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Abstract—This paper presents the new approach in imple-
mentation of analog-to-digital converter (ADC) that is based
on Hopfield neural-network architecture. Hopfield neural ADC
(NADC) is a type of recurrent neural network that is effective in
solving simple optimization problems, such as analog-to-digital
conversion. The main idea behind the proposed design is to
use multiple 2-bit Hopfield NADCs operating as quantizers in
parallel, where analog input signal to each successive 2-bit
Hopfield ADC block is passed through a voltage level shifter.
This is followed by a neural network encoder to remove the
quantization errors. In traditional Hopfield NADC based designs,
increasing the number of bits could require proper scaling of the
network parameters, in particular digital output operating region.
Furthermore, the resolution improvement of traditional Hopfield
NADC creates digital error that increases with the increasing
number of bits. The proposed design is scalable in number of
bits and number of quantization levels, and can maintain the
magnitude of digital output code within a manageable operating
voltage range.
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I. INTRODUCTION

Neurons have an inherent ability to convert analog input
signals to digital signals through the firing synaptic functions
in axons and learn input responses through weighted input
addition operations in its dendrites. The architecture of Neural
Analog-to-Digital Converters (NADC) is inspired from the
firing and learning mechanism of neural networks [1]–[3].
Hopfield neural network is known to be one of the prominent
methods used to build the NADC, where the analog-to-digital
(ADC) task is introduced as a simple optimization problem
[1]. The Hopfield network is a type of simple recurrent
neural network that uses one layer of analog processing units
(neurons). The outputs of this layer are fed back to the network
through a predetermined set of weights (synapses). The system
is characterized by a computational cost function (or energy
function, E ) that tends to reach the minimum value during
the computational process. The minimum values of energy
function are stored in the network by preprogramming the
synapses such that at certain input the system energy function
will reach minimum [4]. This system deduces the correspond-
ing solution using parallel processing of input information by
neurons that indicates the property of collective computation
of highly interconnected neural networks [5].

Ideally the network should provide one particular solution
for the corresponding input at the global minima state of
energy function, however, in practice the Hopfield network
provides more than one solution for each input level [1]. In

other words, the energy function of the Hopfield network ADC
has additional local minima states for each input [1]. The local
minima behavior introduces digital errors at the output. This
problem occurs due to the changing neurons’ thresholds during
the computation process. Different methods were proposed
to mitigate this problem, such as periodically resetting the
neurons to initial state or initial threshold value, thereby, min-
imizing the hysteresis neuron response [1]. Another method of
eliminating local minima states was proposed by Lee and Sheu
[4] is applying correction currents to the input of neurons in
order to fill up undesired local minima states. In this work we
reduced the number of bits in a single Hopfield ADC block to
2-bit size in order to minimize digital error from local minima
states. Therefore, the proposed method can be applied to small
analog input signal ranges that require higher resolution.

The highly interconnected architecture of Hopfield NADC
requires appropriate scaling in order to obtain higher resolu-
tion. Thus, the levels of output voltages should be high enough
for proper operation of the network and at the same time
they must comply with the digital circuitry that would follow
the ADC. Moreover, by increasing number of bits the degree
of digital uncertainty also increases due to multiple energy
function minima states that are created during conversion
[1]. Therefore, Hopfield NADC is not widely applied in real
systems due to such impracticality. This paper presents the
new two-stage ADC design built with multiple 2-bit Hopfield
NADCs and artificial neural network encoder operating in
parallel. The input analog signal to each successive 2-bit ADC
is DC shifted by a constant voltage and forms the quantization
stage. The neural network encoder reduces the quantization
errors to ensure robust ADC function. The advantage of the
proposed idea is that it can be applied in low power systems
that require good resolution, for instance, pixel-parallel ADC.

In Section II of the current paper the background on the of
the proposed idea and the theory of original Hopfield neural
network ADC is presented. Section III describes details of the
proposed ADC design. In the Section IV the simulation results
for 16 quantization levels is shown. Section V presents the
discussion of the introduced work.

II. BACKGROUND

The understanding of how the mechanisms of human brain
are governed is one of the modern challenges in science and
engineering. One of the earliest works in this field was pre-
sented by McCulloch and Pitts [6], where the authors proposed
a mathematical model of an artificial neural network (ANN)
that performs logic operations and is built with binary neurons.
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Based on that binary neuron model, Hopfield developed a
network that can solve computational problems and also can
act as a simple associative memory network [5]. In contrast
to feed-forward ANN architectures, such as Perceptron [7],
Hopfield Neural Network consists of a single neuron layer
with feedback connections. The feedback network structure
is inspired from the feedback properties of biological neural
networks. [8]

The hardware implementation of a 4-bit neural ADC pro-
posed by Hopfield is shown on Fig. 1. Each node represents a
synapse that is characterized by a conductance value, T . Each

Fig. 1. (a) 4-bit Hopfield neural network ADC [1], (b) neuron implementation.

neuron performs a weighted summation (through synapses) of
input currents from the input signal and outputs from other
neurons [9]. The output of i−th neuron can be described by
the function Vi = gi(ui), where ui is the input voltage to
the neuron. The activation function gi(ui) is characterized by
monotonic sigmoid response:

gi(ui) =
1

1 + exp(ui)
(1)

The output of neuron can be of two values Vi = 1 (logic
high) if the input is higher than the neuron threshold, and
Vi = 0 (logic low) if the input is lower than the threshold
[10]. The desired neuron response is obtained by using op-
amp comparator as shown in Fig. 1(b). Resistors are used to
represent interconnection weights and the conductances.

The important conditions [1] that satisfy the network con-
vergence to the local minima are: (1) zero diagonal elements
Tii = 0, so that neuron will not feed the output back to its
input, and (2) the symmetry condition Tij = Tji [10]. Another
valuable condition is that the neuron output voltage value
should be related to analog input voltage as:

VIn =

N−1∑
i=0

2iVi (2)

Under these conditions, the system should provide the correct
solutions for corresponding input voltage levels.

Assuming neurons are of infinite input and zero output
resistances the current flowing into the i−th neuron can be

described by the following Eq. 2:

C
dui
dt

=
∑
j

TijVj−(TIni+TRi+
∑
j

Tij)ui+TIniVIn+TRiVref

(3)

where C
dui
dt

is current flowing into the neuron, Vj is the out-
put from neuron j that is connected to the neuron i through a
conductance Tij . The analog input signal is represented by VIn

and it is connected to the neuron through the conductance TIni .
The reference voltage Vref is connected to the neuron input
through the conductance TRi . The term TIni + TRi +

∑
j

Tij

represents the neuron input effective conductance [2].

The system is described in more general using the energy
function Eq. 4 for N number of processing units [10].

E = −1

2

N−1∑
i=0j=0

TijViVj −
N−1∑
i=0

ViIi +

N−1∑
i=0

Ti

∫ Vi

0

g−1(V )dV

(4)
Where Ii represents analog input current flowing into neuron
i and Ti is input effective conductance of i−th neuron. Using
the Eqs. 3 and 4 the conductance values can be calculated as
[1]:

Tij = 2i+j , TIni = 2i, TRi = 22i−1 (5)

Using the Eqs. 1-5 it is possible to construct a circuit for
Hopfield NADC of any size. However, the behavior of cir-
cuit elements introduces uncertainties that corrupts the digital
output of the ADC limiting its scalability [1].

III. PROPOSED DESIGN AND RESULTS

Fig. 2 represents the block diagram of the proposed idea.
The diagram consists of 2 connected blocks, namely, a quatizer
and an encoder. The quantizer block consists of a series of 2-
bit Hopfield ADCs, each acting as the basic unit to quantize
the input signal. The input signal is concurrently applied to
the n number of separate 2-bit neural ADC quantizers through
(n−1) analog voltage level shifters. Therefore, each successive
2-bit ADC quantizer receives the analog signal that is level-
shifted to ∆V relative to the previous ADC input signal. The
output of the Hopfield level shifted ADC is applied to the
encoder block where a three layer artificial neural network that
uses back-propagation algorithm to encode the binary pattern
to weighted binary pattern. The errors from the quantizer
stage are compensated by a well trained neural network at
the encoder stage.

Fig. 2. The block diagram of the proposed design. Quantizer and encoder
blocks.



TABLE I. CALCULATED PARAMETERS

Conductance Value (µS) Neuron

resistances
Value (kOhm)

T01 29.9
R1 1

T10 29.9

TR0 12.5
R2 100

TR1 39.9

TIn0 20.0
R3 2

TIn1 40.0

For the accurate operation of the ADC, the analog input
voltage range and the neuron maximum output must satisfy the
condition in Eq. 2. In the proposed design, the analog input
voltage VIn is kept within the range [0, 2]V. The corresponding
neuron output voltage value Vi is calculated to be at -670 mV.
The negative sign shows the inverting property of neurons
suggested by Guo et al. [2] to keep conductance positive.
The values of conductance must match circuit parameters
such as the input impedance of op-amps. In addition, the
conductance should be scaled to comply with the condition
in Eq. 2. Therefore, the conductance values can be calculated
by modifying Eq. 5 to the following form, as suggested by:
[1].

Tij =
2i+j

Vi
, TIni =

2N+i

VIn
, TRi = 2i−1 +

22i−1

Vref
(6)

where the VIn is the maximum input voltage set to 2 V and
Vref is set to -670 mV.

Table 1 shows the conductance values and the neuron
resistances used in simulations. Using the proposed method
we obtain 16 and quantization level ADC with 6 blocks of 2-
bit Hopfield ADC quantizers. In the proposed ADC, the analog
input is shifted 5 times, i.e. 0.1V after each ADC block.

The constructed 2-bit Hopfield ADC quantizer is simulated
by applying sinusoidal and linear inputs as shown in Fig. 3.
The reference voltage is set to -670 mV. However, for multiple
2-bit ADC blocks with level shifters the reference voltages af-
fects the digital outputs. With adjustment of reference voltages
of each ADC block, quantization of the analog input can be
obtained. Fig. 4(a) represents the Integral Nonlinearity (INL)
analysis for the obtained transfer characteristics of 16 levels
ADC shown on Fig. 4(b). As it can be observed, the maximum
INL is about 1 LSB (least significant bit). The adjustment of
reference voltages was performed manually and the resultant
transfer characteristics exhibit quantization error. The accuracy
can be improved by using a neural network encoder that will
perform the error correction and encoding of output from level-
shifted NADC. It should be noted that these results are shown
for Hopfield ADC without the neural encoder. The simulations
with a three layer neural network using back-propagation with
learning rate of 0.3 and momentum of 0.9, 12 neurons in first
layer, 11 neurons in hidden layer and 4 neurons in output layer
reduces the errors to zero.

IV. DISCUSSION AND CONCLUSION

From the transfer characteristics of 16 quantization levels
ADC the positive gain error is observed with the maximum of

Fig. 3. 2-bit Hopfield ADC simulation results

Fig. 4. (a) Transfer characteristics for 16 quantization levels level-shifted
ADC,(b) The INL analysis of the proposed ADC design.

1 LSB, and using the neural network encoder the bit error
reduces to 0. As it was already mentioned, the reference
voltages at each ADC block affect the digital output signal
of the ADC. Reference voltage is applied at each ADC block
separately. The memory stored in the network is affected by
reference voltage value, as it alters the location of energy
function minima. It is observed, that with higher magnitude
of reference voltage the conversion in 2 bit Hopfield ADC
quantizer starts at higher values of analog input so that the
dynamic range of the converter is altered. Further work is
to be conducted to reduce the value of quantization error
of the current design. The output codes of obtained ADC
configuration do not support conventional 4 bit format. An
additional neural network encoder part solves the quantization
error problem occurring in the proposed design.

The original Hopfield neural network design was de-
veloped in 1980s and the idea was popular during 1990s.
Since that period there is a number of interpretations and
different versions of such architecture. However, this design
was not practically used and is still an exploratory topic of
study. Nevertheless, the simplicity of Hopfield neural network
and its crossbar architecture has attracted modern scientists



Fig. 5. Transfer characteristics of the proposed ADC after neural encoder
correction.

in [2], [3] where they proposed hybrid CMOS/memristor
based architecture. The discovery of memristive device that
can mimic the behavior of biological synapses [11] attracted
many scientists as it opened possibility of implementing low-
power consumption neural networks in hardware [12], [13].
Therefore, the addition of memristor to the current design is
considered to be reasonable because it is possible to reduce
on-chip area and power consumption when memristor is used
as synaptic interconnect. It is planned to work in the direction
of hybrid CMOS/memristor design based level-shifted ADC.

In this paper, we presented a multiple 2-bit Hopfield neural
ADC quantizers with level shifter circuits placed between each
ADC block. In contrast to traditional Hopfield ADCs where
the increase in the number of bits results in increase in bit
errors, the proposed architecture does not have bit errors. In
the traditional Hopfield ADC design to obtain higher number
of bits, the analog input and output voltages should be scaled
for the proper operation of the circuit. In this work, we have
demonstrated that the high resolution ADC can be achieved
with small voltage range without the issues of scaling the
voltages and conductance. The proposed design can be applied
in such small voltage systems, as pixel-parallel ADCs where
a good resolution is a big advantage.
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