
Dedicated Hardware IP Module for Extracting
Singular Points from Fingerprints

M.C. Martínez-Rodríguez, R. Arjona, P. Brox, I. Baturone
Instituto de Microelectrónica de Sevilla (IMSE-CNM),

Spanish National Research Council (CSIC) and University of Seville, Seville, Spain
Email: {macarena, arjona, brox, lumi}@imse-cnm.csic.es

Abstract—In this paper a new digital dedicated hardware
IP module for extracting singular points from fingerprints is
presented (in particular convex cores). This module comprises
four main blocks that implement an image directional extraction,
a smoothing process, singular point detection and finally, a post
processing to obtain the exact location of the singular point.
A Verilog HDL description has been developed for this solution.
The description has been synthesized and implemented in FPGAs
from Xilinx.

I. INTRODUCTION

Biometric solutions are widely explored for several appli-
cations of individual’s recognition. In particular, fingerprints
solutions have been studied due to its characteristics of distinc-
tiveness. Fingerprint recognition systems also offer usability
and are widely accepted by the users [1].

Nowadays, many embedded systems require that the fin-
gerprint solution meets several constraints in terms of area,
power consumption and timing responses. For example, small
devices such as car keys, tokens or smart cards require
these constraints. Although most of the reported solutions are
implemented in software, other solutions cover from hardware-
software codesign [2] to dedicated hardware [3]. However,
dedicated hardware solutions are more adequate to provide
those advantages.

The recognition process is divided into two parts; extraction
of features and matching. Feature extraction is computationally
costly, so that several solutions implement this operation
outside the embedded device. Since matching is generally
much simpler, it is implemented in the embedded device.
This is known as Match on Card [4]. A disadvantage of this
solution is that presents security vulnerabilities caused by the
communication between the devices [5]. This is why other
solutions are explored to incorporate the extraction of the
features in the embedded system devices, which is known
as Authentication on Card. For this purpose, hardware IP
modules are very interesting.

A fingerprint is the reproduction of the epidermis and the
image captured is composed of ridges and valleys as shown in
Fig. 1a. Fingerprint features are categorized into three levels.
Level 1 identifies the whole fingerprint offering global charac-
teristics. This level employs textures or geometric information.
Level 2 identifies local characteristics. In this level minutiae’s
extraction is usually employed. Level 3 is based on a finer ex-
traction of characteristics, i.e. pores or scars. A higher feature

extraction level implies that the complexity of the algorithm is
higher. Level 1 is generally applied to classification techniques,
level 2 is used to identification/authentication methods, while
level 3 is not widely extended yet.

Directional image and singular points are among the level
1 features. Directional image is a matrix whose elements are
the local ridge orientations at each pixel. Singular points are
central features of fingerprint images. There are two types:
core points, where ridge lines have a maximum curvature,
and delta points, where ridges intersect. The singular points
(in particular convex cores) are used to classify and align
fingerprints [1], to define the singular area [6] and also to
estimate the quality [7].

The dedicated hardware IP module described herein extracts
the location of the convex core point from the fingerprint
image. It has been hand written in Verilog language. The
paper is organized as follows. In Section II, the architecture
is exposed and all its blocks are briefly described. In Section
III, the implementation results of the dedicated hardware IP
module in Xilinx FPGAs are presented and compared to
another implementation realized with Matlab-Simulink HDL
Coder. Finally, conclusions are given in Section IV.

II. ARCHITECTURE

The fingerprint image is swept from the first pixel of the
fingerprint, column by column and row by row. Therefore,
several stages are carried out serially to each pixel.

The first stage generates a directional image assigning a
symbol to each pixel related to the direction of the fingerprint

(a) (b)

Figure 1. (a) Fingerprint image and (b) 4-symbol directional image with
convex core and delta points marked



directional_image_extraction

directional_image_extraction

pixel(7:0)
ce
clk

reset

sv(2:0)

ce_next

smoothing

smoothing

sv(2:0)

ce
clk
reset

svmax(2:0)

ce_next

sp_detection

sp_detection

svmax(1:0)

ce
clk

reset

ce_next

convex

post

post

ce
clk

convex
reset

convex_col(8:0)

convex_row(8:0)

ce_next

ce
clk
reset

convex_col(8:0)

convex_row(8:0)

ce_next

pixel(7:0)

(a)

window_pixel

pixel3x3

clk

reset

ce

pixel(7:0)

ce_next
p1(7:0)
p2(7:0)
p3(7:0)
p4(7:0)
p6(7:0)
p7(7:0)
p8(7:0)
p9(7:0)

symbolassignation

symbass

p1(7:0)
p2(7:0)
p3(7:0)
p4(7:0)
p6(7:0)
p7(7:0)
p8(7:0)
p9(7:0)

ce
clk

reset

sv(2:0)

ce_next

pixel(7:0)

ce

clk

reset

sv(2:0)

ce_next

(b)

Figure 2. (a) RTL scheme of the architecture and (b) the directional image extraction block

ridges in that pixel. The second stage applies a smoothing pro-
cess to the directional image. The result is that a new symbol is
assigned to each pixel, which is the most predominant symbol
in a window of 27x27 pixels around the current pixel. After
that, singular points are detected. The smoothed directional
image is explored through windows of 9x9 pixels looking for
patterns that identify the singular point. The last step applies a
post-processing in order to detect false positives and provides
the location of the true singular point.

The architecture exposed here is applied to standard 8-
bit grayscale fingerprint images. The size of the images
considered is 440 rows and 300 columns. The architecture
comprised four main blocks. Fig. 2a illustrates the main blocks
and its interconnection.

A. Directional image extraction

The directional image is an image of symbols that represent
the direction of the ridges at each pixel. This block classifies
the ridge direction at each pixel in one out of a discrete set
of possible directions. Depending on the number of symbols
selected to represent the directional image, the range of
directions associated to each symbol varies. Table I shows
the range of directions corresponding to each symbol when 8
symbols (left side) and 4 symbols (right side) are selected.

The ridge direction at a pixel can be computed precisely by
the following formula

dir(pixel) =
π

2
+ arctan

(
Gy(pixel)

Gx(pixel)

)
(1)

being Gx and Gy the horizontal and vertical gradients respec-
tively for each pixel.

To calculate the gradients, a 3x3 window around the current
pixel is processed in parallel and a Sobel filter is applied. Two

Table I
8 AND 4 SYMBOLS ASSIGNATION IN THE DIRECTIONAL IMAGE

8 symbols 4 symbols
Bits Range Bits Range

S1 000 [0◦, 22.5◦) S1 00 [0◦, 45◦)∪
S2 001 [157.5◦, 180◦) [157.5◦, 180◦)
S3 010 [22.5◦, 45◦) S2 01 [22.5◦, 67.5◦)S4 011 [45◦, 67.5◦)
S5 100 [67.5◦, 90◦) S3 10 [67.5◦, 112.5◦)S6 101 [90◦, 112.5◦)
S7 110 [112.5◦, 135◦) S4 11 [112.5◦, 157.5◦)S8 111 [135◦, 157.5◦)

line buffers with a depth of 300 words of 8 bits each and two
8-bit delay registers for each row are necessary to obtain all
the pixels of the 3x3 window in parallel.

With the 3x3 pixels available in parallel, the gradients
are calculated with full precision (11 bits), and then the
direction and consequently the symbol is decided following a
classification that it is established through the relation between
the values of the gradients. The classification avoids computing
division and trigonometric operations and only applies multi-
plications by constants and logical operators. Since 8 symbols
are selected, the output of this block has a width of 3 bits. Fig.
2b shows the RTL scheme of the directional image extraction
block.

B. Smoothing process

Smoothing process is applied to the directional image in
order to obtain a homogenous directional image. After this
process, some isolated and noisy symbol values in the direc-
tional image, which can appear due to irregularities in the
fingerprint image, are removed.

The smoothing filter selected applies the maximum operator,
that is, the predominant symbol value in a window centered
in the current pixel is selected for the symbol value of the
pixel in the new homogenous directional image. The size of
the window depends on the sensor employed. Herein, the size
selected is a 27x27 window that provides a good performance
in optical, capacitive and thermal sweeping sensors.

Since the simultaneous access to 729 (27x27) pixels is very
costly. The 27x27 smoothing is factorized in (3x3x3)x(3x3x3)
smoothing to obtain hardware reduction, as follows:

1) smooth a 3x3 window.
2) smooth a (3x3)x(3x3) window by smoothing the previ-

ous 3x3 smoothed symbols.
3) smooth a (3x3x3)x(3x3x3) window by applying again

the operation to the (3x3)x(3x3) previous smoothing
symbols.

Fig. 3 illustrates the factorization of the 27x27 window (left)
in the 9x9 window(middle) and 3x3 window (right) for the
smoothing process.

To address the factorization, the process is comprised by
three concatenated blocks that carried out each step above.

1) 3x3 Smoothing : A 3x3 window around the current sym-
bol value provides 9 symbol values in parallel. To implement
it, two line buffers and two delay registers for each row are



Figure 3. Factorization of a 27x27 window (left) in the 9x9 window (middle)
and 3x3 window (right) for the smoothing process

necessary. Each line buffer has a depth of 300 bits and words
of 3 bits, and each register is a 3-bit delay register.

Once the 9 symbol values are provided in parallel, they are
counted and the output is the number of occurrences of each
symbol value. Since there are 8 symbols and the count of
each symbol occurrence needs 4 bits for the 9 values in a 3x3
window, the output has a total size of 32 bits.

2) 9x9 Smoothing : To compute the 9x9 smoothing, a
9x9 window around the current pixel should be considered.
However, only 9 symbols which accumulate the results of 9
3x3 smoothings are required to be available in parallel. To
obtain those values, two buffers with a size of two lines, 600
bits, and words of 32 bits (the size of the output of the previous
stage), as well as, six 32-bit delay registers are necessary.

Once the 9 3x3 smoothing outputs are provided in parallel,
they are added and the output of this block is the number of
occurrences of each symbol value in a 9x9 window. The count
of each symbol occurrence needs 7 bits. Therefore, the 9x9
smoothing output has a size of 56 bits.

3) 27x27 Smoothing : Similarly to the previous block, the
27x27 smoothing applies a 27x27 window around the pixel.
However, only 9 symbols which accumulate the results of
9 9x9 smoothings are required. To obtain those values, two
56-bit buffers with a size of three lines, and 18 56-bit delay
registers are necessary.

Once the 9 9x9 smoothing outputs are provided in parallel,
they are counted, adding all the occurrences of each symbol
in each window. The output of this block is the symbol value
with the highest number of occurrences in the 27x27 window.
Hence, the size of the output of this block is 3 bits.

Figure 4. Pattern of a convex core point

window_spd

window_spd

svmax(1:0)

ce

clk

reset

ext_lb1(1:0)
ext_lb1d2(1:0)
ext_lb2(1:0)
ext_lb2d1(1:0)
ext_lb2d2(1:0)
ext_u(1:0)
ext_ud1(1:0)
ext_ud2(1:0)
lb1(1:0)
lb1d1(1:0)
lb1d2(1:0)
lb2(1:0)
lb2d1(1:0)
lb2d2(1:0)
u(1:0)
ud1(1:0)
ud2(1:0)
ce_next

spdetection

spd

ext_lb1(1:0)
ext_lb1d2(1:0)

ext_lb2(1:0)
ext_lb2d1(1:0)
ext_lb2d2(1:0)

ext_u(1:0)
ext_ud1(1:0)
ext_ud2(1:0)

lb1(1:0)
lb1d1(1:0)
lb1d2(1:0)

lb2(1:0)
lb2d1(1:0)
lb2d2(1:0)

u(1:0)
ud1(1:0)
ud2(1:0)

ce
clk

reset

ce_next

convex

svmax(1:0)

ce

clk

reset

ce_next

convex

Figure 5. Singular point detection RTL scheme

C. Singular point detection

The singular points are located where the regions of a 4-
symbol representation of the directional image intersect, as
illustrated in Fig. 1b for the case of a convex core [7]. To
detect singular points different patterns are searched in a 9x9
window. The translation of the smoothed directional image
coming from the last stage (with 8 symbols) into a directional
image with 4 symbols is as simple as the elimination of one
of the bits, in particular, the last bit. So, the pixels of the new
smoothed directional image are represented by only 2 bits.

Besides, only 17 of the 9x9 symbols have to be checked to
identify the patterns. Fig. 4 illustrates the pattern of a convex
core point. To allow processing the 17 symbols in parallel, 4
2-bit buffers of two lines, 600 words, and several 2-bit delay
registers are necessary. After that, only some comparisons have
to be carried out to detect the patterns. The RTL scheme of
this block is shown in Fig. 5.

D. Post-processing of singular point detection

Post-processing is performed to detect false positives and
thus determine the exact location of true singular points. This
is done by evaluating several heuristic rules.

The output of this block is the row and column where the
singular point is detected. Therefore, two counters (one for
counting the rows and another for the columns) have also been
included. The RTL scheme of this block is shown in Fig. 6.

III. FPGA IMPLEMENTATION

The architecture described above can be implemented in
ASICs or FPGAs. Here, implementation results on FPGAs
from Xilinx are shown. The ISE Project Navigator tool from
Xilinx has been used. The architecture has been described in
Verilog HDL language. Each RAM memory used as a buffer
has been implemented with the CORE Generator tool.

image_counter

position

ce

clk

reset

col(8:0)

row(8:0)

sp_postprocessing

post

col(8:0)

row(8:0)

ce

clk

convex

reset

convex_col(8:0)

convex_row(8:0)

ce_next

ce

clk

convex

reset

convex_col(8:0)

convex_row(8:0)

ce_next

Figure 6. RTL scheme of the post processing block



Table II
IMPLEMENTATION RESULTS VIRTEX 5-XC5VLX50T (SLICES: 7200, SLICE REGISTERS: 28800 AND SLICE LUTS: 28800)

Simulink HDL Coder implementation Dedicated hardware IP module
Occupied Slice Slice RAM Occupied Slice Slice RAM

slices registers LUTs Kbits slices registers LUTs Kbits
Directional image 2.83 % 1.32 % 1.47 % 0 0.97 % 0.51 % 0.67 % 36

3x3 Smoothing 2.21 % 1.1 % 0.59 % 0 1.87 % 0.31 % 0.95 % 36
9x9 Smoothing 8.06 % 4.34 % 4.01 % 0 4.18 % 1.52 % 1.52 % 72

27x27 Smoothing 28.82 % 10.88 % 18.85 % 0 5.51 % 1.16 % 3.5 % 576
SP detection 4.03 % 3.30 % 0.76 % 0 1.19 % 0.54 % 0.44 % 72

post-SP 2.67 % 0.38 % 1.28 % 0 0.62 % 0.25 % 0.38 % 0

Each block has been synthesized and implemented sepa-
rately to verify them individually in a Virtex 5-xc5vlx50t-
3ff1136. The occupation results for each block are presented
in Table II. They are compared with the results of the same
implementation described in high level code and translated
to HDL language with the HDL Coder tool integrated into
Matlab&Simulink as presented in [7]. The HDL Coder tool
was selected due to its versatility in the selection of the target
device, FPGA or ASIC (System Generator tool, for example, is
adequate only for FPGAs from Xilinx). The main difference of
both designs is that the dedicated hardware IP module makes
use of dedicated RAMs available in the FPGAs. Hence the
percentage of occupied slices, slice flip-flops and slice LUTs
is reduced considerably in all the blocks. The synthesis of the
complete proposed module uses only 12.6 % of the occupied
slices, 5.48 % of slice registers, 6.83 % of slice LUTs and 792
Kbits of RAM. This makes it possible implementations of the
proposed IP module in simpler FPGAs such as the Spartan
6-sp6lx25-2csg324, as shown in Table III. In this platform,
the Simulink HDL Coder design has not slices enough to
be implemented. The maximum frequency of operation is
limited by the access time to the memory. The bottleneck is
the Smoothing 27x27 block, since the maximum frequency of
this block is the maximum frequency of the system, which is
over 118 MHz in both FPGAs. Nevertheless, such frequency
allows processing 118 megapixels per second, which meets
the constraints for real-time operation. For example, the time
to process a whole fingerprint image of 440x300 pixels is 1.12
ms at 118 MHz and 2.64 ms at 50 MHz. In the latter case, and
considering the Spartan-6 FPGA, the total power consumption
estimated by XPower is 77 mW.

IV. CONCLUSIONS

A dedicated hardware IP module for extracting singular
points of fingerprints at real-time has been developed. The
solution is based on four main steps that are translated into
four hardware blocks in the architecture. The architecture has
been described in Verilog HDL language instead of using high-
level synthesis tools and implemented in several FPGAs from
Xilinx. Since the design takes advantage of dedicated RAMs
available in FPGAs, the number of slices required is small,
compared to an implementation performed by using the high
level synthesis tool HDL Coder. The resources consumption
is low, which is very interesting to implement fingerprint

Table III
IMPLEMENTATION RESULTS SPARTAN 6-SP6LX25 (SLICES: 3758, SLICE

REGISTERS: 30064 AND SLICE LUTS: 15032)

Dedicated hardware IP module
Occupied Slice Slice RAM

slices registers LUTs Kbits
Directional image 1.92 % 0.49 % 1.08 % 36

3x3 Smoothing 2.26 % 0.33 % 1.46 % 36
9x9 Smoothing 6.23 % 2.57 % 2.5 % 72

27x27 Smoothing 8.49 % 1.52 % 5.54 % 576
SP detection 1.62 % 0.44 % 0.59 % 72

post-SP 0.53 % 0.12 % 0.44 % 0
Total 22.19 % 5.6 % 10.62 % 792

recognition algorithms in hardware devices such as FPGAs
or ASICs.

ACKNOWLEGMENT

This work was partially supported by TEC2011-24319 and
INNPACTO IPT-2012-0695-390000 projects from the Spanish
Government (with support from the PO FEDER-FSE). M.C.
Martínez-Rodríguez is supported by FPI fellowship program
for Ph.D. Students from Spanish Government. P. Brox is
supported by ‘V Plan Propio de Investigación’ from the
University of Seville.

REFERENCES

[1] D. Maltoni, D. Maio, A. Jain, and S. Prabhakar, Handbook of Fingerprint
Recognition. London, United Kingdom: Springer-Verlag, 2009.

[2] M. Fons, F. Fons, E. Cantó, and M. López, “FPGA-based personal
authentication using fingerprints,” Journal of Signal Processing Systems,
vol. 66, no. 2, pp. 153–189, 2012.

[3] C. Militello, V. Conti, J. Sorbello, and S. Vitabile, “A novel embedded
fingerprint authentication system based on singularity points,” Int. Conf.
on Complex, Intelligent and Software Intensive Systems (CISIS), pp. 72–
78, 2008.

[4] P. Grother, W. Salamon, C. Watson, M. Indovina, and P. Flanagan,
“MINEX II – Performance of Fingerprint Match-on-Card Algorithms
Phase II Report,” National Institute of Standards and Technology (NIST),
Tech. Rep. 7477, Feb. 2008.

[5] N. Ratha, J. Connell, and R. Bolle, “Enhancing security and privacy in
biometrics-based authentication systems,” IBM Systems Journal, vol. 40,
no. 3, pp. 614 – 634, 2001.

[6] R. Arjona, A. Gersnoviez, and I. Baturone, “Fuzzy models for fingerprint
description,” in Fuzzy Logic and Applications, ser. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2011, vol. 6857, pp.
228 – 235.

[7] R. Arjona and I. Baturone, “A hardware solution for real-time intelligent
fingerprint acquisition,” Journal of Real-Time Image Processing, vol. 9,
no. 1, pp. 95 – 109, 2014.


