
The Amulet chips: Architectural Development for Asynchronous Microprocessors

J.D. Garside, S.B. Furber, S. Temple, J.V. Woods
School of Computer Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

{jgarside, sfurber, stemple, jvwoods}@cs.man.ac.uk

Abstract

During the 1990s a series of asynchronous microproc-
essors based on the ARM architecture was developed at
the University of Manchester. The objective was to demon-
strate that it was feasible to implement a commercial
architecture with asynchronous logic and that certain
advantages could be gained from a self-timed processor.
By carrying these designs through to silicon it was demon-
strated that processors, caches and whole systems-on-chip
could be built without clocks and could perform competi-
tively with ‘conventional’, synchronous systems.

These processors, named Amulet1-3, exhibited some
useful characteristics, particularly their ability to stop and
start almost instantaneously - with consequent energy sav-
ings in embedded applications - and their low-energy and
wide spectrum electromagnetic emission - useful in wire-
less applications. As might be expected they also adapt
automatically to supply voltage variation so that their
speed and energy demands may be regulated simply by
altering their power supply. There were disadvantages too,
particularly in the design effort which was not well sup-
ported by conventional tool flows. Thus, at that time, the
advantages were not great enough for any widespread
commercial acceptance.

This paper summarises the architectural features which
were developed during the Amulet series of microproces-
sors and systems with emphasis on mechanisms which are
non-specific to the ARM architecture. These include regis-
ter forwarding and cache-line fetching which typically rely
on non-local synchronisation provided by a clock signal.
In addition deadlocks, an ever-present danger in asyn-
chronous systems, are discussed and means of preempting
them presented.

1. Introduction

Many early processors were clockless but, towards the
end of the last century, the convenience of using a clocked
model for logic design had become overwhelmingly domi-
nant. Continuous rapid development of electronic technol-
ogy means that this paradigm has become entrenched as the
method of digital design. Attempts to develop alternative

logic styles must therefore struggle to catch a fast-moving
target propelled by considerable financial incentive.

The Amulet chips were asynchronous ARM microproc-
essors and systems on chip developed to investigate the fea-
sibility and commercial potential of asynchronous
technology. This paper summarises the major, transferrable
contributions developed for these devices.

Two notable, relevant works preceded the Amulet
projects: work at Caltech had demonstrated the feasibility
of implementing asynchronous circuits on silicon [1] and
Sutherland’s Turing-award presentation [2] set the initial
style. However there remained considerable development
work to demonstrate complete, contemporary, commercial
ISA compatibility and, possibly, some unique advantages
of the technology. At the time power dissipation in proces-
sors (such as Alpha [3]) was beginning to become a serious
issue, especially with a demand high-performance portable
devices. The initial objective was therefore to exploit the
promise of power saving by removing of the clock and halt-
ing whenever possible.

RAM

RAM RAM RAM RAM

RAMRAMRAM

EMIDMAC CTRL

AMULET3

ROM

Telecommunications peripherals

Figure 1: DRACO layout



2. Amulet chips

Before outlining any architectural details, a brief over-
view of the Amulet chips may be in order. Amulet1, manu-
factured 1993, was a 1.0 μm device, similar to ARM 6 and
delivering around 16 MIPS. Amulet2e was an improved
processor core, similar to ARM7, delivering nearly
40 MIPS on a 0.5 μm process, integrated with an asynchro-
nous cache, a few peripherals and an easy-to-use external
interface. It was manufactured in 1996.

The final device in the series was DRACO (fig. 1), a
DECT base station produced in collaboration with
Hagenuk GmbH who designed the synchronous peripher-
als. This device contained Amulet3i, an asynchronous sub-
system comprising an upgraded and re-engineered
processor core, similar to ARM9 and including Thumb sup-
port, tightly coupled ‘dual-port’ RAM, ROM and an asyn-
chronous DMA controller. Delivered in 2000 on a 0.35 μm
process the processor provided over 100 MIPS – the same
as a contemporary ARM9. DRACO was a commercial pro-
totype which was functional but not developed further due
to unrelated, financial difficulties.

3. Problems in asynchronous architectures

What is different about an asynchronous microarchitec-
ture? Fundamentally, there is no clock to coordinate dispa-
rate parts of the system so that any parts which must
communicate have to synchronise locally and temporarily.
This is typically done with a Muller C-element [4] which
acts as an AND gate for logic transitions although, as illus-
trated later, there are other ways of synchronising if it is not
certain that a complete set of inputs must be awaited.

Another widely employed specialist element is an arbi-
ter or mutual exclusion element [5], which prevents more
than one of its inputs being output at any time. Such units
are used specifically to avoid synchronisation but introduce
non-determinism into the circuit’s operation since they are
only necessary when inputs compete for a service and it is
not possible to ordain which will be serviced first.

One characteristic which complex asynchronous sys-
tems share with synchronous ones is pipelining. Pipelines
are a ‘natural’ match for circuits which repeatedly part-
process data then pass on results. Indeed there is a tempta-
tion to over-pipeline functions which can increase latency
and thus reduce performance. Asynchronous pipeline
stages synchronise with their neighbours via handshakes
when communicating but are not coordinated with more
distant circuits, thus arbitrary passing of information
around the system is not possible.

Because data flow through the pipeline at their own rate
the occupancy of the pipeline is elastic – i.e. it is uncertain
at any given time. Although data remain in order – at least
in a simple pipeline structure – operations such as flushing
following a branch may be awkward due to this uncertainty.

Probably the most challenging problem is avoiding
deadlocks. A synchronous system tends to be pushed for-
wards by its clock but an asynchronous system waits until
all expected processes meet. If a process stalls, other proc-
esses will wait for it. It is essential that there is never a ‘cir-
cle of dependency’ which can cause a deadlock. This
problem is exacerbated if the asynchronous machine is
allowed to behave non-deterministically because the
number of reachable states expands rapidly and conven-
tional logic simulation is unlikely to explore them all.

Synchronous logic is deterministic; each processing step
can be timed by counting a number of clock cycles. Asyn-
chronous logic may be non-deterministic if a function is
granted ‘on demand’ because the time is not quantised.
Whilst this need not feature greatly in an asynchronous
design it may be desirable in the interest of performance;
unpredicted behaviour may then emerge.

For example, like most processors Amulet1 accessed the
memory from both the instruction fetch and data processes
(fig. 2). As these are at different stages in an asynchronous
pipeline they compete for the memory’s attention. Because
not every instruction needs a data access there was no cen-
tralised control: requests were made as necessary via an
asynchronous arbiter and serviced as soon as possible.

A deadlock may occur as follows. Slow instruction exe-
cution has filled the (elastic) prefetch buffer as a data load
reaches is execution point. If a new instruction fetch wins
the arbitration for the memory it stalls the load. The fetch
returns data waits until space is freed in the subsequent
pipeline, which is stalled until the load can complete.

4. Example microarchitectural solutions

4.1. Deadlock avoidance

To prevent the deadlock described in the previous sec-
tion it is necessary to delay the last instruction fetch from
beginning. This was done using another pipeline in parallel
with the memory but one stage shorter, which ‘backs up’
first and stalls the fetch stage. This pipeline was already
present because – in the ARM architecture – the PC is avail-
able to the execution unit but is resident in the prefetch unit.
Simply reading the PC when desired, as in contemporary
synchronous ARMs – was not feasible as the units are
desynchronised.

Arbiter

Memory

Figure 2: Async. pipeline with shared resource



In Amulet3 a Harvard bus structure was employed for
the processor which means this problem is exported to the
memory system. A similar mechanism is used to delay
incoming accesses until they can complete.

4.2. Distant ‘synchronisation’

Choosing one of a set of asynchronous requests risks
metastability if requests arrive (nearly) simultaneously.
Arbiters can resolve this safely but lead to non-determinis-
tic operation making system verification more complex.

Metastability is only risked when an opportunity is with-
drawn. As an analogy, consider a set of traffic signals: the
only time when there should be any indecision is if a light
changes from green to red whilst it is in view. If the light is
set red sometime before it is in view – and only changes
once – then there may be delays but there is no ambiguity
in function. Unlike a pre-planned rendezvous this operates
regardless of the volume of traffic.

This property was exploited in several ways in the Amu-
let systems. One example was in Amulet3’s register for-
warding mechanism (fig. 3) [6]. It is impossible to predict
if a register will be read in a given interval but it cannot be
read until at least the next instruction. During the dispatch
of one instruction a destination is assigned in a reorder
buffer; a subsequent instruction can then be directed to read
this location and, if necessary, will stall until it has arrived.
The result may already be present or may arrive at any later
time and this process flow is not impeded by the garnering
instruction

A similar example is found in the cache controller in
Amulet2e [7]: here a cache miss may initiate a line fill
which proceeds, asynchronously, in parallel with processor
operation (fig. 4). Rather than stalling whilst the line fills
the words are invalidated when the memory is first invoked
and then revalidated as they arrive. The processor stalls
only if a subsequent read is from the line being fetched and
the desired word is not yet present. Interestingly, having
been designed simply to work reliably, this mechanism pro-
vided full hit-under-miss capability which was uncommon

in comparable processors at that time.

4.3. Pipeline flushing

All the Amulet processors had a non-deterministic
prefetch depth. A taken branch was arbitrated into the
prefetch unit. Because operation is pipelined this meant that
there were an unknown number of instructions to discard in
the pipeline. To solve this difficulty instructions were ‘col-
oured’ with the colour changing on each branch. At the exe-
cution point a branch caused all subsequent instructions of
the branch’s (old) colour to be discarded, thus execution
continued only when the target instruction had been deliv-
ered. Two colours sufficed until Amulet3 – which delayed
aborts to reduce the memory latency penalty – where three
colours were needed because a branch could be sent before
being preempted by the failure of a preceding load.

5. Other microarchitectural techniques

Some examples have already been given; this section
summarises other features where asynchronous implemen-
tations were produced/adapted in the Amulet processors.

Reasonably deep pipelines were employed: it is difficult
to quote exact depths because this can vary dynamically. As
a subsystem interacts with handshaking it is possible that
data may enter but never leave (e.g. a CMP will not produce
a register result) or cause many output handshakes (e.g. a
LDM ‘LoaD Multiple’ instruction spawns 1-16 sub instruc-
tions). Units can be constructed hierarchically and assem-
bled without global control signals.

Amulet3 issued instructions in order but allowed them to
complete at any time. This allowed speculation on internal
operations whilst loads were pending. It is possible to avoid
contention by designating destinations for different instruc-
tion streams and reordering them subsequently. The reorder
buffer allows register state to be preserved in case the mem-
ory aborts which is a necessary facility in many computer
systems.

Other asynchronous systems were constructed outside
the microprocessor core. The most significant in Amulet
was MARBLE [8], an AMBA-like clock-free multimaster

Read

Look-up WriteWrite

Write

Read

Registers

CAM

R
en

d
ez

vo
u

s

Reorder

buffer

Figure 3: Register forwarding processes

Line fetch

wait latest fetch

Cache array

start

Fetch
cycle

Processor cycle

La
te

st
?

M
is

s?

Figure 4: Amulet2e cache dataflows



bus. This was used to interconnect the asynchronous sub-
systems in Amulet3i and also to bridge onto the synchro-
nous subsystems. It could be controlled from outside the
chip for test purposes. Ironically, one of the more difficult
problems here was providing a reliable on-chip delay for
access to the off-chip asynchronous DRAM; this is because
commodity memories, whilst self-timed internally, do not
have handshake interfaces!

6. Asynchronous advantages

Several advantages have been claimed for asynchronous
circuits by various researchers. The two which were appar-
ent from the Amulet processors were power saving and
electromagnetic compatibility (EMC).

The energy per operation of the Amulet processors were
close to equivalent to their synchronous counterparts. This
is a good comparison because equivalents running the same
code and manufactured on the same process were available.
The style of design used a similar, custom datapath and the
removal of the clock was offset by the need for asynchro-
nous control circuits. However when running embedded
code with real-time constraints the Amulets exploited the
ease by which an asynchronous processor can be halted and
restarted and, when halted, power consumption dropped to
almost zero as there was no switching activity. Whilst con-
ventional processors increasingly employ power-saving
‘sleep’ modes asynchronous systems adapt easily and auto-
matically. In addition an asynchronous system is able to
adapt its speed to its supply voltage making dynamic volt-
age scaling (DVS) [9] very simple. A rough approximation
is that switching speed is proportional to supply voltage but
energy is proportional to its square, thus the supply voltage
can be used to trade-off speed and power. An asynchronous
processor is more convenient in that altering the clock is not
a concern: performance tracks the supply automatically.

There is significant evidence that electromagnetic emis-
sions are considerably lessened in asynchronous circuits
This is to be expected as switching activity is not correlated
across the system so the AC components of the power
demand are smaller. Synchronous circuits tend to emit sig-
nificant energy at the clock frequency and its harmonics.
This is evidenced, for example, by a comparison of similar
Amulet and ARM processors (fig. 5).

7. Conclusions

This paper has sought to illustrate some general tech-
niques which can be applied to asynchronous systems, par-
ticularly microprocessors. A summary of some general
principles could include:

• Think of a software/system flow, not in terms of cycles

• Pipelining is easy but beware of dependencies

• With non-deterministic access to a shared resource,
don’t begin until certain that the operation will complete

There were and are some follow-up asynchronous
devices in Manchester and those developed by other
researchers are too numerous to list here. A decade ago, the
complexity of asynchronous development and the limited
advantages of the devices failed to make a major main-
stream impression.Tool development has since advanced
and silicon designers are facing increasing challenges in
system timing closure and in managing device manufactur-
ing variation. Asynchronous techniques offer some power-
ful advantages in overcoming some of these new problems.
Thus whilst the Amulet devices are now a historical curios-
ity it is probable that some of the lessons will emerge again
within the next decade.

8. Acknowledgements

The majority of the Amulet development work was
funded by the European Commission with various grants as
part of the Open Microprocessor Systems Initiative. The
authors wish to acknowledge this support.

9. References

[1] A.J. Martin, S. Burns, T.K. Lee, D. Borkovie, P.J. Hazewindus,
The Design of an Asynchronous Microprocessor, Advanced
Research in VLSI: Proceedings of the Decennial Caltech
Conference on VLSI, (1989) MIT Press, pp 351-373.

[2] I.E. Sutherland, Micropipelines, Communications of the
ACM, Vol. 32, Number 6, June 1989, pp 720-738.

[3] Digital Technical Journal, Volume 4, Number 4, Special
Issue 1992 Alpha AXP Architecture and Systems

[4] D.E. Muller, W.S. Bartky, A Theory of Asynchronous Circuits,
Proc. Int’l Symp. Theory of Switching, Part 1, Harvard Univ.
Press, 1959, pp. 204-243.

[5] C.L. Seitz, System Timing in Introduction to VLSI Systems,
C.A. Mead, L.A. Conway (eds.) Addison-Wesley 1980.

[6] D.A. Gilbert, J.D. Garside, A Result Forwarding Mechanism
for Asynchronous Pipelined Systems, Proc. Async’97, Eind-
hoven, April 1997, pp. 2-11.

[7] J.D. Garside, S. Temple, R. Mehra, The AMULET2e Cache
System, Proceedings: Async’96, Aizu-Wakamatsu, Japan,
March 18-21 1996.

[8] Bainbridge, W.J., Furber, S.B., Asynchronous Macrocell
Interconnect using MARBLE Proc. Async’98, San Diego,
April 1998 pp. 122-132.

[9] A. Wang, S. Naffziger (Eds.), Adaptive Techniques for
Dynamic Processor Optimization, Theory and Practice,
Springer 2008 ISBN 978-0-387-76471-9

Figure 5: Amulet2e vs ARM7 EMC

ARM9

Amulet2e


