMENTAL RESULTS

In this section, we present experimental results of our
algorithm run on TriMedia with many very known CIF video
sequences.

(a) δ = 0.0067 (b) δ = 0.27 (c) δ = 0.74

(d) δ = 0.0067 (e) δ = 0.27 (f) δ = 0.74

(g) δ = 0.0067 (h) δ = 0.27 (i) δ = 0.74

Figure 6: Segmentation of one frame of the video sequences
“Akiyo”, “Table”, “Mobile” with δ = 0.0067, δ = 0.27, δ = 0.74.

5.1. Spatial results

The probability δ tunes the coarseness of the segmentation.
In Figure 6, we show the influence of this parameter on
the level of details obtained. This parameter is highly
correlated to the number of segmented regions. A value
of this parameter around 0.74 provides a sufficient level of
details for most of the video sequences we have considered.
However, the chosen value and the associated level of details
are highly dependent on the application. We can remark
that this algorithm is able to segment very precisely small
regions of interest such as the mouth or the eyes of “Akiyo”.
It can also segment the different numbers of the calendar in
the sequence “Mobile”. However, we can observe an over-
segmentation of some textured regions such as the wall in
the sequence “Table”. This is mainly due to the fact that
assumption (1) is more adapted to the segmentation of flat
regions. Our ongoing research is directed towards the design
of a new merging criterion for the segmentation of textured
regions.

As a comparison, we propose here some results obtained
with two other well-known algorithms: algorithm EGBIS
[12] and the statistical region merging (SRM) algorithm of
Nock and Nielsen [4]. These two algorithms are based on
region merging schemes with the same merging order than
our method. The main difference between the three methods
lies in the merging predicate. The results are displayed in
Figure 7. For each algorithm, we have tuned the parameters
in order to reach a segmentation that allows a good subjective
representation of the elements of the image (numbers of
the calendar, eyes of the woman, etc.). We can see on these
examples that our real-time algorithm gives comparable
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(a) EGBIS (b) EGBIS

(c) SRM (d) SRM

(e) Our algorithm (f) Our algorithm

Figure 7: Comparison of our segmentation results with those
obtained using the algorithms EGBIS [12] and SRM [4].

results than the two other algorithms. This last point has
been confirmed by other experiments that are not reported
here. Our real-time implementation is thus achieved without
detriment to the subjective quality of the results.

5.2. Spatiotemporal results

In the experiments, we take tr1 = 6 and tr2 = 0.01 (i.e., a
region is a changing region when it contains at least 1% of
changing pixels). The values of these thresholds are the same
for all the video sequences.

In order to see the influence of our temporal process,
we show here an example of segmentation results with and
without time consistency in Figures 8(c) and 8(b). We can
see that the segmentation of the wall is the same for the two
frames 1 and 9 of the video sequence “Table” when we use
the time-consistency improvement.

We then propose to display the segmentation results
along the video sequence “Akiyo” in Figure 9 and the video
sequence “Paris” in Figure 10. We can observe that the
method gives satisfying and stable results for these sequences.

We have also tested the robustness of our method in the
case of a shot cut. The video sequence “Football” is followed
by the video “BBC Disc”. Experimental results are given in

(a) Segmentation of frame 1 (b) Segmentation of frame 9
without time consistency

(c) Segmentation of frame 9 with
time consistency

Figure 8: Comparison of the segmentation results obtained with
and without time consistency on the video sequence “Table”.

(a) n = 1 (b) n = 5

(c) n = 10 (d) n = 15

(e) n = 20 (f) n = 25

Figure 9: Results for the spatiotemporal segmentation of two video
sequences “Akiyo” (δ = 0.81).
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(a) n = 1 (b) n = 5

(c) n = 10 (d) n = 15

Figure 10: Results for the spatio-temporal segmentation of two
video sequences “Paris” (δ = 0.81).

(a) (b)

Figure 11: Experimental results in the presence of a video scene
cut. (a) Segmentation of the last frame of the video “Football”.
(b) Segmentation of the first frame of the first image of the
video“BBCDisc”.

Figure 11. We can observe that the spatial segmentation of
the first frame of the video “BBCDisc” is not influenced by
the spatial segmentation of the previous frame that belongs
to the video “Football”. Indeed, in this case, most of edges
belong to the third category of edges (ϕ(n, a) = 2) where the
predicate is recomputed.

5.3. Evaluation of time consistency

We use a classical measure to evaluate time consistency.
Given the segmentation of the previous frame SEG(n − 1)
and the segmentation of the current one SEG(n), we find a
correspondence between regions in SEG(n− 1) and SEG(n).
For each region Si,n−1 ∈ SEG(n − 1), we choose the region
Sj,n ∈ SEG(n) that produces the most overlapping area

Overlap(i,n− 1) = max
j

∣
∣Si,n−1 ∩ Sj,n

∣
∣. (23)

Table 1: Experimental measures of time consistency.

Sequence

Akiyo Table Paris Mobile

Time consistency
(SRM)

Time consistency
(our approach
without CDM)

Time consistency
(our approach

with CDM)

0.95 0.8 0.86 0.79

0.88 0.73 0.89 0.84

0.98 0.92 0.97 0.92
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Figure 12: Evaluation of the computational cost regarding the
image size (with one image of the video Akiyo, δ = 0.74).

We then sum the overlap measures for all the regions in
SEG(n−1). The consistency measure is the percentage of this
number to the size of the image. The results for this measure
are given in Table 1 for the video sequences “Akiyo”, “Table
Tennis”, “Paris”, and “Mobile”. When enforcing consistency
through the CDM, time consistency is higher, and visually,
segmentation is more stable from frame to frame and still
fit very well regions boundaries as shown in Figures 9 and
10. We can also see that the time consistency of the spatial
segmentation algorithm SRM [4] is roughly equivalent
to the time consistency of our spatial algorithm without
computation of the CDM.

5.4. Evaluation of the computational cost

In this section, we propose to give the number of Mcycles
the algorithm takes on TriMedia for different resolutions and
different versions of our algorithm. We propose to compare
the spatial computational cost with the one obtained using
the Nock algorithm [4].

The computational cost has been evaluated as a function
of the image size in Figure 12. In this figure, the computa-
tional cost (in Mcycles/frame) has been computed for one
image of the video “Akiyo” at different resolutions (QCIF,
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Table 2: Compuational cost.

Sequence
Akiyo Table Paris Mobile

Mcycles/frame (SRM)

Mcycles/frame
(without CDM,

without optimizations)

Mcycles/frame
(without CDM,

with optimizations)

Mcycles/frame
(with CDM)

34.57 66.53 38.03 25.41

26.33 32.21 28.18 24.73

15.68 15.84 16.59 16.2

9.87 11.37 11.02 10.06

CIF, SD, and two other resolutions). This computation
has been performed with and without the optimisations
described in Section 4.2. First, the results given in Figure 12
show that the complexity is approximatively linear regarding
the image size. Indeed, the spatial computational cost is
principally induced by the union-find algorithm and the
edges sorting. As explained in Section 2.3, the sorting step
is performed in a linear time 0(|I|). As far as the union-
find algorithm is concerned, the complexity is given by
0(α(nu,n f )n f ) where nu is the number of union operations
and n f is the number of find operations (nu < n f ). The
function α is a very slowly growing function [25]. Since
the number of find operations can be upper-bounded by
c|I| where c is a constant, the complexity at worst can
be approximated by 0(α(nu,n f )|I|) which gives an almost
linear complexity. This assessment is confirmed by the
experimental results given in Figure 12.

We then propose to compare the computational cost
of our algorithm to the SRM algorithm [4]. The main
difference between the two spatial algorithms lies in the
computation of the predicate. The predicate of SRM leads
to higher computational cost as demonstrated in Table 2.
Our algorithm gives a lower computational cost even without
optimisations. When including these improvements, the
computational cost decreases. In Table 2, we also give the
number of Mcycles the algorithm takes on TriMedia when
enforcing the temporal consistency. The exploitation of
the CDM reduces the computational cost. This reduction
depends on the correlation between two successive frames.

With a 450 MHz TriMedia, we are able to process more
than 25 frames per second. We can then conclude that our
algorithm is avalaible in real time for QCIF or CIF sequences.

6. DISCUSSION

Designing usable algorithms for video processing requires
low-computational methods. Directed by this constraint, we
propose here an efficient time-consistent algorithm for video
segmentation. Let us discuss the strengths and limitations of
our algorithm regarding the three main points of this work.

(i) Spatial segmentation: we propose here an alternative
statistical modelisation to the work of Nock and
Nielsen [4]. This leads to a simpler predicate for merg-

ing that is more adapted to a real-time implementation
and gives good results for the spatial segmentation.
However, as in [4], such a statistical model is dedicated
to the segmentation of flat regions and may produce an
over-segmentation on textured area of an image.

(ii) Temporal consistency: the proposed algorithm allows
to obtain both stable segmentation results and a
reduction of the computational cost. This method is
based on the use of a CDM and of region informa-
tion deduced from the first frame. Regions are not
linked from one frame to another leading to a video
segmentation algorithm that is robust to scene cut and
occlusion. However, if never this algorithm has to be
exploited for video object tracking, region matching
will be useful. It can be obtained by comparing regions
of two consecutive frames using statistical inequalities.

(iii) Hardware implementation : our algorithm runs in
real time for CIF sequences. For standard definition
(SD) or high definition (HD) sequences some further
efforts are needed. In order to obtain a real-time
implementation, we have directed our attention to the
parallelisation by blocks of the spatial segmentation.
However, we still investigate this part and notably
the merging of the different spatial segmentations
obtained for the different blocks. This last step remains
delicate.

We finally want to outline that such a real-time video
segmentation algorithm would help many video algorithms
by leading to a better comprehension of the image content.
Among applications, we can think of time conversion,
peaking (also named unsharp masking), video compression,
or deinterlacing. The region segmentation algorithm can be
exploited directly using regions boundaries and region color
properties or as a source of information on the image content
(level of noise, complexity of the scene, main colors) which
can be exploited to better design existing algorithms [33].
Our on-going research is also directed to the design of such
region-based algorithms for electronic devices (e.g., : set-top
box).
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