

Real-time FPGA Connected Component Labeling

System

Elisa Calvo-Gallego
1,3

, Alejandro Cabrera Aldaya
2
, Piedad Brox

3
, Santiago Sánchez-Solano

3

1
Department of Electronics and Electromagnetism, University of Seville, Seville, Spain
2
 Instituto Superior Politécnico José Antonio Echevarría (CUJAE), La Habana, Cuba

3
Instituto de Microelectrónica de Sevilla (IMSE-CNM-CSIC), Seville, Spain

{calvo, brox, santiago}@imse-cnm.csic.es, acabrera@udio.cujae.edu.cu

Abstract— The implementation of a connected component

labeling algorithm (CCL) for real-time operation is presented in

this paper. The algorithm, which was designed and implemented

following a model-based methodology centered on

Matlab/Simulink and Xilinx-System Generator, uses horizontal

and vertical blanking periods to improve the quality of labeling

and increase the operation speed. Its performance, with a VGA
640 x 480 P @ 60 Hz video, is shown by means of its integration

on a complete video processing system over a Spartan-3A DSP

3400 development board.

I. INTRODUCTION

Nowadays, the integration of vision systems in embedded
devices, like PDAs, sensor networks or mobile phones, is
more and more usual and necessary. However, the
requirements on power consumption and size and the need of
working in real time determine its performance and force to
carry out a revision of the existent algorithms with the aim of
adapting them to the new platforms. This adaptation process is
really important for CCL algorithms since they are
fundamental elements to perform intermediate processing
tasks and play an essential role in the development of high
level image processing applications.

As a result of that relevance, from the 60’s, a great effort
has been made to develop and improve this kind of
algorithms, whose objective is the assignation of a unique
label to each set of pixels with the same properties in the
image. As a consequence, different research lines, which can
be classified according to countless criterions (e.g. regularity
in memory accesses, image representation way, etc), have
been followed. In addition, the evolution of integrated circuits
fabrication technologies has made possible the utilization of a
large number of parallelism techniques that had been
previously discarded due to its very high requirements (They
established restrictions, mainly in image resolutions, and
required external memories) [1-2].

In this paper, the implementation of a CCL algorithm
inspired by Bailey’s algorithm [3] and its integration on a real
time system are described. Bailey’s algorithm is considered a
reference point in this area. It is a two-scan algorithm that
requires low resources and uses the horizontal blanking
periods, typical in different video standards (Fig.1), to
improve the quality of labeling and clock frequency. The
proposed implementation, which has been designed, verified
and implemented following a model-based methodology,

unlike the previous ones [4], is able to performing the full
labeling process in real-time.

Moreover, the performance of the algorithm was
corroborated through its integration on a demonstrator. The
complete video processing system is built on a Spartan-3A
DSP development board that receives the input video
sequence from a camera Micron MT9V022.

The paper is organized as follows. Section II summarizes a
set of basic concepts for image processing and a brief revision
of CCL algorithms in recent literature. Section III describes
Bailey’s algorithm and the modifications that have been
proposed to achieve an optimal implementation, which
provides the image label in real-time. The whole system where
the CCL algorithm is integrated is detailed in Section IV.
Finally, conclusions are given in Section V.

II. SUMMARY OF CCL ALGORITHMS

CCL algorithms, which have been considered in this work,
are applied over binary frames composed by a background
(black pixels, ‘0’) and a foreground (white pixels, ‘1’).

They are based on connectivity analysis. Two pixels
belong to one component when both are in the background or
in the foreground and between them there is a path of pixels of
the same type. That is, when (1) is verified, being S a subset of
pixels of the image and N (Si) the neighborhood considered
for pixel si. Fig.2 shows an example of the number of found

Fig. 1 (a) Image blanking periods (b), (c) Examples of synchronization
signals in a video interface

elements according to the connectivity.

 () 1)

Although CCL algorithms could be classified according to
multiple criterions, as our system will receive the frame in a
raster scan, a classification based on the number of scans made
over the image has been established. According to it, the
following types of algorithms can be found:

• One-scan algorithms [5-6]: Inside this group we can find

mainly contour tracing algorithms, region growing

algorithms and feature extraction algorithms. The most

important drawbacks of the two first kinds of algorithms

are: irregular and random memory accesses for getting

temporal assigned labels or pixels initial values and the

difficulty to predict execution times. On the other hand, the

third group of algorithms provides a set of characteristics

but the image is not labeled.

• Multi-scan algorithms [7-8]: Memory accesses are

regular but execution times depend on the position of pixels

inside the image. Its implementation, both hardware and

software, is simpler than the implementation of algorithms

that belong to other categories.

• Two-scan algorithms [9-11]: In general, proposals of

two-scans algorithms differ from each other in the methods

and data structure used to save label equivalences and in the

way how the final resolution is performed. Regarding this

group of methods, many efforts have been made to search

for an optimal solution in neighborhood exploration in

order to minimize the number of memory accesses [12].

III. ALGORITHM AND IMPLEMENTATION DETAILS

A. Bailey’s Algorithm

The algorithm performs two passes over the image.

1) First Scan:

A new pixel from the image b(x,y) arrives each clock cycle.

Its label is calculated according to (2):

 ()

{

 ()

[()]

[() {() (()) () ()}]

 [
 () (())

 (()) (())
] (2)

 If the pixel belongs to the background, a zero label is
assigned to it.

 If the pixel belongs to the foreground and all the
pixels in its neighborhood (N(x,y)) belong to the
background, a new label is assigned (m), whose value
is increased each time that this case occurs.

 If the pixel belongs to the foreground and one or
several pixels in its neighborhood belong to the
foreground, the minimum value among the equivalent
of labels of pixels that are located on the previous row
inside the mask and the label of pixel that is located
on the left to the considered pixel is assigned to it.
When two of these values in the neighborhood are
different, it is said that an equivalence has been found.
In that case, if the first found element has higher label
than the second one, the second one is saved in the
entry of the equivalence table of the first element. On
the other hand, if the second one has a higher label
that the first one, the equivalent pair is saved in a two
rows FIFO structure to be solved during the horizontal
blanking period.

At the end of each line, the pair of equivalent labels
saved in the FIFO are extracted and processed. To
each entry, (3) is done.

 [()] [()] (3)

Once the first scan has been finished, the equivalence
table is scanned. To each entry in the table, the next
new value is saved

 () () (()) (4)

2) Second Scan:

Each temporal label assigned after the first scan (g) is
replaced with the permanent label, that is, with its final
equivalent which is stored in the equivalence table (T).

The aim of the implementation proposed by Bailey in [4]
was the extraction of some features (like the area or the
gravitational center of the connected components) in VGA @
60 Hz. For this reason, the labeled image was not provided at
the end of the execution. The implementation was performed
on a Celoxica RC100 Board (Spartan-II XC2S200 FPGA)
using a Handel-C description.

B. Proposed implementation

The aim of our implementation is to process video in real-
time providing labeled frames. To achieve this purpose the
vertical blanking periods have been used for the resolution of
equivalences between rows. Furthermore, temporal
parallelism using pipeline techniques has been exploited
between the two phases of the method. Fig. 3 shows a block
diagram of the algorithm implementation. The main blocks
are:

Fig. 2 Example of labeling according to the connectivity

 Control Blocks, which allow to generate control
signals for the algorithm from usual signals of a video
interface. Two control blocks have been generated for
(b) and (c) sets of signals shown in Fig. 1.

 Memories. Three different memory structures are
necessary: one to save temporal labels, another one to
save the equivalences between labels, and the last one
(FIFO) to save equivalent pairs that have to be solved
in the horizontal blanking period. All of them have an
enough word size to codify all labels that can exit in
the image

1
 and are implemented using BlockRam

2
.

The depth of the two first memories is the dimension
of the image (Num_rows * Num_colum) whereas the
depth of the FIFO is the number of columns of the
image.

 Multiplexors to access, in the different phases of the
method, to the shared resources (memories).

 Blocks for accessing to memory (to generate
address/data/wre signals) and for calculating temporal
labels and equivalent labels.

The main drawbacks of the proposed implementation are
the amount of necessary memory, which establishes a limit in
the resolution of the image to work with, and the labeling
errors, that could be produced as a result of a possible lack of
time to solve equivalences during the vertical blanking period.
However, after software simulations [13], it has been proved
that, in the majority of cases, vertical blanking period is
enough to solve all the equivalences and that WCIF (512x288)
resolution could be achieved without problems.

This image resolution is good for a wide range of
applications. However, if the requirements force to work with
higher resolutions, it would be possible to locate part of the
storage space out of the FPGA by using the DDR2 Memory
available on the development board. With this consideration, it
was proved [13] that, in the majority of cases, WUXGA
(1920x1200) could be processed. In the next section, this
consideration is taken into account.

The process that has been followed to design, verify and
implement the algorithm, as well as the used tools, are shown
in Fig.4. Starting from software implementation of algorithms
in Matlab, Simulink models, with blocks from the Xilinx

1

As 4-connectivity is being considered, the maximum number of labels that

can appear in the image is Num_rows*Num_colum/2 (A chessboard pixel

image).
2

A BlockRam (BRAM) is a dedicated two port memory included on the

FPGA fabric. Using this kind of memory instead of external memory, fast

transfers can be achieved.

blockset library, were created. After checking the functionality
of these models, they were compiled in order to generate an
ISE project. From ISE environment, area and time estimations
as well as others test operations were done. Finally, to verify
the real performance of the system, a co-simulation hw/sw
was carried out, closing the whole design loop.

IV. FPGA DEMOSTRATOR

A general block diagram of the system implemented on a
Spartan-3A DSP 3400 development board is shown in Fig. 5.

By means of a Micron MT9V022 camera, images (720 x
480 pixels) are captured and serialized. In that way, each clock
cycle, 9 bits, which correspond to one pixel and contain
information related to its position inside the image (frame
valid and line valid) and its chromatic value, enter in the
system with a 26,66 MHz clock frequency.

First, this image information goes through two cores
developed by Xilinx in System Generator. The first one tries
to remove stuck pixels with an adaptive median filter and
changes the image format from Bayer to RGB. The second
one is a correction gamma filter that reduces the distortion
introduced as a result of the logarithmic relation between input
and output light in sensor.

Once this preprocessing has been done, the images are
continuously saved in the first video frame buffer (VFB1)
located on the 256 MB DDR2 external memory available in
the FPGA board. In this case, VFB1 has been configured to
keep three consecutive frames from the camera. The writing
in it is done through a video_to_vfbc core and one of the four
‘Personality Interface Module (PIM)’ of the ‘Multi-port
Memory Controller (MPMC)’ that has been configured as a
‘Video Frame Buffer Controller (VFBC)’

3
. This kind of

interface implements a ‘video direct memory access (VDMA)’
core that allows a fast and correct transference of useful image
information.

When the frames start to be saved in VFB1, a reader start
to get frames from that VFB too, using the second PIM
configured in the MPMC, although its resolution is smaller
than the written one (VGA, 640x480). To synchronize the
writer and the reader, a mechanism of lock based on register
address is established. In this way, the writer tells to the reader
the next frame to be read.

The output of the first reader is the input of the CCL
algorithm. To process the incoming data, this block has
previous RGB_to_GRAY and threshold filters created using
SysGen. It introduces a small latency in the processing. Each
pixel is labeled and, after that, saved using the third PIM in the
second VFB, smaller than the previous one (because, although
the number of frames to be saved is the same, the size of this
frame is not the same (the frames were cropped before
entering in the CCL algorithm)). VFB2 also has a lock
procedure which makes that, while one frame is filled with the
temporal labels, the previous one is being read using the last

3 All ports have the same static time to access to memory since the arbitration
protocol is ‘Round & Robin’. Writers VFBC PIMS are configured for using

only command and write FIFOs whereas readers VFBC PIMS are configured

for using only command and read FIFOs

Fig. 3 Block diagram of the proposed CCL algorithm implementation

PIM configured as VFBC and go back to the CCL block to be
the address signal of the table of equivalences. When the
replacement has taken place, the pixel enters in dvi_out core to
transform the signals to the format admitted by CH7301C
standard. Finally, frames are displayed on a screen working at
27 MHz.

All the described IP modules are initialized and controlled
from MicroBlaze processor. Frames from the experimental
assembly are shown in Fig. 6.

In order to evaluate the goodness of this implementation, a
software version of Bailey’s CCL algorithm has been executed
on a MicroBlaze soft processor core at 66 MHz. On average,
the latter was only capable to process a VGA sequence at 6
fps. It was only able to reach 60 fps in some prepared cases
or/and with low resolution frames.

V. CONCLUSIONS

An efficient implementation of a CCL algorithm and its
integration in a complete image processing system are
described in this paper. The algorithm takes advantage of the
blanking periods in video standards and temporal parallelism
to allow that the whole system can process VGA (640 x 480
P) @ 60 Hz video, improving in this way the results that are
achieved with a software implementation that has the same
properties.

ACKNOWLEDGMENT

This work was partially funded by Spanish Ministerio de
Economía y Competitividad under the Project TEC2011-
24319 and Junta de Andalucía under the Project P08-TIC-
03674 (both with support from FEDER), and by the European
Community through the MOBY-DIC Project FP7-INFSO-
ICT-248858 (www.mobydic-project.eu) .

REFERENCES

[1] D. Nassini, S. Sahni, “Finding connected components and connected
ones on a mesh-connected parallel computer”, SIAM Journal on
Computing, vol. 9, n. 4, pp. 744-757, 1980

[2] S.-W Yang et al, “Parallel 3-Pixel Labeling Method and its Hardware
Architecture Design”, Proc. 5th Int. Conf. on Information Assurance
and Security, 2009

[3] D. G. Bailey, “Design for Embedded Image Processing on FPGAs”,
Chapter 11: Blob detection and Labeling, Wiley, 2011

[4] C. T. Johnston, D.G. Bailey, “FPGA Implementation of a Single Pass
Connected Components Algorithm”, Proc. 4th IEEE Inte. Symp. on
Electronic Design, Test & Applications, 2008

[5] F. Chang, C. Chen, “A component-labeling algorithm using contour
tracing technique”, Proc. Int. Conf. Document Analysis and
Recognition, pp. 741–745, 2003

[6] D. G, Bailey, C. T. Johnston, “Single Pass Connected Components
Analysis”, Proc. of Image and Vision Computing, New Zeland, 2007

[7] R. M. Haralick, “Some neighborhood operations”. M Onoe, K. Jr.
Preston, A Rosenfeld. “Real Time Parallel Computer Image Analysis”.
New York: Plenum Press, pp. 11-35, 1981.

[8] K. Suzuki, I. Horiba, N. Sugie, “Linear-time connected-component
labeling based on sequential local operations”. Computer Vision and
Image Understanding, vol. 89, pp. 1-23, 2003.

[9] L. Di Stefano, A. Bulgarelli, “A Simple and Efficient Connected
Components Labeling Algorithm”, Proc. 10th Int. Conf. on Image
Analysis and Processing, IEEE Computer Society, Washington, DC
USA.

[10] A. Rosenfeld, J. L. Plazt, “Sequential operator in digital pictures
processing”, Journal of ACM, vol. 13, n. 4, pp. 471-494,1966.

[11] L. He, Y. Chao, L. Suzuki, “A run-based two-scan labeling algorithm",
IEEE Transactions on Image Processing, vol. 17, n. 5, pp. 749–756,
2008.

[12] K.Wu, E.Otoo, K.Suzuki, "Optimizing two-pass connected-component
labeling algorithms", Pattern. Anal. Applic. 12, pp. 117-135, 2009

[13] E. Calvo-Gallego, P.Brox, S. Sanchez-Solano, “Implementación sobre
FPGA de un algoritmo de etiquetado en tiempo real”, XII Jornadas de
Computación Reconfigurable y Aplicaciones (JCRA), Elche, Spain, pp
72-77, 2012

Fig. 6 Tools and methodology followed to design, verify and implement
the algorithm

Fig. 4 Block diagram of the complete system

Fig. 5 Real complete system: (a) Camera capturing a reference

photograph, prepared image and CCL system generator model (b)

FPGA Board (c) VGA Output displayed on a LCD

