
No-Handshake Asynchronous Survivor Memory
Unit for a Viterbi Decoder

Wei Shao
APT Group, School of Computer Science,

University of Manchester, Oxford Road, M13 9PL
Email: shaow@cs.man.ac.uk

Linda Brackenbury
APT Group, School of Computer Science,

University of Manchester, Oxford Road, M13 9PL
Email: lbrackenbury@cs.man.ac.uk

Abstract— The Survivor Memory Unit (SMU) is a vital part
of a Viterbi decoder design. So far, classical implementations of
SMU employ the register exchange or the trace back approaches.
In the conventional trace back implementation, a read-write
RAM architecture is generally adopted which requires a large
size of memory. This gives the SMU design both area and power
overhead. This paper presents a new no-handshake asynchronous
approach to implement the trace back method. The SMU design
based on this new architecture is a mixed synchronous and
asynchronous circuit. Post-layout simulation results on a .18μm
process show the new architecture saves more than 84% of the
power dissipated compare with a synchronised SMU design using
a low power logic family and 30% compared with a handshaking
asynchronous design.

I. INTRODUCTION

Viterbi decoders are normally used in communications
systems, such as GSM, satellite and cable digital television. In
these systems convolution codes can be used to encode the data
stream into a longer stream carrying redundant information.
The Viterbi decoder is then used to decode the received data
and eliminate errors caused by the noise and reconstruct the
original signal [1].

In the decoder, the Survivor Memory Unit (SMU) is the
final block. It keeps a history of the computations made on
the input data stretching back over many time slots from the
current slot. This history enables the SMU to determine and
output the most likely data based on the estimated states of
the encoder.

This paper is organized so that the Viterbi algorithm and
trace back SMU designs are reviewed and discussed in the next
section; this enables the implementation issue of the trace back
process to be revealed. The third section of this paper describes
the new SMU trace back architecture with the analysis of its
timing. Finally, the last section gives results of the measured
power and error correction performance on both a post-layout
CMOS circuit and a FPGA.

II. VITERBI ALGORITHM AND TRACE BACK SMU DESIGNS

A. Convolutional Encoding

Digital data can be convolutionally encoded using k input
bits using n modulo 2 adders to create n encoded digital bit
streams which are transmitted; k is called the constraint length.
Figure 1 shows a simple example of a 1/2 rate convolutional
encoder, with k = 3. Comprised with registers, an encoder

X(i)
Register Register

X(i-1) X(i-2)

I

Q
= XOR

Fig. 1. A simple 1/2 rate, constraint length 3 (k = 3) convolutional encoder.

with a constraint length of k has 2k−1 states. The encoding
process of an convolutional encoder can be generalized and
described as a states transitions process with a trellis diagram,
shown in Figure 2. In Figure 2, the encoder states are indicated

Fig. 2. The trellis diagram represents state transitions of a rate 1/2, k = 3
convolutional encoder from time t0 to time tn.

in circles where the states transitions and the correspondance
encoder outputs are represented as the arrows from one state
to another. Generally, if the encoder is at state j or j + 2k−2

then it moves to state 2j for a ‘0’ input and to state 2j + 1
for a ‘1’ input (0 ≤ j ≤ 2k−2 − 1).

B. Viterbi algorithm and decoder architecture

To decode the convolutional code, the Viterbi algorithm
performs two stages of operations. The first stage of Viterbi
decoding process involves branch metrics calculations and
so called Add-Compare-Select (ACS) operations. With these
operations, the Viterbi algorithm measures the likelihood of all
the states transitions based on the code words so that only one
of the two transitions into each state is selected as the survivor

1-4244-1378-8/07/$25.00 ©2007 IEEE. 729

branch at every time step. Figure 3(a) illustrates the results of
this process as a trellis diagram, in comparison to Figure 2,
and only the survived states transitions and the correspondence
states are shown. The trace back process is basically a reverse

(a) Trellis of the survivor branches after ACS opera-
tions.

(b) Trace back the survivor trellis process of the Viterbi
algorithm.

Fig. 3. Viterbi decoding process presented in trellis diagram.

of the decoding process, as indicated as the highlighted arrows
in Figure 3(b). The trace back starts from a random state of
time tn and traces backward through the path formed by the
history of the survivor branches. For example, the trace back
in Figure 3(b) is started from state 11. Since paths that start
from all states at the end of this trellis are all merged into
state 10 at the second trace back step, there is only one unique
states sequence can be obtained by the rest of the trace back
steps. Therefore, this state sequence can be used to generate
the decoded data. According to the ‘rule of thumb’ [2] [3],
the decoding process needs to perform L steps of trace back
where L ≥ 5k to guarantee the convergence, .

A Viterbi decoder normally comprises three blocks [1] as
shown in Figure 4. The Branch Metric Unit (BMU) computes
the branch metrics of the input symbols. The Path Metric Unit
(PMU) performs ACS operations to obtain the survivor branch
selection for each state. The trace back Survivor Memory Unit
(SMU) keeps a history of these selections in a memory for a
number of time steps and determines the decoded output from
trace backs.

C. Trace back algorithm and SMU designs

The trace back algorithm can be generalised as a recursive
updating process where the trace back recursion estimates the
previous encoder state Sn−1 according to the current state Sn

Fig. 4. Viterbi decoder block architecture

[4], which consists of m bits (m = k − 1), where

Sn−1 = Sn[m − 2 : 0]dS
n (1)

for the common radix-2 trellis, where Sn[m−2 : 0] represents
the bottom m-1 bits of Sn. dS

n is the one-bit survivor branch
selection from the PMU and is read from the memory location
addressed by state index Sn and time index n; the previous
state Sn−1 is obtained by simply removing the most significant
bit, Sn[m−1], of Sn and appending dS

n as the least significant
bit.

The most common synchronous trace back SMU design is
the one-pointer architecture [5]. In this approach, a memory
is used to store all branch selections and is partitioned into
a write block, a merge block and a read block. During the
decoding process, the new survivor branch selections are
written to the write region while the previous survivor branch
selections are traced and read from the merge and read block,
simultaneously. In order to match the SMU in/out throughput,
the trace back and read operations must complete before the
write region is fully occupied. This normally results in a high
frequency of memory read operations.

On the contrary to a synchronised design [1], the timing is
individually scheduled in an asynchronous system and multi-
ple trace backs are performed concurrently and continuously
controlled by handshakes. However the major implementation
issue of the asynchronous design is the overhead of handshake
logic that consumes extra power.

III. THE NEW SMU DESIGN

In order to take the advatages of asynchronous trace back
and also to avoid its implementation overhead, we propose an
mixed synchronous and asynchronous trace back SMU design.

A. The new SMU architecture

Figure 5 illustrates the new SMU top level architecture. As
shown in Figure 5, the design consists of 3 major blocks: the
Survivor Branch selections Memory, the Trace Back Path, the
Decoding block. The memory and the Decoding block are syn-
chronised to the global clock whereas the Trace Back Path runs
mainly asynchronously. The memory block is implemented
as L slots latches rather than RAM and is selectively loaded
from the system clock. Therefore, the stored selections are all
output straightaway and synchronously to the Trace Back Path

730

0 1 2 3 L-4 L-3 L-2 L-1

1 2 3 L-4 L-3 L-2 L-1

bs0 bs1 bs2 bs3 bsL-4 bsL-3 bsL-1bsL-2

es0 es1 es2 es3 esL-4 esL-3 esL-1esL-2

0

Fig. 5. The new SMU architecture, which consists of three major blocks. The
Survivor Branch selections Memory and the Decoding block are synchronised
by the clk while the Trace Back Path is running asynchronously.

when being updated. This avoids the repeated memory read
operations usually performed in a conventional SMU.

The major novelty of this new SMU design is in the Trace
Back Path design. The encoder state in the Trace Back Path is
encoded as 1− of − 2k−1 bits data other than the k-bit index
in a normal SMU. For example, the states 00, 01, 10, and
11 of an k = 3 encoder are represented by 4-bit data 0001,
0010, 0100, and 1000 respectively. With this state encoding
scheme, the Trace Back Path is implemented as the trellis
structure shown in Figure 2 and, therefore, a trace back is
carried out as an asynchronous logic ‘1’ signal propagation. In
the Trace Back Path when a memory slot ML−2, for instance,
is updated at time t, its correspondence trace back stage, TL−2,
will be initiated with a new random encoder state, esL−2,
which is passed to the previous stage TL−3 to update its
encoder state, esL−3. This updating process is then propagated
asynchronously as a trace back through the rest of the Trace
Back Path. In the next clock cycle t + 1, the memory slot
ML−1 will be updated by new branch selections and the trace
back stage TL−1 also initiate a new trace back which is then
running asynchronously thereafter and concurrently with the
previous trace back.

In the design trace backs are started at each clock cycle in
the increment trace back units from left to right in Figure 5.
Since they will eventually converge before reaching the begin-
ning of the trace back path where the estimated encoder state
is captured, it is not necessary to use state holding devices in
the trace back path.

B. The design of Trace Back Path

The trellis structure of the Trace Back Path is illustrated in
Figure 6. As Figure 6 indicates, the Trace Back Path comprises
only simple combinational circuits, i.e. OR gates, multiplexers
and demultiplexers. There is no handshake logic to control the
asynchronous trace back signals. For example, corresponding
to the example in Figure 5, when the memory slot ML−2

is updated the new branch selections bsL−2 will change the
connections of the demultiplexers in the trace back stage TL−2

in Figure 6; while the multiplexers of this stage is selecting the

L-20 L-1

Initial state

(= Demux)

0 1 L-2 L-1

0 1 L-2 L-1

Fig. 6. The structure of the Trace Back Path design for a rate 1/2 and k = 3
decoder which is a direct implementation of the trellis structure.

initial encoder state, e.g. state 0001. Therefore, the logic ‘1’
signal is passed through the top multiplexer, the demultiplexers
and the OR gate of this stage and then travels asynchronously
as a new trace back on the rest of the connected path, which
is highlighted in Figure 6. As the new trace back is started,
the encoder state esL−1 produced by stage TL−1 is selected
and synchronised by the Decoding block to yield decoded
data. Then in the next clock cycle, a new trace back will
also be started from this stage and goes through a different
path. However, since they will eventually merged by the OR
gate of stage T0, as shown in Figure 6, the new trace back
will not affect the result of the last trace back and, thus, the
estimated encoder state es0 can be easily synchronised and
used to produce the decoded data.

This Trace Back Path architecture provides 3 major features
to the new SMU design. Firstly, this Trace Back Path allows
multiple asynchronous trace backs running concurrently, thus
the number of memory slots can be minimised. Secondly,
in this architecture trace backs are merged by OR gates
which is a simple but efficient way of implementing the path
convergence. With this approach, a trace back propagation
stops once it is ‘OR’ed with an existing trace back resulting
in no further transitions occurring at the OR gate output.
This minimises the power dissipated in trace backs. Thirdly,
a trace back in the new architecture is implemented as a 1-bit
logic ‘1’ signal propagation without any clock or handshake
logic. Therefore, the number of circuits transitions caused by
the trace back process is also minimised so that the power
dissipation can be significantly reduced.

C. Timing skew analysis

1) Negative timing skew: All paths trace back simultane-
ously and because of element tolerance and differences in wire
length, there will be a variation in time between the arrival of
trace back decisions at the oldest timeslot. If large enough, this
could cause incorrect data to be determined for clocking into
the output flip flop. This can be refered to as negative timing
skew and is illustrated in Figure 7. The solid line from state
S1 represents the global winner propagation with time and the
dotted line represents all the other ‘loser’ states. The slower

731

Fig. 7. Trace back gap caused by timing skew.

propagation of the winner means that the loser ‘0’ states can
combine with a zero on the winner path from the previous
timeslot to indicate a period where no winner is indicated;
this is indicated by the shaded region in Figure 7. Were this to
happen at the time the decoded data is clocked into the output
flip flop then incorrect data would be decoded and output.

The gap caused by the negative timing skew is determined
by the delay differences of different paths in the Trace Back
Path at each stage. The period ρ of a gap is upper bounded
by

ρ ≤
L−1∑

n=0

(dn
max − dn

min) (2)

where dn
max and dn

min are the maximum and minimum delays
of stage n. Therefore, the possible error caused by the negative
timing skew can always be avoided by shifting the clock edge
of the synchronisation flip flop out of the invalid data gap.
Thus, as long as the ρ is less than a clock cycle, the valid
decoding operations of the Trace Back Path are guaranteed.

IV. TEST RESULTS

The Viterbi decoder design with this new SMU architecture
is implemented in both CMOS circuitry and on a FPGA.
Power simulations are used to estimate the power figures
of the CMOS and FPGA implementations whereas the BER
performance is measured from the in circuit tests on FPGA.

A. CMOS implementation results

The new SMU operates at frequencies 45MHz and 100MHz;
and uses a 0.18 micron technology and a 1.8V supply voltage.
The layout has been automatically generated using a commer-
cial tool from logic schematics comprising elements from an
in-house library of conventional CMOS logic circuits. This
approach results in random delays in the trace back path.
Table I summarizes the characteristic of the SMU layout.
The design has been tested by running Nanosim post-layout
simulations. In the post-layout tests, three different size (5k,
10k and 50k) of random data patterns were generated and
added with white Gaussian noise according to the signal
noise ratio in decibels. The resulting output bit error rate
(BER) and averaged power consumptions for different signal
to noise ratios of code rate 1/2 and is given in Table II. The
throughput is 45Mbit/sec in these simulations which is equal

TABLE I
CHARACTERISTICS OF THE NEW SMU CORE

Throughput 45Mbits/s and 100Mbits/s
Rate 1/2 (or punctured 2/3 to 7/8)
Trace back length 64
Core size 1.05 × 1.05 = 1.10mm2

Transistors 241K
Technology .18μm standard cell

to the targeted throughput of the reference designs in [1] and
[6]. It can be seen that the power increases only relatively

TABLE II
NEW SMU BER AND POWER CONSUMPTION IN DECODING 1/2 CODES

S/N in Input Output Normal VB Power
(dB) BER BER BER (mW)
0.4 0.07335 0.1524 0.12 6.65
1.7 0.04234 0.0293 0.032 6.31
2.6 0.02834 < 4.85e − 5 7.43e-3 6.24
3.5 0.01904 < 2.31e − 5 1.34e-4 6.17

slowly with increasing input BER. This suggests that trace
backs in the new SMU consume only a small portion of the
overall SMU power.

The average power consumption and area of this new SMU
design is compared in Table III with low power Viterbi decoder
designs from [6] and [1], which are implemented with single-
ended pass-transistor logic (SPL) and asynchronous logic
respectively. Since the SPL design is implemented with the
.35 micron CMOS technology and a 3.3V supply voltage,
its power and area are scaled down by factors of 8 and 4
respectively. The power results have all been scaled (where
required) to a 45Mb/s data rate for a .18μm process running
from 1.8V.

TABLE III
THE NEW SMU POWER CONSUMPTION COMPARING WITH OTHER LOW

POWER SMU DESIGNS AT 1.8V AND 180NM.

New SMU SPL[6] Asynch[1]
Decoder Area N/A 1.64 1.96

(mm2)
SMU Area 1.10 1.04 ∼ 0.98

(mm2)
No. of States 64 64 64
Avg. Power
(mW) of N/A 62.5 ∼ 18
Decoder

@45Mb/s
Avg. Power
(mW) of 6.31 39.38 ∼ 9

SMU
@45Mb/s

According to the comparison, the new SMU architecture
only uses 16% of the power dissipated in the low power
design using SPL logic. In the asynchronous design from

732

[1], the overall decoder power consumption is also much less
than the synchronous SPL design from [6]. Comparing to the
power figure from the asynchronous design, the new SMU
architecture can provide 29.8% power reduction. So, the new
SMU is the most power efficient design amongst these three.

B. FPGA implementation results

Since the post-layout power simulation is extremely com-
putation intensive, it does not provide BERs that are accurate
enough at low noise levels. The design has therefore been
transferred to a 90nm FPGA. Two Viterbi decoders, R = 1/2,
k = 7 and R = 1/2, k = 3, using this new SMU architecture
were implemented and tested on a Virtex4 XC4VSX35 FPGA
board. The test framework includes a reference Viterbi decoder
IP core from Xilinx which is compatible with many common
standards, e.g.DVB, 3GPP2, and IEEE802.16. The power
figure is estimated by the Xpower tool from Xilinx. The size
of the post place and route design is larger than the Xilinx IP
core, as shown in Table IV. It shows the Viterbi decoder with

TABLE IV
NUMBER OF SLICES THE VITERBI DECODER OCCUPIED WITH THE NEW

SMU ARCHITECTURE

RAM Blocks Slices
VD with new SMU(k=3) 0 284

Xilinx IP(k=3) 2 224
VD with new SMU(k=7) 1 3,686

Xilinx IP(k=7) 5 2,423

the new SMU is 21% and 34% larger than the Xilinx Viterbi
decoder of constraint lengths 3 and 7, respectively. All of the
designs can operate at a frequency of 100MHz.

Monte Carlo simulations were used to get the BER results
shown in Figure 8. It shows the measured BERs from the

0 1 2 3 4 5 6 7 810-10

10-8

10-6

10-4

10-2

100

Eb/No in dB

B
ER

new SMU (k=7)
Xilinx IP (k=7)
new SMU (k=3)
Xilinx IP (k=3)

Fig. 8. BER performance from FPGA tests.

Viterbi decoders with the new SMU match the standard Viterbi
decoders BERs. There are only small differences at high noise
levels due to the difference between the trace back speeds in
the new SMU and the Xilinx Viterbi decoder.

The power simulations are run for 5k symbols at an
Eb/No = 0dB with a 100MHz clock. The results are listed in
Table V. These power figures indicate that for small constraint
length, such as k = 3, the proposed new SMU saves 28%

TABLE V
DYNAMIC POWER CONSUMPTION OF THE VITERBI DECODER WITH THE

NEW SMU IMPLEMENTED ON FPGA

Trace back length Power(mW)
VD with new 48 20.3

SMU(k=3)
Xilinx IP(k=3) 48 28.2
VD with new 48 135.6

SMU(k=7)
Xilinx IP(k=7) 48 146.2

dynamic power of a standard SMU implementation on the
FPGA. However, for k = 7, the saving becomes only 4%. This
is due to the exponential increase of trellis wire connections.
For a small constraint length, the increased power dissipation
of these extra connections is relatively small. However, as the
number of the connections increases exponentially with the
constraint length, the power overhead becomes significant and
reduces the power saving of this new SMU.

V. CONCLUSION

In this paper, a new power efficient SMU architecture has
been proposed. In this new design, data is entered into the
SMU synchronously while the tracing back to reconstruct
the encoder states history is decoupled from the data entry
and free runs asynchronously. The trace back logic is en-
tirely combinational thus avoiding the complex control and
handshakes normally associated with asynchronous design.
These measures give the new design an equivalent bit error
performance but at lower power than other SMUs.

Although the trace back may cause an error due to the
negative timing skew, it can be fixed by shifting the clock
edge of the synchronisation flip-flop. This is confirmed by
the measured BERs from the FPGA tests. This indicates that
to achieve an efficient SMU design without handshakes is
not without problems and that careful timing analysis and
simulation are required at the working frequencies and on the
targeted process.

On CMOS circuitry, the new SMU architecture is more
power efficient compared with a low power design using SPL
as it reduces the power dissipated in the SMU by a factor of
6. Thus, this proposed architecture is believed to be suitable
for low power CMOS trace back SMU implementations.

ACKNOWLEDGMENT

The authors would like to thank UK EPSRC for funding this
work and the project of designing a low power consumption
Viterbi decoder.

REFERENCES

[1] P. Riocreux, L. Brackenbury, M. Cumpstey, and S. Furber, “A low-power
self-timed Viterbi decoder,” in Proc. Async, Salt Lake City, Utah, USA,
Mar. 2001, pp. 15–24.

[2] G. C. Clark and J. B. Cain, Error-Corection Coding for Digital Commu-
nications. New York: Plenum Press, 1981.

[3] R. Johannesson and K. S. Zigangirov, Fundamentals of Convolutional
Coding. New York: Wiley-IEEE Press, 1999.

[4] C. Lee, “A Viterbi decoder with efficient memory management,” ETRI
Journal, vol. 26, pp. 21–26, Feb. 2004.

733

[5] C. M. Radar, “Memory management in a Viterbi decoder,” IEEE Trans.
Commun., vol. 29, pp. 1399–1401, Sept. 1981.

[6] M. C. Munteanu, “Low power design of integrated circuits,” MPhil thesis,
The Department of Electronic and Electrical Engineering, The University
of Sheffield, Sheffield, Aug. 2000.

734

	MAIN MENU
	Front Matter
	Table of Contents
	Author Index
	Keyword Index

	Search
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	Help

