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Abstract—Embedded software engineers are dealing with 
complex and large software codes, which will continue to grow. 
To achieve a cost-effective design, concomitant hardware and 
software development is required during early design phases. 
This paper presents an open-source platform based design 
framework that combines different ADLs and simulators aiming 
at improving embedded software productivity, targeting future 
many-core embedded systems. The proposed approach adopts 
three models: RTL-VHDL level; RTL-SystemC coupled to ISSs; 
PBD (Platform Based Design) using OVP. The software 
(operating system and user applications) is the same for both 
models. Therefore, the OVP modeling allows fast software 
validation and debuggability. With the SystemC-ISS, it is 
possible to accurate estimate performance and energy 
consumption. The low-level model enables, besides area 
estimation, the validation of low-level protocols, as the 
communication protocol, network interface or flow-control 
mechanisms between routers. Results evaluate execution time, 
simulation time, and the number of executed instructions for 
several benchmarks using the proposed approach. The OVP 
model presents in average five times faster than the RTL-
SystemC model, and the RTL-SystemC up to 155 times faster 
than the RTL-VHDL model. 
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I. INTRODUCTION AND RELATED WORKS 
Embedded software complexity (billions of object code 

instructions) and cost (up to 50% of the whole system [1]) is 
increasing dramatically during the last decades. The resulting 
complexity and cost is determined by compound software stack 
design, involving operating system (OS) porting and analysis, driver 
development, among others. A significant fraction of emerging 
embedded software projects is directly dependent on the hardware that 
it is deployed. In traditional design flow, the software stack is 
validated after the hardware development. In the underlying approach, 
the occurrence of errors requires redesign, which increases 
development costs and time-to-market, thereby making it less suitable 
for emerging large-scale systems.  

Dealing with the complex integration of hardware and software 
stacks requires efficient modeling and simulation capabilities for 
concomitant software and platform development. PBDs (Platform 
Based Design) provide efficient means on which software 
functionality and target platform architecture can be designed and 
verified together at early stages of the design flow [2]. Virtual 
Platforms (VPs) are used as PBD, decreasing development software 
time since tests are made at the system level. Such simulators abstract 
away low-level details to boost development cycle, enabling the 
design exploration of various architectural and software alternatives 
before it goes down to the RTL/gate-level implementation.  

The preferred exploration level usually defines the adoption of 
such simulators. While PBDs requires quasi-cycle accurate simulators 
[3], software development demands high simulation speeds (e.g. 100 

MIPS) [4][5]. With such conflicting requirements, it is difficult to 
cover all modeling and simulation needs inherent to platform and 
software design space exploration with one single simulator.  

Works [2][6][7] presents platforms using PBDs method and 
[8][9][10] using EDKs (Embedded Development Kits). In [2], MPSoC 
platforms are described in OVP but no comparisons with other ADLs 
(e.g. SystemC) were made. In [6] an OVP processor integrates the 
TLM-SystemC platform achieving a speed up to 40 times when 
compared to an RTL simulation. An analytic method to verify whether 
the platform meets real-time application requirements is described in 
[7]. Works propose EDKs to automate FPGA-based MPSoC design 
and emulation. The work described in [8] presents a PBD model that 
reduces the MPSoC design complexity using the LavA framework. 
The work in [9] presents a platform with an SDK (Software 
Development Kit) able to execute different programming models at an 
abstract level of hardware. To achieve power and area evaluation, the 
literature contains works that present MPSoCs in register transfer 
level. In [10], Authors present an RTL distributed memory platform 
for design space exploration of MPSoCs. In [5], the Authors present a 
GALS NoC approach modeled in RTL and TLM-SystemC. Authors in 
[11] present a deadline evaluation in an RTL model MPSoC.  

To overcome aforementioned conflicting requirements, this paper 
contributes by proposing a platform based design framework to 
improve many-core software development processes, including OS 
and application coding, verification and performance analysis from 
functional to software timing behavior properties. 

Our contribution distinguishes itself from all previous works 
mentioned by combining fast and accurate modeling and simulation 
capabilities in one single software development flow, including: cycle-
accurate model (VHDL and RTL-SystemC/ISS) and approximated-
time model (OVP, which uses C language). The proposed framework 
comprises three platform descriptions, which combines different 
modeling techniques and simulators, targeting fast and accurate 
development of software targeting emerging multiprocessor embedded 
systems.  

The interoperability between the three platform models is 
guaranteed through a well-defined hardware abstraction layer (HAL) 
and a unified software description (i.e. OSs, applications, 
communication model). In this direction, target software stack can be 
modified and executed onto the OVP-based platform model until the 
point where its functionality is validated. The same code can then be 
executed in a still fast but clock-cycle accurate RTL SystemC-ISS 
model, which allows assessing lower performance figures (e.g. 
application execution time). Finally, RTL-VHDL model can receive 
the target software as input to profile the power figures, e.g., the 
average switching activity of adopted CPU architecture. 

II. MPSOC ARCHITECTURE MODEL  
This work adopts a NoC-based MPSoC model with a set of 

processing elements (PE), with a single processor to avoid complex 
clustered architectures. There are local memories, acting as scratchpad 



memories, with no shared memory. The adoption of this memory 
organization reduces the NoC traffic, using message passing as 
communication model. 

Besides these characteristics, the management of the MPSoC 
resources is a key feature to ensure scalability. Management functions 
include application mapping, monitoring, QoS actions (task migration, 
communication priorities, scheduling priorities). To improve system 
performance and management, the present work adopts a clustered 
distributed management architecture [12]. 

In a clustered MPSoC, each PE may have distinct roles: Global 
Manager Processor (GMP), Local Manager Processor (LMP) and 
Slave Processor (SP). The LMP is responsible for managing the 
cluster, executing functions as monitoring, task mapping and 
verification of deadlines. The GMP manages the overall system, also 
executing all functions of the LMP. The SPs execute user’s 
applications. Each SP runs a simple operating system, which enables 
the communication between PEs and multitask execution.  

Fig. 1 presents a simplified view of a 6x6 MPSoC instance, with 
four 3x3 clusters. Each PE contains a MIPS-like processor (Plasma) 
connected to a private memory, a DMA module, a Network Interface 
(NI), and the NoC router. There is an external memory connected to 
the GMP, named Task Repository, which contains all applications’ 
tasks that will be executed in the system. 
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Fig. 1 – Architecture for a clustered NoC-based MPSoC. 

At design time, all clusters have the same size. At runtime, 
clusters may borrow resources from neighbor clusters to map 
applications’ tasks when the cluster has all resources (SP) executing 
tasks. When resources become available, task migration is used to 
move tasks to the source cluster, to minimize application 
fragmentation and reduce the communication energy consumption. 

III. MPSOC MODELING  
This section presents the hardware models used to describe the 

MPSoC at different abstractions levels. In the sequel, the unified 
software model is presented, enabling designers to execute 
applications with different hardware models. 

A. Hardware Model 
To evaluate different aspects of the design, three distinct models 

of the MPSoC architecture presented in Section II are available: (i) 
RTL-VHDL; (ii) RTL-SystemC coupled to ISSs; (iii) abstract model, 
using Open Virtual Platform (OVP). 

Fig. 2 presents the main pros and cons of each model. The RTL-
VHDL model provides clock-cycle accurate simulation and power and 
area reports. However, software debuggability and simulation time are 
the main drawbacks on using this model. The clock-cycle RTL-
SystemC model was derived from the VHDL model, enabling to 
reduce the simulation time. The OVP model sacrifices accuracy to 
provide to the developers higher software debuggability and faster 
simulation time than the previous models. An important feature of the 
OVP model is flexibility. It enables to explore different pre-defined 
hardware modules, such as processors, peripherals, and memories. 

 
Fig. 2 – Pros and cons of multi-level modeling architecture. 

1) RTL-VHDL  
The designer may parameterize several architectural features of 

the MPSoC. The local memory implementation may target ASIC (65 
nm technology) or FPGAs (Xilinx Block RAMs) devices. At the NoC 
level, it is possible to select the buffer depth, the routing algorithm, the 
arbitration policy, among other parameters.  

The VHDL model was successfully implemented in FPGAs (3x3 
instance). The FPGA prototype contains the MPSoC and three 
additional modules: (i) MAC Ethernet communication interface with 
the host; (ii) control unit; (iii) DDR2 memory controller. The host 
sends the applications’ codes to a DDR2 memory, which acts as the 
task repository. Next, the host may send commands to the MPSoC to 
start the execution of users’ applications, or to request debug 
information. The control unit is responsible for controlling the access 
to the external memory or the MPSoC. 

The 65nm ASIC implementation, using the memory generator of 
the design kit, required roughly one mm2 for each PE. The MPSoC 
worked correctly after the back-end simulation. 

2) RTL-SystemC  
This model has the same structure of the RTL-VHDL model. The 

NoC, DMA, NI, and memory modules were rewritten in RTL-
SystemC. The processor is modeled using a clock-cycle accurate 
instruction set simulator (ISSs) wrapped in a SystemC module. This 
approach does not take advantage of SystemC language structures, 
such as sc_fifo. The clock-cycle accuracy was checked in two ways. 
Initially, waveform traces related to the injected traffic into the NoC 
were compared. Then, the time to execute different tasks was 
compared. Both verification methods demonstrate the equivalence 
between the RTL-VHDL and the RTL-SystemC. There is a small 
difference in the execution time (<1%), due to pipeline stalls and 
arithmetic instructions. Such issue is discussed in the results section. 

The VHDL model has as the main advantage the fact to be 
synthesizable, allowing to captures accurate area, frequency and 
power performance figures. Debug facilities include waveforms and 
assertions, targeting hardware development, not software 
development. The RTL-SystemC model enables to simulate larger 
systems accurately, in a reasonable simulation time. Some gains in 
debuggability are achieved, e.g. by inserting debug coded in the ISS.  

3) OVP Implementation Model 
OVP [4] is a virtual platform and modeling framework proposed 

by Imperas, aiming to accelerate the development of embedded 
software, specifically for SoCs and MPSoCS. The framework contains 
three main components: (i) APIs that enable to model hardware 
components in C language; (ii) library of free open-source CPUs and 
peripheral models; (iii) OVPsim simulator. OVPsim is a dynamically 
linked library, which supports the simulation of bus-based 
multiprocessor platforms. OVPSim relies on dynamic binary 
translation that increases simulation speed. 



Fig. 3 presents the OVP platform architecture, with the 
interconnection of the OVP processor with the OVP NoC. The OVP 
NoC is implemented in C (OVP APIs ppm and bhm), with the same 
routing algorithm and arbitration policy of the RTL NoC. Two 
dedicated memory spaces are reserved for the NoC: reg_bank and 
buffer_proc. The reg_bank area stores the outcoming packets. The 
buffer_proc receives the incoming packets. Callback functions are 
executed on every read or write access to the defined address area 
corresponding to the NoC. 
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Fig. 3 – OVP Platform Architecture. 

When a given router receives a packet (number 1 in Fig. 3), this 
packet is stored in the buffer_proc (number 2). A callback function 
interrupts the processor (number 3) after the complete reception of the 
packet. An interrupt is raised, and an ISR (Interrupt Service Routine) 
is called to read the packet. The router executes a callback function 
when the processor writes in the register bank. This callback function 
stores the packet in the buffer_noc (number 4). The router injects the 
packet into the NoC once the packet is stored in this buffer (number 
5). 

B. Software Model 
As mentioned previously, the platform provides a multi-level 

abstraction. The hardware designer can take the design decisions 
executing the software with the required model (e.g. RTL models 
report power and area while OVP results energy consumption). 
However, the software designer can validate and evaluate the software 
faster, with no changes in the different hardware models. 

Distinct operating systems (µkernel) run in GMP, LMPs, and SPs. 
The GMP and LMPs processing elements do not execute users’ tasks. 
The µkernel of the LMPs executes management tasks, as NoC 
monitoring, task mapping, task migration, reclustering. The µkernel of 
the GMP execute all functions of the LMP plus access to external 
devices (e.g. task repository), and selection of which cluster receives a 
new application. The µkernel of the SPs has two primary functions: 
scheduling, responsible for multi-task execution; and inter-task 
communication. The inter-task communication occurs through an 
MPI-like API, with two main functions: send() and receive(). A non-
blocking send() insert messages in communication queues while a 
blocking receive() read from the communication queues. 

The GMP is responsible for initializing the resources of the 
MPSoC. When the simulation starts, the GMP initializes the clusters, 
sending to the LMPs the region they will manage. Once an LMP 
knows the region it controls, it sends a message to all SPs of the 
region with its address. Applications are mapped at runtime. When 
there is a request to execute a new application, the GMP selects the 
cluster to execute this application. Then, the GMP reads from the 
application repository the description of the application and transmits 
it to the LMP responsible by the cluster. When the LMP receives the 
application description, it starts the task mapping process. Firstly, the 
initial tasks (those tasks without dependences to other tasks) of the 
application are mapped. When an initial task communicates with a 
non-mapped task, a task allocation request is transmitted to the LMP, 
which executes the mapping heuristic. Each SP may execute a 
parameterizable number of tasks simultaneously.  

The hardware abstraction layer is responsible for managing the 

instructions of the µkernel that depend on the hardware modeling. 
User applications are described in C, being the same regardless the 
hardware modeling. According to Yoo and Jerraya [14], HAL is the 
software that is directly dependent on the underlying hardware. HAL 
APIs give, to the operating system and software application, an 
abstraction of the underlying hardware architecture. Thus, the 
adoption of an HAL simplifies OS porting to new hardware 
abstractions.  

IV. RESULTS 
This Section evaluates and compares the platform models. The 

comparison occurs in two stages. First, the low-level clock-cycle 
accurate platforms, RTL-VHDL and RTL-SystemC, are compared. 
Then, the PBDs models, RTL-SystemC and OVP are compared. As 
mentioned, RTL-SystemC meets low-level (e.g. quasi-cycle accurate 
model) and high-level (e.g. debuggability and fast simulation 
compared to RTL-VHDL model) modeling characteristics. 

Applications are modeled as task graphs, App=<T,C>. The set of 
the application tasks, T={t1, t2, tn}, corresponds to the graph vertices. 
The set C={(ti, tj, wij)} | (ti, tj) Є T and wij Є N*} represents the 
communication between tasks, corresponding to the graph edges. Five 
applications are used as benchmarks: MPEG, with 5 tasks; Dijkstra, 
with 6 tasks; DTW, with 10 tasks; Fixed-Based, with 15 tasks; VOPD 
(synthetic), with 12 tasks. 

An automated process generates a simulation scenario. A 
simulation scenario contains the hardware description, as well as the 
compiled software. 

A. Low-Level Models Evaluation 
This Section presents the first comparison, simulation time and 

simulated instructions of the low-level models, RTL-VHDL and RTL-
SystemC. The platform modeled is a 4x4 NoC-based MPSoC, with a 
manager processor (GMP), and 15 processors (SPs), which execute a 
multitask operating system. Two applications are evaluated in this 
experiment: MPEG and VOPD, with 5 and 12 tasks respectively. The 
first scenario (SC1) executes 2 MPEG and 1 VOPD instances, 
totalizing 22 tasks. The second (SC2) and third (SC3) scenarios 
contain 44 and 88 tasks, respectively.  

Table I evaluates the simulation time (8-core Xeon processor, 32 
GB RAM) for the three scenarios. A speedup of two orders of 
magnitude is observed using the RTL-SystemC simulation. Table II 
evaluates the execution time required to execute all applications of 
each scenario, and Table III presents the total number of instructions 
executed by all processors in the platform. Such results demonstrate 
that the RTL-SystemC and RTL-VHDL models have the same 
behavior. There is no HAL for these two models. The differences 
observed in the Tables are due to simplifications made in the ISS, not 
reflecting the real operation of some instructions (e.g. multiplication 
and division instructions). 

 
TABLE I - SIMULATION TIME (IN SECONDS) FOR RTL MODELS 

Scenarios VHDL SystemC VHDL/SystemC 
SC1 2,425 19 127 
SC2 4,407 37 119 
SC3 7,932 51 155 

 
TABLE II  - EXECUTION TIME (IN CLOCK-CYCLES) FOR LOW-LEVEL MODELS 

Scenarios VHDL SystemC VHDL/SystemC 
SC1 265,015 265,228 0.998 
SC2 526,660 528,524 0.996 
SC3 1,050247 1,055,543 0.995 



 
TABLE III  - NUMBER OF EXECUTED INSTRUCTIONS FOR LOW-LEVEL MODELS 

Scenarios VHDL SystemC VHDL/SystemC 
SC1 422,757 423,120 0.999 
SC2 834,335 836,335 0.997 
SC3 1,662,311 1,664,941 0.998 

B. High-Level Models Evaluation 
The previous Section demonstrates the accuracy of RTL-SystemC 

model in terms of executed instructions and execution time, using the 
RTL-VHDL as reference. In this Section, RTL-SystemC is the 
reference model to evaluate the behavior of the OVP model, for large 
MPSoCs. Considering that RTL-VHDL showed accurate results 
compared to RTL-SystemC, this Section will not apply comparative 
evaluations efforts with RTL-VHDL model. There are five scenarios 
evaluated the RTL-SystemC and OVP models with different MPSoC 
size (4x4, 6x6, 8x8, 10x10 and 12x12). Four benchmarks are 
evaluated in this experiment: MPEG, DTW, Dijkstra and Fixed Based.  

Fig. 4(a) presents the execution time, in clock cycles, for all 
scenarios. For MPSoCs up to 64 PEs, the difference between RTL-
SystemC and OVP is approximately 10%. For larger systems (up to 
144 PEs), this difference reaches 25%. At the end of the simulation, 
both RTL-SystemC and OVP report the number of executed 
instructions per PE.  

Fig. 4 (b) presents the total number of simulated instructions for 
all scenarios. The difference for the larger MPSoC is 17%. Even if the 
same workload is applied for both simulations, the number of 
instructions varies due to differences in the mapping, number of tasks 
per processor, and in the traffic in the NoC.  

Fig. 4 (c) presents the simulation time for all evaluated scenarios. 
Simulation time is the real time required to finish the simulation. Note 
that the number of tasks for each scenario is approximately equal to 
the number of PEs, corresponding to a light workload. Even with this 
light workload, the OVP simulation has a speedup of five times 
compared to the SystemC simulation. The execution time presents an 
error of 10 to 20% depending on the system size, which is an 
acceptable error for high-level models. 

V. CONCLUSIONS AND FUTURE WORKS 
This paper proposed a PBD method to software development flow 

in NoC-based MPSoCs modeling. With the complex task of 
integrating hardware and software using models in low-level (e.g. 
RTL-VHDL), we present a virtual platform modeled in OVP. This 
abstraction level enables the hardware component reuse, fast 
simulation, and software validation at early design stages, generating 
estimations related to the performance (e.g. execution time). The 
RTL-SystemC is effectively clock-cycle accurate, with a speedup of 
two orders of magnitude compared to RTL-VHDL model. Moreover, 
the PBD method proved to be an instruction accurate model.  

Future works include: (i) estimate power at abstract model (OVP), 

considering static and dynamic consumption, evaluating the error 
between RTL-VHDL and OVP; (ii) evaluate other ADLs to modeling 
platforms, as ArchC using the SystemC simulator; (iii) execute tests 
with known benchmarks. 
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(a)  (b)     (c)  
Fig. 4 - Comparison between the SystemC and OVP models. (a) execution time in clock cycle; (b) number of instructions simulated; (c) simulation time in seconds. 


