
Is Spiking Logic the Route to Memristor-Based
Computers?

(Invited Paper)

Ella Gale
Unconventional Computing Centre

Bristol Robotics Laboratory
University of the West of England

Bristol, UK BS16 1QY
Email: ella.gale@uwe.ac.uk

Ben de Lacy Costello
Unconventional Computing Centre

Faculty of Applied Sciences
University of the West of England

Bristol, UK BS16 1QY
Email: ben.delacycostello@uwe.ac.uk

Andrew Adamatzky
Unconventional Computing Centre

Computer Science and Creative Technology
University of the West of England

Bristol, UK BS16 1QY
Email: andrew.adamatkzy@uwe.ac.uk

Abstract—Memristors have been suggested as a novel route
to neuromorphic computing based on the similarity between
neurons (synapses and ion pumps) and memristors. The D.C.
action of the memristor is a current spike, which we think will
be fruitful for building memristor computers. In this paper, we
introduce 4 different logical assignations to implement sequential
logic in the memristor and introduce the physical rules, sum-
mation, ‘bounce-back’, directionality and ‘diminishing returns’,
elucidated from our investigations. We then demonstrate how
memristor sequential logic works by instantiating a NOT gate,
an AND gate and a Full Adder with a single memristor. The
Full Adder makes use of the memristor’s memory to add three
binary values together and outputs the value, the carry digit and
even the order they were input in.

I. INTRODUCTION

Memristors have been compared to both neurons [1], [2] and
synapses [3]–[5] and have widely been anticipated as a useful
route towards neuromorphic (brain-like) computing due to the
memristor’s ability to hold a memory or state [6]. Although
the memristor was predicted to exist based on symmetry
concerns [6] real world analogues were not recognised to exist
until 2008 [7], even though they were made before [8]. The
memristor is commonly considered as an A.C. element [9],
however the D.C. response of the memristor is highly inter-
esting because memristors possess spike-like dynamics [10]
which have been shown to combine in spike-train-like ways
in memristor networks [11]. Furthermore, the interactions of
these spikes, which can be considered the short-term memory
of the memristor, can be used with a novel sequential logic
approach which can be used to made simple logic circuits [12].

The advantages of using spike interactions are many-fold.
The memristor switching itself can be slow [13] but the spikes
can interact much faster, the output of which is ‘held’ in the
short-term memory of the memristor, which gives rise to, if
not faster processing, more complex operations within a given
time-frame than is usually the case in standard electronics.

When designing devices to compute with a certain logic,
we have some freedom in how the logical ‘1’s and ‘0’s are
assigned. For these devices we shall take the voltage inputs
as the logical input, with the current values as the logical
output, where it is understood that some processing (via a

memristor or other circuitry) is required in order to instantiate
the logical circuit. Within this assumption, it is possible to
compute operations of a surprisingly high complexity with
just a single memristor, and, it is suggested, that with this
approach and the conversion circuitry, a useful approach to
computation.

In this paper we will examine in more detail the physics of
the memristors and the physical rules in order to understand
the operation of sequential logic and present some examples of
the high-level computation that a single memristor can obtain.

II. METHODOLOGY

A. Sequential Logic

We shall make use of sequential logic, as implemented
in [12], which works with the spike interactions seen in the
memristor. Memristor sequential logic allows the computation
through time by storing a state and allowing it to interact with
the input; thus a one terminal device can do two-input (or
higher) logical operations, if we are willing to wait for the
output.

As shown in figure 1 the memristor’s state is stored in
its short-term memory and the current output to a voltage
change is actually a function of its zeroed/null state and the
input. Sequential logic makes use of the memristor’s short-
term memory to store the first bit, A, of an operation before
the transmission of the second bit B. The output at time, tA,
is a function of A and the memristor’s starting state (which is
∅ if the device has been properly zeroed), given by f(A, ∅).
At time tB (where tB is one measurement step after tA) the
output would be f(B,A). The response step, t1 is measured
one measurement step after tb. Thus, this voltage data is
input at tA and tB and measured at t1, t2 and so on where
ta < tb < t1 < t2.

B. Experimental

Memristors were fabricated as in [13] using the TiO2 sol-
gel as described in [14] and were measured using a Keithley
electrometer, with a set time-step of 0.1s, which gives an actual
output of 0.16s. After each logical test, the memristor was left
for 40 timesteps (∼ 40s) to lose its short-term memory, i.e.

ar
X

iv
:1

40
2.

40
36

v1
 [

cs
.E

T
]

 1
7

Fe
b

20
14

Fig. 1. Sequential Logic. The output of the memristor is a function of its
state, as shown in the box, and the input. As the state is stored for the duration
of the short-term memory logical values can be combined if they are input
sequentially.

TABLE I
FOUR DIFFERENT METHODS OF IMPLEMENTING LOGICAL ‘1’ AND ‘0’

WITH MEMRISTOR SPIKES: M REFERS TO A HIGH MAGNITUDE VOLTAGE,
m TO A LOW MAGNITUDE VOLTAGE AND ‘+’ AND ‘-’ REFER TO ITS

POLARITY.

Logical Magnitude Polarity Mixed Mixed
value Logic Logic Logic 1 Logic 2
One M + +M -M
Zero m - -m +m

reset to the null state. All presented results are experimental
data.

There are two variables we can utilise when assigning
logical values: the magnitude, as represented by M for a
high magnitude and m for a low magnitude; and the sign,
as represented by a + for positive and − for negative. The 4
different logical assignations that can be applied using these
values is shown in table I. To implement logical operations,
voltage spikes are applied for one time-step and the response
recorded at the same frequency. In between logical operations,
the devices were left for longer than the equilibration time
(τ∞ in [10] which is around 3.5s) to zero the memristor by
removing its short term memory.

III. ELUCIDATED RULES

Changing the values of M and m can allow the results
to be tuned or balanced against the effect of polarity, but
in this paper we shall just deal with qualitative examples.
From investigation of these systems, we have elucidated the
following physical rules for the system.

A. Directionality

The memristor naturally implements Implication (as first
invented by Bertrand Russell and observed in [15]). The
memristor is directional: e.g. The response at t1, for A → B
does not equal the output (t1) for B → A. The cause for this is
that the memristor responds to the difference in voltage. This
naturally allows memristor-based sequential logic to compute
implication logic as Implication, IMP or →, requires that
0 → 1 6= 1 → 0 and thus the order in which the two
values are input has a meaning. Naturally, sequential logic,

as it separates the values in time, implements this ordering.
Note that sequential logic is a scheme for how the memristor
can enact logical operations, Implication is an example of a
logical operation, and implication logic is the name for the
logical set of [IMP, FALSE] required for functionally-complete
computation.

B. ‘Summation’ via Energy Conservation

If the logical ‘1’ is taken as being a high voltage, i.e. M
instead of m, then more energy is imparted to the system
from the logical combinations like [1,1] compared to [0,0].
This approach can allow the creation of memristor based time-
limited summators of use in leaky integrate and fire neurons.

C. ‘Bounceback’

The application of a voltage spike produces a resultant
current spike in the direction of the difference between the
starting voltage and the ending voltage, e.g. the first voltage
change V0 → VA causes a positive current reponse, +iA, if
VA is positive, and negative, ,−iA, if VA is negative. If the
system is then returned to zero, there is a smaller current spike
of the opposite polarity, i.e. −i0 and +i0 respectively for the
two examples mentioned above. If several spikes are input
before returning to zero, i.e. a sequence of [V0, VA, VA, V0] the
current spike is larger than would be the case for [V0, VA, V0],
although not twice as large due to losses in the system.

D. ‘Diminishing Returns’

The effect of additional spikes of the same size and polarity,
occurring within the window of the memristor’s short term
memory decreases. A similar effect is seen with changing
polarity, in that changing polarity can cause a larger response
(than not) but this response is smaller with successive volt-
ages, i.e. the response spike to [V0,+VA,−VA,+VA,−VA] is
smaller than [V0,+VA,−VA].

IV. EXAMPLES OF LOGICAL SYSTEMS

Knowledge of these rules and effects allows us to de-
sign logical computation systems which perform a surprising
amount of computation with only a single memristor. We have
found that, in these schemes that the summation effect is
important in magnitude logic, the ‘bounceback’ effect is more
relevant in polarity logic (although both affect the outcome).
As these can be balanced and set in opposition to each other,
the richest effects came from using the mixed logics (as
presented in I: we will now present a few examples.

A. Inverter

Using polarity logic and the ‘bounce-back’ effect, it is an
easy thing to build an inverter as shown in figure 2. Because
the response spike is in the opposite direction, taking that as
the result of the operation switches from 1 to 0 (and vice
versa) and can be viewed as performing the NOT operation
on the input.

Fig. 2. NOT Gate Implementation

B. AND Gate

An example of an AND gate is shown in figure 3, this
example uses mixed logic 2 with a M of -0.5V and a m
of +0.001V. If we take the response output as ‘1’ if current
over a threshold (in this case, 0.55µA) is seen, the device
implements an AND gate (this is still the case if we choose
to limit ourselves to only the value of the t1 response spike).
Due to the summation effect, the amount of energy in the
[1,1] system is larger than the [0,1], [1,0] and [0,0] parts of
the truth-table, and this causes a larger ‘bounceback’ response
which can be measured in the positive current response.

Were we to limit ourselves to the negative current part of
the device response, the magnitude of the output picks out an
inclusive OR operation, in that the only parts of the truth table
that have a response over the threshold are those that contain
a ‘1’ (because these spikes depend on a ‘1’ input). Although
this response is trivial, it is information that can be usefully
used with the correct output circuitry.

C. Towards a Full-Adder

It is possible to compute an unconventional instantiation of
full-adder, as shown in figure 4 (admitting that we require a
voltage spike to current spike conversion). The two input and
carry bits are input as a series of spikes using mixed logic 2
with input ‘1’ represented by -0.5V and input ‘0’ represented
by +0.001V. The input sequence is [A,B,C,1,2,3,4], with the
logic input at tA − tC , the response spike recorded at t1, an
extra read voltage of -0.15V input at t2. This gate requires a
clock to operate. Figure 4 shows the response of the memristor
to this scheme, for the three inputs of a full adder, the read
spike at t2 is marked with an * to make it easier to understand,
and the data of the memristor losing its short-term memory is
not shown.

From this set-up the following things can be deduced from
knowing the maximum positive and negative current spikes
within 4 time-steps of an input (although this requirement

Fig. 3. AND Gate Implementation

need not be too stringent if we have a way of recording the
maximum current within the ranges in between zeroing the
system, which we can do with knowledge of the read pulse
clock).

The resulting information from the current is thus:
1) if a negative current is recorded in the range -17.5 to

-20nA: we have had a ‘1’ input into the system
2) if a negative current is recorded in the range -5 to -

17.5nA: we have a carry bit from the operation
3) if a negative current is recorded in the range 0 to -5nA:

we have had a zero in the system (this is redundant
information)

4) if the maximum positive current is recorded in the range
0 to +5nA: the result of the calculation is ‘0’

5) if the maximum positive current is recorded in the range
+5 to +9nA: the result of the calculation is ‘1’

6) if the maximum positive current is recorded in the range
+9 to +12.3: the result is ‘2’ (or ‘1’ for the carry bit,
‘0’ for the summation bit)

7) if the maximum positive current is recorded over
12.5nA: the result is ‘3’ (or ‘1’ for both the carry and
summation bit in binary logic).

The output in the negative is purely a result of the input
voltages to the system. The positive system includes the
‘bounceback’, and the summation effect as probed by the read
voltage which gives threasholded values of the memristor’s
state.

With switches, it would be possible to send on the logical
result as binary. Region two of the plot encodes the carry bit
for the operation, because only if there are two −M spikes
(which encode ‘1’) within 3 time-steps of each other we will
see a current response in that range. The summation bit is not
encoded in as direct a manner, the maximum of the positive
currents encodes the numerical sum, and so the summation
bit for the value 3 is in a different place to that for the value
1. If we only require knowledge of the carry and summation

Fig. 4. An attempt at a full adder using mixed logic 2. The first three
input bits are the logical inputs, the system has one timestep to respond (1̃s)
before a read spike is sent in, as marked by an *. The numbers of the ranges
correspond to the list.

bit, we can do without the read voltage and corresponding
spikes. Changing the values of M and m can tune the effect
and might allow us to change the relative values of the output
spikes.

V. CONCLUSIONS

In this short paper we have summarised the physical aspects
and causes of the spiking interactions observed in a large
number of experimental tests and demonstrated some of the
interactions via the creation of NOT, AND and Full Adder
gates. These gates are not cascadable, because the output is
a different form to this input, nonetheless, the high degree of
functionality of a single memristor suggests that solving this
problem will a worthwhile endeavour.

In terms of logical operational complexity, we are not sure
if a Full Adder is the limit for a single memristor. The example
shown here takes in 3 bits of information and the output
includes: the sum, the value of the carry bit, whether the input
includes a 1, whether the input includes a 0 and, from the
precise value of the spikes at t2, and from a more precise
threasholding over the outputs, we can learn where the zero is
in the 2 input sequences ([011,101,110]) and where the ‘1’ is in
the 1 input sequences ([001,010,100]). These last two points
are interesting as it suggests that the memristor Full Adder
shown here does not destroy information by the operation,
however the gate is not-reversible (as this would require the
ability to run time backwards to reverse the physics!). Thus we
suggest that with clever design, the memristor can be made
to compute more information. As the memristor has to be
zeroed, and this takes time, we would want the memristor to
do the maximum amount of processing, which suggests that
a processor built out of memristors would have a lower clock
speed but may compute more bits of information each cycle.

The use of memristor summation approaches in the full
adder scheme is similar to how neurons work. For example
three ‘1’ inputs received one after the other causes the largest
response spike and the only positive t2 spike, either of these
outputs could be linked to a threasholded switch which could
release a current or voltage spike and thus act like a leaky
integrate and fire neuron. The diminishing returns effect could
enforce a refractory period. As neurons work by converting a
rate-coded spiking voltage to a current spike at the synapse
and then to a voltage spike, all of which can be considered
transmission of a logical ‘1’, the memristor with its action
whereby input and output are current and voltage, could be
ideally suited to neuromorphic computing.

REFERENCES

[1] L. Chua, V. Sbitnev, and H. Kim, “Hodgkin-huxley axon is made of
memristors,” International Journal of Bifurcation and Chaos, vol. 22,
p. 1230011 (48pp), 2012.

[2] ——, “Neurons are poised near the edge of chaos,” International Journal
of Bifurcation and Chaos, vol. 11, p. 1250098 (49pp), 2012.

[3] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu,
“Nanoscale memristor device as a synapse in neuromorphic systems,”
Nanoletters, vol. 10, pp. 1297–1301, 2010.

[4] G. Howard, E. Gale, L. Bull, B. de Lacy Costello, and A. Adamatzky,
“Towards evolving spiking networks with memristive synapses,” in
Artificial Life (ALIFE), 2011 IEEE Symposium on, april 2011, pp. 14
–21.

[5] C. T. Themistoklis Prodromakis and L. Chua, “Two centuries of mem-
ristors,” Nature Materials, vol. 11, pp. 478–481, 2012.

[6] L. O. Chua, “Memristor - the missing circuit element,” IEEE Trans.
Circuit Theory, vol. 18, pp. 507–519, 1971.

[7] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” Nature, vol. 453, pp. 80–83, 2008.

[8] L. Chua, “Resistance switching memories are memristors,” Applied
Physics A: Materials Science & Processing, pp. 765–782, 2011.

[9] C. L. S. Grimes and O. Martinsen, “Memristive properties of human
sweat ducts,” World Congress on Medical Physics and Biomedial
Engineering, vol. 25/7, pp. 696–698, 2009.

[10] E. Gale, B. de Lacy Costello, and A. Adamatzky, “Observation, charac-
terization and modeling of memristor current spikes,” Appl. Math. Inf.
Sci., vol. 7, pp. 1395–1403, 4,July 2013.

[11] ——, “Observations of bursting spike patterns in simple memristor
circuits,” in Submitted.

[12] ——, “Boolean logic gates from a single memristor via low-level
sequential logic,” in Submitted.

[13] E. Gale, D. Pearson, S. Kitson, A. Adamatzky, and B. de Lacy Costello,
“Aluminium electrodes effect the operation of titanium oxide sol-gel
memristors.” arXiv:1106.6293v1, 2011.

[14] E. Gale, R. Mayne, A. Adamatzky, and B. de Lacy Costello, “Drop-
coated titanium dioxide memristors,” Materials Chemistry and Physics,
vol. 143, pp. 524–529, January 2014.

[15] J. Borghetti, G. D. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and
R. S. Williams, “‘memristive’ switches enable ‘stateful’ logic operations
via material implication,” Nature, vol. 464, pp. 873–876, 2010.

	I Introduction
	II Methodology
	II-A Sequential Logic
	II-B Experimental

	III Elucidated Rules
	III-A Directionality
	III-B `Summation' via Energy Conservation
	III-C `Bounceback'
	III-D `Diminishing Returns'

	IV Examples of Logical Systems
	IV-A Inverter
	IV-B AND Gate
	IV-C Towards a Full-Adder

	V Conclusions
	References

