
A Platform-Based Design Framework to Boost
Many-core Software Development

Guilherme Madalozzo1, Marcelo Mandelli1, Luciano Ost2, Fernando G. Moraes1
1 FACIN - PUCRS – Av. Ipiranga 6681, 90619-900, Porto Alegre, Brazil

2 University of Leicester, Department of Engineering, Leicester, UK
{guilherme.madalozzo, marcelo.mandelli}@acad.pucrs.br, luciano.ost@leicester.ac.uk, fernando.moraes@pucrs.br

Abstract—Embedded software engineers are dealing with
complex and large software codes, which will continue to grow.
To achieve a cost-effective design, concomitant hardware and
software development is required during early design phases.
This paper presents an open-source platform based design
framework that combines different ADLs and simulators aiming
at improving embedded software productivity, targeting future
many-core embedded systems. The proposed approach adopts
three models: RTL-VHDL level; RTL-SystemC coupled to ISSs;
PBD (Platform Based Design) using OVP. The software
(operating system and user applications) is the same for both
models. Therefore, the OVP modeling allows fast software
validation and debuggability. With the SystemC-ISS, it is
possible to accurate estimate performance and energy
consumption. The low-level model enables, besides area
estimation, the validation of low-level protocols, as the
communication protocol, network interface or flow-control
mechanisms between routers. Results evaluate execution time,
simulation time, and the number of executed instructions for
several benchmarks using the proposed approach. The OVP
model presents in average five times faster than the RTL-
SystemC model, and the RTL-SystemC up to 155 times faster
than the RTL-VHDL model.

Keywords—MPSoC; NoC; virtual platform; multi-level; PBD.

I. INTRODUCTION AND RELATED WORKS
Embedded software complexity (billions of object code

instructions) and cost (up to 50% of the whole system [1]) is
increasing dramatically during the last decades. The resulting
complexity and cost is determined by compound software stack
design, involving operating system (OS) porting and analysis, driver
development, among others. A significant fraction of emerging
embedded software projects is directly dependent on the hardware that
it is deployed. In traditional design flow, the software stack is
validated after the hardware development. In the underlying approach,
the occurrence of errors requires redesign, which increases
development costs and time-to-market, thereby making it less suitable
for emerging large-scale systems.

Dealing with the complex integration of hardware and software
stacks requires efficient modeling and simulation capabilities for
concomitant software and platform development. PBDs (Platform
Based Design) provide efficient means on which software
functionality and target platform architecture can be designed and
verified together at early stages of the design flow [2]. Virtual
Platforms (VPs) are used as PBD, decreasing development software
time since tests are made at the system level. Such simulators abstract
away low-level details to boost development cycle, enabling the
design exploration of various architectural and software alternatives
before it goes down to the RTL/gate-level implementation.

The preferred exploration level usually defines the adoption of
such simulators. While PBDs requires quasi-cycle accurate simulators
[3], software development demands high simulation speeds (e.g. 100

MIPS) [4][5]. With such conflicting requirements, it is difficult to
cover all modeling and simulation needs inherent to platform and
software design space exploration with one single simulator.

Works [2][6][7] presents platforms using PBDs method and
[8][9][10] using EDKs (Embedded Development Kits). In [2], MPSoC
platforms are described in OVP but no comparisons with other ADLs
(e.g. SystemC) were made. In [6] an OVP processor integrates the
TLM-SystemC platform achieving a speed up to 40 times when
compared to an RTL simulation. An analytic method to verify whether
the platform meets real-time application requirements is described in
[7]. Works propose EDKs to automate FPGA-based MPSoC design
and emulation. The work described in [8] presents a PBD model that
reduces the MPSoC design complexity using the LavA framework.
The work in [9] presents a platform with an SDK (Software
Development Kit) able to execute different programming models at an
abstract level of hardware. To achieve power and area evaluation, the
literature contains works that present MPSoCs in register transfer
level. In [10], Authors present an RTL distributed memory platform
for design space exploration of MPSoCs. In [5], the Authors present a
GALS NoC approach modeled in RTL and TLM-SystemC. Authors in
[11] present a deadline evaluation in an RTL model MPSoC.

To overcome aforementioned conflicting requirements, this paper
contributes by proposing a platform based design framework to
improve many-core software development processes, including OS
and application coding, verification and performance analysis from
functional to software timing behavior properties.

Our contribution distinguishes itself from all previous works
mentioned by combining fast and accurate modeling and simulation
capabilities in one single software development flow, including: cycle-
accurate model (VHDL and RTL-SystemC/ISS) and approximated-
time model (OVP, which uses C language). The proposed framework
comprises three platform descriptions, which combines different
modeling techniques and simulators, targeting fast and accurate
development of software targeting emerging multiprocessor embedded
systems.

The interoperability between the three platform models is
guaranteed through a well-defined hardware abstraction layer (HAL)
and a unified software description (i.e. OSs, applications,
communication model). In this direction, target software stack can be
modified and executed onto the OVP-based platform model until the
point where its functionality is validated. The same code can then be
executed in a still fast but clock-cycle accurate RTL SystemC-ISS
model, which allows assessing lower performance figures (e.g.
application execution time). Finally, RTL-VHDL model can receive
the target software as input to profile the power figures, e.g., the
average switching activity of adopted CPU architecture.

II. MPSOC ARCHITECTURE MODEL
This work adopts a NoC-based MPSoC model with a set of

processing elements (PE), with a single processor to avoid complex
clustered architectures. There are local memories, acting as scratchpad

memories, with no shared memory. The adoption of this memory
organization reduces the NoC traffic, using message passing as
communication model.

Besides these characteristics, the management of the MPSoC
resources is a key feature to ensure scalability. Management functions
include application mapping, monitoring, QoS actions (task migration,
communication priorities, scheduling priorities). To improve system
performance and management, the present work adopts a clustered
distributed management architecture [12].

In a clustered MPSoC, each PE may have distinct roles: Global
Manager Processor (GMP), Local Manager Processor (LMP) and
Slave Processor (SP). The LMP is responsible for managing the
cluster, executing functions as monitoring, task mapping and
verification of deadlines. The GMP manages the overall system, also
executing all functions of the LMP. The SPs execute user’s
applications. Each SP runs a simple operating system, which enables
the communication between PEs and multitask execution.

Fig. 1 presents a simplified view of a 6x6 MPSoC instance, with
four 3x3 clusters. Each PE contains a MIPS-like processor (Plasma)
connected to a private memory, a DMA module, a Network Interface
(NI), and the NoC router. There is an external memory connected to
the GMP, named Task Repository, which contains all applications’
tasks that will be executed in the system.

SP

SP

SP

SP

SP

SP

SP

SP

LMP

SP

SP

SP

SP

SP

SP

SP

GMP

SP SP SP

SP SP

LMP SPSP

SP SP SP

SP SP SP

LMP SP SP

SP

SP

Ta
sk

Re

po
si

to
ry

Router

N
et

w
or

k
In

te
rf

ac
e

DMA

RA
M

Plasma

Fig. 1 – Architecture for a clustered NoC-based MPSoC.

At design time, all clusters have the same size. At runtime,
clusters may borrow resources from neighbor clusters to map
applications’ tasks when the cluster has all resources (SP) executing
tasks. When resources become available, task migration is used to
move tasks to the source cluster, to minimize application
fragmentation and reduce the communication energy consumption.

III. MPSOC MODELING
This section presents the hardware models used to describe the

MPSoC at different abstractions levels. In the sequel, the unified
software model is presented, enabling designers to execute
applications with different hardware models.

A. Hardware Model
To evaluate different aspects of the design, three distinct models

of the MPSoC architecture presented in Section II are available: (i)
RTL-VHDL; (ii) RTL-SystemC coupled to ISSs; (iii) abstract model,
using Open Virtual Platform (OVP).

Fig. 2 presents the main pros and cons of each model. The RTL-
VHDL model provides clock-cycle accurate simulation and power and
area reports. However, software debuggability and simulation time are
the main drawbacks on using this model. The clock-cycle RTL-
SystemC model was derived from the VHDL model, enabling to
reduce the simulation time. The OVP model sacrifices accuracy to
provide to the developers higher software debuggability and faster
simulation time than the previous models. An important feature of the
OVP model is flexibility. It enables to explore different pre-defined
hardware modules, such as processors, peripherals, and memories.

Fig. 2 – Pros and cons of multi-level modeling architecture.

1) RTL-VHDL
The designer may parameterize several architectural features of

the MPSoC. The local memory implementation may target ASIC (65
nm technology) or FPGAs (Xilinx Block RAMs) devices. At the NoC
level, it is possible to select the buffer depth, the routing algorithm, the
arbitration policy, among other parameters.

The VHDL model was successfully implemented in FPGAs (3x3
instance). The FPGA prototype contains the MPSoC and three
additional modules: (i) MAC Ethernet communication interface with
the host; (ii) control unit; (iii) DDR2 memory controller. The host
sends the applications’ codes to a DDR2 memory, which acts as the
task repository. Next, the host may send commands to the MPSoC to
start the execution of users’ applications, or to request debug
information. The control unit is responsible for controlling the access
to the external memory or the MPSoC.

The 65nm ASIC implementation, using the memory generator of
the design kit, required roughly one mm2 for each PE. The MPSoC
worked correctly after the back-end simulation.

2) RTL-SystemC
This model has the same structure of the RTL-VHDL model. The

NoC, DMA, NI, and memory modules were rewritten in RTL-
SystemC. The processor is modeled using a clock-cycle accurate
instruction set simulator (ISSs) wrapped in a SystemC module. This
approach does not take advantage of SystemC language structures,
such as sc_fifo. The clock-cycle accuracy was checked in two ways.
Initially, waveform traces related to the injected traffic into the NoC
were compared. Then, the time to execute different tasks was
compared. Both verification methods demonstrate the equivalence
between the RTL-VHDL and the RTL-SystemC. There is a small
difference in the execution time (<1%), due to pipeline stalls and
arithmetic instructions. Such issue is discussed in the results section.

The VHDL model has as the main advantage the fact to be
synthesizable, allowing to captures accurate area, frequency and
power performance figures. Debug facilities include waveforms and
assertions, targeting hardware development, not software
development. The RTL-SystemC model enables to simulate larger
systems accurately, in a reasonable simulation time. Some gains in
debuggability are achieved, e.g. by inserting debug coded in the ISS.

3) OVP Implementation Model
OVP [4] is a virtual platform and modeling framework proposed

by Imperas, aiming to accelerate the development of embedded
software, specifically for SoCs and MPSoCS. The framework contains
three main components: (i) APIs that enable to model hardware
components in C language; (ii) library of free open-source CPUs and
peripheral models; (iii) OVPsim simulator. OVPsim is a dynamically
linked library, which supports the simulation of bus-based
multiprocessor platforms. OVPSim relies on dynamic binary
translation that increases simulation speed.

Fig. 3 presents the OVP platform architecture, with the
interconnection of the OVP processor with the OVP NoC. The OVP
NoC is implemented in C (OVP APIs ppm and bhm), with the same
routing algorithm and arbitration policy of the RTL NoC. Two
dedicated memory spaces are reserved for the NoC: reg_bank and
buffer_proc. The reg_bank area stores the outcoming packets. The
buffer_proc receives the incoming packets. Callback functions are
executed on every read or write access to the defined address area
corresponding to the NoC.

buffer_noc

PE

Re
g

Ba
nk

buffer_proc

OVP
Proc

Router

2

3

4

Callbacks

1

5

in
te

rru
pt

SP

SP

SP

SP

SP

SP

SP

GMP

SP

Fig. 3 – OVP Platform Architecture.

When a given router receives a packet (number 1 in Fig. 3), this
packet is stored in the buffer_proc (number 2). A callback function
interrupts the processor (number 3) after the complete reception of the
packet. An interrupt is raised, and an ISR (Interrupt Service Routine)
is called to read the packet. The router executes a callback function
when the processor writes in the register bank. This callback function
stores the packet in the buffer_noc (number 4). The router injects the
packet into the NoC once the packet is stored in this buffer (number
5).

B. Software Model
As mentioned previously, the platform provides a multi-level

abstraction. The hardware designer can take the design decisions
executing the software with the required model (e.g. RTL models
report power and area while OVP results energy consumption).
However, the software designer can validate and evaluate the software
faster, with no changes in the different hardware models.

Distinct operating systems (µkernel) run in GMP, LMPs, and SPs.
The GMP and LMPs processing elements do not execute users’ tasks.
The µkernel of the LMPs executes management tasks, as NoC
monitoring, task mapping, task migration, reclustering. The µkernel of
the GMP execute all functions of the LMP plus access to external
devices (e.g. task repository), and selection of which cluster receives a
new application. The µkernel of the SPs has two primary functions:
scheduling, responsible for multi-task execution; and inter-task
communication. The inter-task communication occurs through an
MPI-like API, with two main functions: send() and receive(). A non-
blocking send() insert messages in communication queues while a
blocking receive() read from the communication queues.

The GMP is responsible for initializing the resources of the
MPSoC. When the simulation starts, the GMP initializes the clusters,
sending to the LMPs the region they will manage. Once an LMP
knows the region it controls, it sends a message to all SPs of the
region with its address. Applications are mapped at runtime. When
there is a request to execute a new application, the GMP selects the
cluster to execute this application. Then, the GMP reads from the
application repository the description of the application and transmits
it to the LMP responsible by the cluster. When the LMP receives the
application description, it starts the task mapping process. Firstly, the
initial tasks (those tasks without dependences to other tasks) of the
application are mapped. When an initial task communicates with a
non-mapped task, a task allocation request is transmitted to the LMP,
which executes the mapping heuristic. Each SP may execute a
parameterizable number of tasks simultaneously.

The hardware abstraction layer is responsible for managing the

instructions of the µkernel that depend on the hardware modeling.
User applications are described in C, being the same regardless the
hardware modeling. According to Yoo and Jerraya [14], HAL is the
software that is directly dependent on the underlying hardware. HAL
APIs give, to the operating system and software application, an
abstraction of the underlying hardware architecture. Thus, the
adoption of an HAL simplifies OS porting to new hardware
abstractions.

IV. RESULTS
This Section evaluates and compares the platform models. The

comparison occurs in two stages. First, the low-level clock-cycle
accurate platforms, RTL-VHDL and RTL-SystemC, are compared.
Then, the PBDs models, RTL-SystemC and OVP are compared. As
mentioned, RTL-SystemC meets low-level (e.g. quasi-cycle accurate
model) and high-level (e.g. debuggability and fast simulation
compared to RTL-VHDL model) modeling characteristics.

Applications are modeled as task graphs, App=<T,C>. The set of
the application tasks, T={t1, t2, tn}, corresponds to the graph vertices.
The set C={(ti, tj, wij)} | (ti, tj) Є T and wij Є N*} represents the
communication between tasks, corresponding to the graph edges. Five
applications are used as benchmarks: MPEG, with 5 tasks; Dijkstra,
with 6 tasks; DTW, with 10 tasks; Fixed-Based, with 15 tasks; VOPD
(synthetic), with 12 tasks.

An automated process generates a simulation scenario. A
simulation scenario contains the hardware description, as well as the
compiled software.

A. Low-Level Models Evaluation
This Section presents the first comparison, simulation time and

simulated instructions of the low-level models, RTL-VHDL and RTL-
SystemC. The platform modeled is a 4x4 NoC-based MPSoC, with a
manager processor (GMP), and 15 processors (SPs), which execute a
multitask operating system. Two applications are evaluated in this
experiment: MPEG and VOPD, with 5 and 12 tasks respectively. The
first scenario (SC1) executes 2 MPEG and 1 VOPD instances,
totalizing 22 tasks. The second (SC2) and third (SC3) scenarios
contain 44 and 88 tasks, respectively.

Table I evaluates the simulation time (8-core Xeon processor, 32
GB RAM) for the three scenarios. A speedup of two orders of
magnitude is observed using the RTL-SystemC simulation. Table II
evaluates the execution time required to execute all applications of
each scenario, and Table III presents the total number of instructions
executed by all processors in the platform. Such results demonstrate
that the RTL-SystemC and RTL-VHDL models have the same
behavior. There is no HAL for these two models. The differences
observed in the Tables are due to simplifications made in the ISS, not
reflecting the real operation of some instructions (e.g. multiplication
and division instructions).

TABLE I - SIMULATION TIME (IN SECONDS) FOR RTL MODELS

Scenarios VHDL SystemC VHDL/SystemC
SC1 2,425 19 127
SC2 4,407 37 119
SC3 7,932 51 155

TABLE II - EXECUTION TIME (IN CLOCK-CYCLES) FOR LOW-LEVEL MODELS

Scenarios VHDL SystemC VHDL/SystemC
SC1 265,015 265,228 0.998
SC2 526,660 528,524 0.996
SC3 1,050247 1,055,543 0.995

TABLE III - NUMBER OF EXECUTED INSTRUCTIONS FOR LOW-LEVEL MODELS

Scenarios VHDL SystemC VHDL/SystemC
SC1 422,757 423,120 0.999
SC2 834,335 836,335 0.997
SC3 1,662,311 1,664,941 0.998

B. High-Level Models Evaluation
The previous Section demonstrates the accuracy of RTL-SystemC

model in terms of executed instructions and execution time, using the
RTL-VHDL as reference. In this Section, RTL-SystemC is the
reference model to evaluate the behavior of the OVP model, for large
MPSoCs. Considering that RTL-VHDL showed accurate results
compared to RTL-SystemC, this Section will not apply comparative
evaluations efforts with RTL-VHDL model. There are five scenarios
evaluated the RTL-SystemC and OVP models with different MPSoC
size (4x4, 6x6, 8x8, 10x10 and 12x12). Four benchmarks are
evaluated in this experiment: MPEG, DTW, Dijkstra and Fixed Based.

Fig. 4(a) presents the execution time, in clock cycles, for all
scenarios. For MPSoCs up to 64 PEs, the difference between RTL-
SystemC and OVP is approximately 10%. For larger systems (up to
144 PEs), this difference reaches 25%. At the end of the simulation,
both RTL-SystemC and OVP report the number of executed
instructions per PE.

Fig. 4 (b) presents the total number of simulated instructions for
all scenarios. The difference for the larger MPSoC is 17%. Even if the
same workload is applied for both simulations, the number of
instructions varies due to differences in the mapping, number of tasks
per processor, and in the traffic in the NoC.

Fig. 4 (c) presents the simulation time for all evaluated scenarios.
Simulation time is the real time required to finish the simulation. Note
that the number of tasks for each scenario is approximately equal to
the number of PEs, corresponding to a light workload. Even with this
light workload, the OVP simulation has a speedup of five times
compared to the SystemC simulation. The execution time presents an
error of 10 to 20% depending on the system size, which is an
acceptable error for high-level models.

V. CONCLUSIONS AND FUTURE WORKS
This paper proposed a PBD method to software development flow

in NoC-based MPSoCs modeling. With the complex task of
integrating hardware and software using models in low-level (e.g.
RTL-VHDL), we present a virtual platform modeled in OVP. This
abstraction level enables the hardware component reuse, fast
simulation, and software validation at early design stages, generating
estimations related to the performance (e.g. execution time). The
RTL-SystemC is effectively clock-cycle accurate, with a speedup of
two orders of magnitude compared to RTL-VHDL model. Moreover,
the PBD method proved to be an instruction accurate model.

Future works include: (i) estimate power at abstract model (OVP),

considering static and dynamic consumption, evaluating the error
between RTL-VHDL and OVP; (ii) evaluate other ADLs to modeling
platforms, as ArchC using the SystemC simulator; (iii) execute tests
with known benchmarks.

ACKNOWLEDGMENTS
The Author Fernando Moraes is supported by CNPq - projects

472126/2013-0 and 302625/2012-7, and FAPERGS - project 2242-
2551/14-8. The authors would like to thank Imperas Software Ltd. and
Open Virtual Platforms for their support and access to their models
and simulator.

REFERENCES
[1] International Business Strategies, Inc. (IBS), 2013.
[2] Rekik, W; Ben Said, M; Ben Amor, N. “Virtual Prototyping of

Multiprocessor Architectures Using the Open Virtual Platform”. In:
ICCAT, 2013, 6p.

[3] Binkert N.; at al. “The gem5 simulator”. ACM SIGARCH
Computer Architecture News, v.39 (2), 2011, 7p.

[4] OVP 2014, Available at:
www.ovpworld.org/technology_ovpsim.php

[5] Lemaire, R.; Thuries, S.; Heiztmann, F. “A flexible modeling
environment for a NoC-based multicore architecture”. In: High
Level Design Validation and Test Workshop, 2012, pp. 140-147.

[6] Zhang, D.; Zeng, X.; Wang, Z.; Wang, W.; Chen, X. "MCVP-NoC:
Many-Core Virtual Platform with Networks-on-Chip support". In:
ASICON, 2013, pp. 28-31.

[7] Indrusiak,L. “End-to-end Schedulability Tests for Multiprocessor
Embedded Systems based on Networks-on-Chip with Priority-
Preemptive Arbitration”. Journal of Systems Architecture, v.60(7),
2014, pp.553-561.

[8] Meier, M.; Engel, M.; Steinkamp, M.; Spinczyk, O. “LavA: An
Open Platform for Rapid Prototyping of MPSoC”. In: FPL, 2010,
pp.452-457.

[9] Benini, L.; Flamand, E.; Fuin, D.; Melpignano, D. "P2012: Building
an Ecosystem for a Scalable, Modular and High-Efficiency
Embedded Computing Accelerator". In: DATE, 2012, pp.983-987.

[10] Busseuil, R.; Barthe, L.; Almeida, G.; Ost, L.; Bruguier, F.;
Sassatelli, G.; Benoit, P.; Robert, M.; Torres, L. “Open-Scale: A
Scalable, Open-Source NoC-based MPSoC for Design Space
Exploration”. In: ReConFig, 2011, pp.357-362.

[11] Paulin, P.; Pilkington, C.; Langevin, M.; Bensoudane, E.; Gagné,
V.; Nicolescu, G. “Parallel Pragramming Models for a
Multiprocessor SoC Platform Applied to Networking and
Multimedia”. In VLSI, 2006, pp.667-680.

[12] Castilhos, G.; Mandelli, M.; Madalozzo, G.; Moraes, F.G.
“Distributed Resource Management in NoC-Based MPSoCs with
Dynamic Cluster Sizes”. In: ISVLSI, 2013, pp. 153-158.

[13] Hu, W; Tang, X; Bin Xie; Chen, T; Wang, D. “An Efficient Power-
Aware Optimization for Task Scheduling on NoC-based Many-core
System”. In: CIT, 2010, pp. 171–178.

[14] Yoo, S; Jerraya, A. "Introduction to hardware abstraction layers for
SoC". In: DATE, 2003, pp.336-337.

(a) (b) (c)
Fig. 4 - Comparison between the SystemC and OVP models. (a) execution time in clock cycle; (b) number of instructions simulated; (c) simulation time in seconds.

