
Trusted computing - A new challenge for embedded
systems

Romain Vaslin, Guy Gogniat, Jean-Philippe Diguet
LESTER UBS/CNRS FRE 2734

Centre de recherche
56321 Lorient FRANCE

Email:firstname.lastname@univ.ubs.fr

Alain Pegatoquet
WTBU - CSSD

Texas Instruments
821, avenue Jack Kilby - B.P 5

06270 Villeneuve-Loubet Cedex FRANCE
Email: a-pegatoquet@ti.com

Abstract— Security issues become more and more important
during the development of mobile devices. In this paper we
propose a thorough overview of processor-based solutions to
protect programs and data exchanges within embedded systems.
A discussion about the limitations of existing solutions is provided
and new directions are proposed.

I. INTRODUCTION

With the development of new wireless communication
standards like WIFI and Bluetooth, the communications
between entities (cell phone, PDA) is becoming unavoidable.
Sometimes sensible data is exchanged (e.g. credit card
number); so it is necessary to protect these transfers. Security
is turning into the main bottleneck for communicating
entities especially in embedded systems where performances
are limited. More and more systems are facing hardware
and software attacks [1]. Several solutions are proposed to
protect the architecture (secure architecture) and the data
which is transferred (cryptography). Architecture protection
mainly corresponds to the protection of data and program
stored in the system memory. Communication protection is
related to the protection of data exchanged over an insecure
communication channel (e.g. wire).
When a system is under attack, different goals are targeted;
the first kind of attack is the extraction of secret information,
the second one is trying to put the system out of order. The
encryption of information is used for confidentiality. The
most popular cipher algorithms are: RSA, ECC, AES, 3DES.
The hash of information is used to check the integrity of a
message by providing a signature which is unique for each
message. The most known algorithms are MD5 and SHA.
In addition, non-repudiation, availability and authenticity
are guaranteed by communication protocols like IPSec for
example.
More and more security tasks are assigned to embedded
systems. Thus, it becomes essential to add dedicated primitives
to these systems to allow an efficient implementation of the
requested algorithms for program and data protection. As a
consequence, various solutions are emerging to increase the
level of system protection. It is essential that these solutions
provide hardware architectures adapted to embedded systems
to meet the tight constraints on memory size, performance
and power consumption. In the following sections we propose

a thorough overview of processor-based solutions to protect
programs and data exchanges within embedded systems.

II. SECURE ARCHITECTURES: STATE OF THE ART

In order to fend off hardware and software attacks specific
mechanisms have to be defined. All security solutions are
built around assumptions concerning their potential threats.
Generally, the secure zone is composed of the processor core
and the ciphering and hashing dedicated blocks. Moreover side
channel attacks are mostly not addressed.
In section II-A the studies focus on the protection of program
memory and data memory. A monitor is used to protect the
operating system (OS). Using an OS, there is a need to track
if a task does not reach any secure information not belonging
to it. In certain circumstances, the user may wish to cipher
and/or hash the program in memory. Then if the program is
read in the memory, the cipher key will be necessary to decrypt
the data. As the cipher key is a secret and stored in the secure
zone, only a trust task must be able to decrypt the program and
to run it on the OS. The secrets stored on a chip are always
in the secure zone. It is one of the most essential postulate
when defining a secure architecture (the secret must not leave
the secure zone in a clear form). With an OS, the OS source
code will be stored in the secure zone since it is essential
that the OS kernel is not corrupted by a malicious entity. In
section II-A we focus on the principles of the OS and not
on the hardware engines to accelerate the computing of the
cryptographic tasks. Section II-B details the hardware engines
to efficiently implement encryption, decryption and hashing
functions for embedded systems.

A. Program and data security software-based solutions

1) Trustzone [2]: Trustzone is a solution proposed by
ARM. ARM considers that the complete secure solution is
not feasible and targets to secure only some parts of the
architecture and some data. Like other solutions, Trustzone
postulate is an architecture with a secure core and a secure
part within the memory. An important point is that Trustzone
does not provide any mechanisms for cryptographic issues. If a
user wishes to cipher and/or hash some data, he has to develop
the corresponding software or hardware security primitives.

1-4244-0395-2/06/$20.00 ©2006 IEEE. 776

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 28, 2009 at 08:28 from IEEE Xplore. Restrictions apply.

The guiding principle of Trustzone is to add an extra mode
(secure mode) to those already known (user, superuser). A
monitor supervises all the operations of the OS and especially
when an application is switching from/to the secure mode.
The monitor allows or not the switching from one mode to
another. Once the application is running in the secure mode,
the user can have access to all the protected data and programs
stored in the memory. As an example the cipher keys and the
boot program are considered as sensible data. When the secure
mode is active, the monitor supervises all operations to be sure
that a task which is not allowed is not trying to catch illegal
information.
The most significant part of the work for the monitor is to
protect the accesses to data. Several hardware mechanisms
have been added to the architecture to support this feature. The
Trustzone architecture proposes cache memories and uses a
memory management unit to provide a more efficient solution.
Thus, some modifications have been performed to support the
new possibilities of the architecture. They enable the monitor
to be informed if an access to a protected data is done or not.
Some peripherals can also be included in the trust zone, thus
specific methods are required to protect the communications
with them. Concerning the external memory, ARM suggests to
cipher and to hash it. The attacker will not be able to interpret
the data and program because he does not have the cipher keys.
In a same way, the hash of the memory helps the architecture
to keep the integrity of the source program and data. Moreover,
since some peripherals are included in the secure zone, the
communications between the peripherals and the core require
new signals to exchange data.

2) XOM [3]: XOM is the acronym of eXecute Only
Memory. XOM wishes to completely secure an architecture.
XOM is supposed to be sure and claimed that hardware
solutions are more efficient than the software ones. So XOM
mostly relies on hardware mechanisms to ensure security. New
primitives are provided within the OS in order to handle key
and signature manipulation. The name of the OS extension is
XOMOS. The main features of XOM are: memory ciphering
and hashing, data and program partitioning, interruption and
context switching protection.
Each partition of the memory is associated with a secret key
to decrypt its content. The session key is obtained with the
XOM key table which establishes the connection between the
session key and the secret key of a specific partition of the
memory. The secret key is also encrypted with an asymmetric
encryption. The key required for the asymmetric decryption
is stored in the secure zone of the architecture. The signature
result of the hash algorithm is compared to the original one to
validate the integrity of the hashed message. In addition the
data stored in cache memory is associated with an identifier.
When a task wants to use a data, the identifier of the task must
be the same as the data one, in that case it means the task is
allowed to read and modify the data. This feature protects
the system from malicious programs which try to get illegal
information. XOM proposes hardware security primitives to
protect cipher keys and hash signatures which are essential to

guarantee the architecture durability.
The last point of the XOM solution concerns the preemption
within the OS which has similarities with the management of
the interruptions. The context must be saved. It is essential to
store and to protect the context in order to fend off an attack
who aims to change some register values. XOM ciphers and
hashes the switching context which is interesting for a solution
with an OS. XOMOS can be seen as an extension of a non-
secure OS which brings new security primitives (ciphering and
hashing).
All the protections added by the solution have a cost. The first
one results from the implementation of XOM in an existing
OS. A work is necessary on the kernel to add the instructions
which handle the security primitives. All this work is invisible
for the user of the kernel. A real overhead appears in the
cache management. The number of cache miss raises from
10 to 40%. This raise is due to the information added into
the cache to secure the data and their associated identifier. It
means some parts of the cache are used to store the identifier.
The protection of the context switching also brings an increase
of the number of cycles to store the context and to protect it.

3) AEGIS [4]: AEGIS is an OS solution like XOM.
As very often the memory and the cache memory are not
included in the trust zone. The components required to build
the security primitives are considered to be secure. The
main features of AEGIS are: generation of secret with PUF
(Physical Random Function), memory protection by ciphering
and/or hashing, variation of the level of kernel security.
The PUF is an hardware mechanism which provides an
unique secret associated to a chip. The propagation time
within the chip corresponds to the base of the PUF. PUF is
a random source used to create the secret which is based
on a sequence of multiplexer giving a bit as a result. The
fabrication process of integrated circuit (IC) is the source
of the uniqueness of the propagation delay. As each IC has
its own delay, the sequence of multiplexer makes the chip
unique and the result of the sequence is very difficult to
predict. Moreover, PUF is associated with a hash algorithm
to increase the complexity of the secret generation.
Memory protection is an important point as the memory
corresponds to a non-secure zone of the architecture. Thanks
to the secret obtained with the PUF, the data and memory are
ciphered and/or hashed. Furthermore, the memory security is
also obtained through the MMU which manages the security
levels of the workspaces (user and superuser, secure or not).
Each user can choose to cipher (or not) and to hash (or not)
the data. Thus AEGIS provides the mechanisms to choose
the level of security of a piece of program. For example the
boot program can be ciphered and hashed for more security.
AEGIS seems to be a very complete solution to protect
memory and program. The overhead is important in some
domains. The silicon surface is one of them as it is increased
by 1.9 [5]. The cpu core is the part which is the most
concerned by this raising. Moreover, the logic needed to
control the specific mechanisms contributes to the raise of
the area. The global performances of the architecture depend

777

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 28, 2009 at 08:28 from IEEE Xplore. Restrictions apply.

on specific parameters like the size of the protected memory
and the cache memory. The workload varies according to
the chosen security primitives which means the processor
workload is directly linked with the security policy.

B. (Re)configurable hardware architectures

This section details main trends concerning hardware ap-
proaches to implement encryption, decryption and hashing
functions in an efficient way for processor-based embed-
ded systems. Hardware security engines can be subdivided
in three categories: coprocessors, accelerators and dedicated
processors. Coprocessors and accelerators can be divided in
two classes depending on their execution model since the
(re)configuration can be performed at design time or at run-
time.

1) Dedicated processors: A dedicated processor imple-
ments specific instructions dedicated to security primitives.
An analogy can be done with DSP through its multiplication-
accumulation instruction for digital signal processing. In most
cases, security processors are dedicated to one class of cipher-
ing algorithm (symmetric or asymmetric). Specific execution
units are added into the datapath. [6] and [7] propose proces-
sors with instructions for symmetric ciphering algorithms.
Specific instructions have been defined like logical operation
(xor-add) or data permutation. For processors dedicated to
asymmetric ciphering algorithms [8], specific instructions are
defined. For instance to efficiently compute the modular ex-
ponentiation used in ECC and RSA.

2) (Re)configurable architectures at design time: Architec-
tures (re)configurable at design time offer an higher level of
flexibility compared to dedicated processors since they provide
several modes of execution. [9] and [10] propose two hard-
ware accelerators in order to speed up ciphering operations.
Their architecture is fixed and controlled through configuration
registers. The main feature of [9] is its ability to run several
algorithms in parallel and to select the execution parameters
associated to each security primitive. [10] is a configurable
solution which allows the user to switch in different modes of
the AES algorithm. In both cases the architecture is dedicated
and optimized for an algorithm.
Another approach consists in specializing the architecture
during the compilation step to produce an efficient secure
architecture dedicated to the application. First solutions using
such a technology were not dedicated to security [11]. In [11]
the authors propose an architecture with the possibility to
choose the execution unit within the core of the processor.
The drawback with this approach is that the user is strongly
involved in the development process to identify the right
functionalities. An evolution of this solution in the domain
of digital signal processing is XiRisc [12]. The processor core
is fixed and connected to a reconfigurable coprocessor. After
analyzing the program, main characteristics are extracted to
implement some specific functionalities in the coprocessor.
The result for the architecture is some new instructions specific
for the application. With XiRisc the reconfiguration is done

when powering up the architecture. Such features are very
interesting for embedded systems and have been extended to
the security domain. The results obtained with this solution are
really interesting as for an implementation of DES algorithm,
the speed up of the algorithm is about 13 times with the
reconfigurable logic.
[13] have considered a similar approach for security applica-
tions. By exploiting the Xtensa architecture of Tensilica [14],
the authors show that the performances of security primitives
(ciphering, protocol) are strongly improved (65% for MD5 and
75% for AES). The improvement is due to the coprocessor
connected to the Xtensa architecture. Like XiRisc, the largest
part of the design is done at compilation time. The analysis is
performed during compilation and the reconfiguration is done
at power-up. Specific tools for the architecture are required to
build an efficient solution (compiler, linker or simulator).

3) (Re)configurable architecture at runtime:
(Re)configurable architecture at runtime is an interesting
alternative since the datapath can be adapted dynamically
in order to provide the right security primitives depending
on the requirements (e.g. hashing, ciphering). Compared to
previous solutions this approach offers the highest level of
flexibility and provides very efficient solutions. As detailed
hereafter this solution is very interesting for embedded
systems, unfortunately no work has been reported in the
security domain. However in this section a description
of this technology is still provided as we believe similar
secure architectures should appear in a near future. The
base of this approach is to reconfigure a coprocessor during
the program execution when the logic is unused. In [15]
the architecture core is fixed and the coprocessor can be
dynamically reconfigured. As the previous solutions, a work
is necessary to adapt the program of the application in order
to take benefit of the coprocessor. The main difference comes
from the reconfiguration model. If the logic associated to a
specific instruction is not loaded into the coprocessor when
required then the reconfiguration is performed dynamically.
The reconfiguration only affects the datapath and not the
ALUs within the coprocessor (coarse grain reconfiguration).
The reconfiguration helps minimizing the silicon area of
the chip to improve the cost and the power consumption
and to provides efficient execution patterns to speed up
the execution. In [16], it is shown that the reconfigurable
coprocessor speeds up the architecture by 190 for a specific
application (EEMBC).
A similar approach is proposed in [17] where the authors
define a complete reconfigurable core for the processor. The
instruction set of the architecture is fixed but the core of
the processor has different configurations for the ALU. The
reconfiguration of the block is done at runtime depending on
the instructions to be executed. The decision to reconfigure
(or not) comes from the pipeline stages: fetch, the cache trace
and eventually the prefetch. An interesting point concerns
the compilation. For this architecture there is no need for a
special compiler as the instruction set of the architecture is
not modified for each application. The processor dynamically

778

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 28, 2009 at 08:28 from IEEE Xplore. Restrictions apply.

configures its datapath to increase its performances. Similar
concepts can be considered for the security domain in order
to build a processor-based solution relying on a dynamically
reconfigurable datapath (coarse or fine grain).

4) Limitations of existing solutions: Hardware solutions
presented above are not always targeting embedded systems
which involve very tight power consumption and small silicon
area. Using an hardware accelerator [9] [10], leads to high
performances but at the cost of power consumption which can
be prohibitive in some cases.
In the case of configurable architecture [13] several remarks
can be done. This approach is strongly adapted to embedded
systems as it minimizes the power thanks to configurable
features and improves the performance due to specific in-
structions. The most important concern is related to the
development process which can be tedious in order to define
the right instructions. It is essential that the architecture
supplier provides an efficient compiler which can identify and
exploit specific instructions. For architectures like [15], when
extended to the security domain, the difficulty will rely mainly
on the definition of the reconfigurable datapath (granularity,
flexibility). The users must have a deep understanding of the
architecture and its basic datapath in order to extend and
optimize the execution units.
Reconfiguration of the ALUs interconnections leads to very
flexible architecture. The user has the ability to build efficient
ALUs by configuring the datapath. However, if no tools are
provided with the architecture, this task may be tedious since
the user has to know the ALUs implemented in the logic to
develop his own security functions. Datapath reconfiguration
is interesting since it corresponds to an efficient tradeoff be-
tween flexibility, reconfiguration time and performance. Block
reconfiguration provides an higher flexibility but at the cost of
reconfiguration time (issue of granularity vs. efficiency). This
disadvantage is mitigated by the fact that the system becomes
simpler to develop since it is mainly based on security IPs,
thus the designer does not need to have a deep knowledge
of the security cores. Coarse grain coprocessors based on
datapath reconfiguration are more complex to develop as the
designer needs to defined all the execution patterns that will be
implemented in the datapath. To propose a relevant solution the
number of configurations needs to be limited. In practice some
cryptographic algorithms are mainly used: MD5 and SHA for
hashing, 3DES and AES for symmetric algorithms, RSA and
ECC for asymmetric algorithms. The goal should be to define
a (re)configurable architecture dealing with these algorithms.
Each algorithm can be associated to a dedicated coprocessor
with specific instructions.
Both solutions provide interesting features, thus defining an
architecture corresponding to a compromise between these two
approaches needs to be evaluated. Moreover, it is essential
to keep in mind that tools allowing the efficient use of the
architecture are mandatory (compiler, simulator) to provide a
comprehensive solution.

III. CONCLUSION

Hardware approaches within secure embedded systems
represent a very interesting solution to increase the protection
of programs and communications while reducing the cost of
security. Standard solutions from computer science are not
directly suitable and must be adapted to embedded systems
domain. Furthermore embedded systems are facing more and
more attacks tacking benefit of the constraints related to their
domain. It is thus necessary to define new techniques to
protect these systems.
In this paper we have proposed a state of the art of emerging
technologies used in order to increase the protection of
these systems at the software and the hardware levels.
We have also defined some rules in order to improve the
performance of the security primitives. It is thus essential to
provide new hardware engines (ciphering/hashing hardware)
adapted to embedded systems constraints before building a
complete secure architecture (core, memory). (Re)configurable
solutions provide some interesting features that should be
better analyzed in order to promote the flexibility, the
efficiency but also the programmability.

REFERENCES

[1] D. Dagon, T. Martin, and T. Staner, Mobile Phones as Computing
Devices: The Viruses are Coming!, IEEE Pervasive Computing, 2004

[2] ARM trustzone http://www.arm.com
[3] XOM project: http://www-vlsi.stanford.edu/ lie/xom.htm,
[4] AEGIS project:

http://publications.csail.mit.edu/abstracts/abstracts05/suh/suh.html,
[5] G. Edward Suh et al, Design and Implementation of the AEGIS Single-

Chip Secure Processor, 32nd Annual International Symposium on Com-
puter Architecture, 2005

[6] Rainer Buchty, Nevin Heintze, and Dino Oliva, Cryptonite A Program-
mable Crypto Processor Architecture for High-Bandwidth Applications,
2004

[7] Lisa Wu, Chris Weaver and Todd Austin, CryptoManiac: a fast flexible
architecture for secure communication, ISCA ’01: Proceedings of the 28th
annual international symposium on Computer architecture, 2001

[8] Hans Eberle et all, A Public-Key Cryptographic Processor for RSA
and ECC, ASAP ’04: Proceedings of the Application-Specific Systems,
Architectures and Processors, 2004

[9] HoWon Kim and Sunggu Lee, Design and Implementation of a Private
and Public Key Crypto Processor and Its Application to a Security
System, 2004

[10] Alizera Hodjat, Ingrid Verbauwhede,High-throughtput programmable
cryptoprocessor, 2004

[11] Rahul Razdan and Michael D. Smith, A high-performance microarchi-
tecture with hardware-programmable functional units, Proceedings of the
27th annual international symposium on Microarchitecture, 1994

[12] Bocchi, M. De Bartolomeis et all, R., A XiRisc-based SoC for embedded
DSP applications, Custom Integrated Circuits Conference, 2004

[13] Nachiketh R. Potlapally, Srivaths Ravi, Anand Raghunathan, Ruby B.
Lee and Niraj K. Jha, Impact of Configurability and Extensibility on IPSec
Protocol Execution on Embedded Processors, VLSID ’06: Proceedings of
the 19th International Conference on VLSI Design, 2006

[14] Tensilica http://www.tensilica.com/
[15] Jeffrey M. Arnold, S5: The architecture and development flow of a

software configurable processor, ICFPT 2005 : International Conference
on Field-Programmable Technology, 2005

[16] Ricardo E; Gonzalez, stretch: a software configurable processor archi-
tecture, 2005

[17] Adronis Niyonkuru and Hans Christoph Zeidler, Designing a Runtime
Reconfigurable Processor for General Purpose Applications, IEEE Com-
puter Society, 2004

779

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 28, 2009 at 08:28 from IEEE Xplore. Restrictions apply.

