

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 27, 2024

Tunable Floating-Point for Artificial Neural Networks

Franceschi, Marta; Nannarelli, Alberto; Valle, Maurizio

Published in:
Proceedings of 25th IEEE International Conference on Electronics Circuits and Systems

Link to article, DOI:
10.1109/ICECS.2018.8617900

Publication date:
2018

Document Version
Early version, also known as pre-print

Link back to DTU Orbit

Citation (APA):
Franceschi, M., Nannarelli, A., & Valle, M. (2018). Tunable Floating-Point for Artificial Neural Networks. In
Proceedings of 25th IEEE International Conference on Electronics Circuits and Systems (pp. 289-292). IEEE.
https://doi.org/10.1109/ICECS.2018.8617900

https://doi.org/10.1109/ICECS.2018.8617900
https://orbit.dtu.dk/en/publications/551e92f4-ec9a-4546-92cd-29706f154886
https://doi.org/10.1109/ICECS.2018.8617900

Tunable Floating-Point for
Artificial Neural Networks
Marta Franceschi1, Alberto Nannarelli2, Maurizio Valle1,

1Cosmic Lab, DITEN, University of Genova, Italy
2DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark

Abstract—Approximate computing has emerged as a promising
approach to energy-efficient design of digital systems in many
domains such as digital signal processing, robotics, and machine
learning. Numerous studies report that employing different data
formats in Deep Neural Networks (DNNs), the dominant Machine
Learning approach, could allow substantial improvements in
power efficiency considering an acceptable quality for results.
In this work, the application of Tunable Floating-Point (TFP)
precision to DNN is presented. In TFP different precisions for
different operations can be set by selecting a specific number of
bits for significand and exponent in the floating-point represen-
tation. Flexibility in tuning the precision of given layers of the
neural network may result in a more power efficient computation.

Index Terms—Floating-point, power efficiency, neural networks

I. INTRODUCTION

In the last years, approximate computing has been undergo-
ing a rapid growth as a promising approach to energy-efficient
design of digital systems in a wide spectrum of domains ranging
from digital signal processing, to robotics and machine learning.
By relying on the ability of many systems and applications
to tolerate some loss of accuracy, approximate computing
techniques achieve improved energy efficiency.

Approximate computing encompasses a broad spectrum of
techniques that relax accuracy to improve efficiency: both
at hardware and software level (e.g. skipping computations,
voltage overscaling, loop perforation, and quality-scalable or
approximate circuits [1], [2]). Moreover, there are some studies
that combine multiple approximation techniques [3].

Deep Neural Networks (DNNs) has emerged as the domi-
nant Machine Learning (ML) algorithm showing remarkable
success in many challenging application domains as image
processing, speech recognition, and machine translation [4],
[5]. As high classification accuracy comes at expenses of
significant computation cost (area/time/energy) in DNNs [6],
it may be advantageous to trade computational throughput for
accuracy/quality.

The precision and the data format requirements depend on
the computation phases/workloads in DNNs. The training phase
presents numerical challenges as it typically contains millions
of parameters that are usually trained iteratively over a vast
amount of data. In contrast, in the inference phase, input data
have to go only once through the network and the required
precision is usually lower than in the training phase [6].

Traditionally, neural networks (NNs) are trained in double
or single-precision, a common practice in general scientific
computing. However, to reduce the execution time (especially

in memory transfers) and to increase the energy efficiency, the
computation is migrated from double-precision (binary64: 53-
bit significand1, 11-bit exponent) in IEEE 754-2008 standard
[7], to single (binary32: 24-bit significand, 8-bit exponent) and
half (binary16: 11-bit significand, 5-bit exponent) precision.

Recent developments suggest that more efficient data formats
could allow savings in power consumption at the cost of
reduced precision in the results. Google has already made
its way into production hardware with the Tensor Processing
Unit (TPU) [8] designed for inference. The TPU supports the
Brain-FP format consisting of 8-bit for the significand and
8-bit for the exponent. Moreover, some studies show that it
is possible to achieve dramatic reductions in bit width from
32-bit all the way down to one bit (i.e., binary networks [9]).

Nvidia included Tensor cores specifically designed for ML
in their latest generation of GPUs [10]. Each Tensor core can
perform fully parallel 4×4 matrix multiplication on binary16
operands to produce binary32 results.

Intel introduced the “Flexpoint” format for deep learning
with the aim to replace the training done in binary32. The
Flexpoint format is a blocked fixed-point format for tensors
(matrices) consisting in a block of 16-bit significands sharing
a 5-bit exponent [11].

In this paper, a deep neural network has been exploited to
evaluate a novel approximate computing technique, Tunable
Floating-Point (TFP), reducing power consumption while still
producing acceptable accuracy of results both in the training and
inference phases. In fact, the main TFP advantage is flexibility:
the precision of operands and results can be chosen for single
operations by selecting a specific number of bits for significand
and exponent in the floating-point representation. By tuning
the precision of the operands and results in a given layer of
the DNN, computations can be more power efficient.

II. TUNABLE FLOATING-POINT

The Tunable Floating-Point (TFP) representation is a floating-
point (FP) representation with arbitrary number of significand’s
and exponent’s bits: m and e, respectively. The main advantage
of FP over the fixed-point (FXP) representation is that the
dynamic range is much larger than the FXP for similar bits
of storage. This is true especially for multiplication where the
dynamic range increases quadratically. In TFP, dynamic ranges

1It includes the integer bit. Significands are normalized in [1.0, 2.0) in
IEEE 754.

P1

2:1 mux

1 0

P2

M
Z

000...000

m

23

2323

23

47 47

flush−to−0

zE

Exp incr.

P
s

P
c

M
X

M
Y

24 24

Exp. add

xE yE

Bias

E1

2E

8

8

maxE

0 1
mux

OVF

Exp. adjust

INFTY

ZERO

8

88

masked 2:1 mux

0 1

decoder

RW

MASK

24 23

Bias tbl

maxE

3

52

e

(3 MSBs)

Radix−4

Multiplier

Array

Speculative

Rounding

Figure 1. Architecture of TFP-mul.

are only considered from and below the binary32 representation.
These ranges are suitable for ML applications.

The TFP representation is normalized to have the conversions
compatible with the IEEE 754-2008 standard [7]. Subnormals
are flushed-to-zero in TFP.

The architecture of the TFP multiplier (TFP-mul) is sketched
in Fig. 1. The significand and exponent bit-widths m and e
can be selected for the single operation by setting a 7-bit value
in a control register.

The significand path consists of a radix-4 multiplier array
with product in carry-save format (PS , PC) followed by
rounding and normalization blocks. The rounding is performed
speculatively and in a variable position by selecting a rounding
word (RW) depending on the precision m required. The RW
consists in a bit vector of zero except the rounding bit set to
“1”. It is generated by a decoder based on the precision m
required. The decoder also produces the mask necessary to
zero the result bits of the significand beyond position m. The
exponent path is depicted at left in Fig. 1. More detail is given
in [12].

The architecture of the TFP adder (TFP-add) is derived
from the “double-path” scheme of [13], and it is sketched
for the significand path in Fig. 2. Depending on the effective
operation (addition or subtraction) and the exponent difference
the operation is performed either in the “close” (at left) or
the “far” (at right) path. Simililarly to the TFP-mul, a decoder
provides the rounding word and the mask to implement the
TFP operation.

The TFP-mul and the TFP-add are pipelined in two stages
to reach a target throughput of 1 GFLOPS. The position of
the pipeline registers is indicated by the horizontal blue lines
in Fig. 1 and Fig. 2.

For the implementation of the TFP-mul and the TFP-add a
45 nm CMOS library of standard cells by using commercial
synthesis tools (Synopsys) has been chosen.

2:1 mux

1 0

M
Z

000...000

23

2323

23

flush−to−0

M
X

M
Y

24 24

0 1
mux

masked 2:1 mux

0 1

m

decoder

RW

MASK

24 23

5

LOD

Left−Shift

Add & Round

Add & Round

Right−Shift

RW

>>1

RW

5

expDiff

diff1

24 24

CLOSE/FAR

FAR PATH

CLOSE

PATH

Figure 2. Architecture of TFP-add (significand only).

TRAINING INFERENCE
DNN

Ground

Truth

Testing

dataset

BACKPROPAGATION

Output

error
Ground

Truth

DNN

error

BACKPROPAGATION

Training

dataset

Figure 3. Neural network structure.

III. TFP AND NEURAL NETWORKS

The Neural Network (NN) is a mathematical model that
consists in a set of layers: input, hidden and output layers. An
input layer represents a training or inference data set, a hidden
layer generates computations and transfers information to the
output layer that produces the results. If a NN consists in many
hidden layers, it is called Deep Neural Network (DNN).

These models typically contain a very large number of
parameters (weights wi and bias terms bi) and are usually
trained iteratively over vast amounts of data. The NN structure
can be represented as in Fig. 3. The training phase consists of
feeding data to the network, forward propagating through the
whole network, estimating whenever incorrect predictions are
made by comparing predictions with ground truth (i.e. a target
for the NN), computing and back-propagating weights through
the network to minimize the error of incorrect predictions.

An epoch is defined as a full pass over the entire training
data set. While the NN training can require hundreds of epochs
before reaching the final parameter values, the inference phase
consists of a single pass over the entire network. After training,
the optimal parameter values are computed and the model is
ready to classify new input data.

Fig. 4 shows the architecture for the two-hidden-layers NN,
which has been considered as reference example to illustrate
the properties of TFP. Moreover, a data set corresponding
to a cosine-trend curve with 200 points have been chosen
(Fig. 5). The goal is to interpolate the function approximating
the distribution of the points.

A TFP simulator consisting in a library of C functions and

input layer output layerhidden layer 1 hidden layer 2

Figure 4. Neural network with two hidden layers (depth=2).

binary32

binary16

Figure 5. Training: interpolated functions by NN of Fig. 4.

implementing TFP operations has been developed in [12]. Each
operation is implemented with a standard FP algorithm by (1)
limiting the computation of the significand bits to m and (2)
applying the specified rounding mode. The simulator executes
the algorithm under test in both double-precision and TFP
providing the error in key points. The simulator also generates
TFP vectors to be used to test the hardware implementation.

A. Training in TFP
The conducted study shows the approximation errors, that

depend on selecting a specific precision for the significand in
the floating-point representation, for the training and inference
stage of a NN. Results for NN training are presented.

Table I reports the training for the test case cosine for several
TFP precisions. The table lists the approximation relative error
(εave) obtained at the given epoch, the number of the TFP
operations executed, the average power dissipation (at 1 GHz
for addition, multiplication and total), and the ratio among the
total dissipated power for all the considered TFP precisions.
The εave has been defined as |v̂ − v|, where v̂ and v are
the approximate and binary64 values of the NN computation,
respectively.

The trends in Table I show that the power dissipation drops
linearly as m is scaled. Scaling m in the NN allows to achieve
a good power efficiency as a reduction up to 30 % and 50 % is
reached comparing m=24 with m=11 and m=6, respectively.
Table I also shows that the operands precision has an impact on
the convergence rate. For cosine training, the binary32 smallest
error is obtained for a large epoch. From m = 14 the NN
converges very rapidly at epoch 5, and for binary16 we obtain
the lowest error. Fig. 5 shows the curves approximated for the
case of binary32 (212 epochs) and binary16 (5 epochs). The

Table I
AVERAGE ERROR AND AVERAGE POWER DISSIPATION FOR TFP TRAINING.

m e εave epoch nop Padd Pmul Ptot ratio
24 8 0.13 212 6,127 5.84 13.99 19.83 1.00
20 8 0.13 229 6,618 5.59 12.35 17.94 0.90
16 8 0.13 214 6,188 5.24 10.44 15.68 0.79
14 8 0.19 5 145 5.02 9.68 14.70 0.74
11 5 0.12 5 145 4.70 8.77 13.47 0.68
9 5 0.27 9 258 4.48 7.69 12.17 0.61
7 5 0.27 4 115 4.27 7.07 11.34 0.57
5 5 0.27 3 86 3.99 6.13 10.12 0.51

×103 Pave [mW] measured at 1 GHz.

Figure 6. Approximation error for NN interpolated function.

reason for this behavior is that, when m and e are reduced,
small numbers are flushed to zero causing a sort of pruning in
the NN. A lower precision may lead to faster convergence, but
also to an excessive pruning resulting in the NN not converging.

IV. ERROR CHARACTERIZATION

The neural network of Fig. 4 is used to interpolate the
function describing the distribution of the training points. Since
for the test case of Fig. 5 the function generating the training
points is known, the error can easily be evaluated.

The approximation error is the error due to approximation
done by the NN. Referring to Fig. 6, assume there are a number
of points (dark “+” in the figure) and we want to detect which
ones are within a given distance from the ideal function/curve.
This region is delimited in Fig. 6 by the blue lines, and the
points which fall in the region in the ideal case of the generating
function are marked with a green “∗” (120 points).

However, when repeating the inference with the NN inter-
polated function (curve in magenta), a different set of points,
marked with a red “∗” in Fig. 6, lies within the given distance
(129 points). By analyzing the results of the experiment, the
points correctly identified by the NN lying in the region are
97, i.e., the intersection of the green and red sets. The miss-
classified points are:

• 23 green ∗ which are inside the region, but not detected
by the NN;

• 32 red ∗ which are detected inside the region by the NN,
but they are actually outside.

In addition to the approximation error, there is also the
quantization error due to the reduction in the precision of

Table II
QUANTIZATION ERROR FOR DIFFERENT TFP PRECISIONS.

m e NpTOT (∗ ∩ ∗) (∗) (∗)
24 8 binary32 129 – – –
20 5 129 129 0 0
11 5 binary16 128 127 2 1

9 5 129 127 2 2
8 8 Google BFP 131 124 5 7
8 5 131 124 5 7
7 5 132 121 8 11
6 5 129 116 13 13
5 5 129 97 32 32

the operations. By repeating the experiment of points lying in
the given region for different TFP precisions, we obtain the
results reported in Table II. In this case the reference set is the
one obtained for inference with binary32 precision.

In Table II, the column marked (∗ ∩ ∗) shows the points
detected correctly for the given precision with respect to
binary32; the column marked (∗) reports the points lying in
the region for binary32, but not detected in the given precision;
the column marked (∗), vice versa, reports the points detected
in the region for the given precision, but which are outside the
region for binary32.

The results of the error evaluation done for this specific
example, show that even a small variation in precision may
lead to a sizeable increase in the overall classification error.
Therefore, finely tuning the precision, as in TFP, may signif-
icantly improve the results of NN inference with respect to
fixed-precision formats.

V. ADVANTAGES OF TFP FOR DEEP LEARNING

The novelty of TFP format is its flexibility. To prove
the flexibility advantage studies have been conducted on the
inference phase as the inference usually requires lower precision
than the training phase [6].

A NN with two hidden layers needs three different parameter
levels (0, 1, 2). Consequently, weights and bias terms has
been divided in wj

0, wji
1, wj

2 and bj0, bj1, b2 (Fig. 4). The
precision of parameters has been reduced depending on the
level belonging to. Each parameter level has been varied by
selecting a specific number of bits for significand among 16
or 8 fixing e = 8 in the floating-point representation. The
flexibility of the employed TFP format for significand has been
reported in the Table III together with results.

Results obtained by using binary32 representation have been
also included for comparing with the chosen TFP precision.
Table III depicts the quantization error with respect the
different TFP precisions, and also shows which parameters
configurations can be more power efficient.

The maximum results quality and minimun dissipated power
are achieved when m0,m1,m2 = 16, 8, 8. These precisions
allow to reduce power dissipation by 30% (ratio = 0.70) and
to detect correctly 98% (127/129) points respect to binary32.
Instead, the largest power reduction (40%, ratio= 0.60) is
reached by exploiting the lowest precisions (i.e. m0,m1,m2 =
8, 8, 8). For the given precisions only the 95% (123/129) points
respect to binary32 are correctly detected.

Table III
QUANTIZATION ERROR AND AVERAGE POWER DISSIPATION FOR FLEXIBLE

INFERENCE (e = 8).

m0 m1 m2 NpTOT (∗ ∩ ∗) (∗) (∗) Padd Pmul Ptot ratio
24 24 24 129 129 – – 6.02 14.80 20.82 1.00
16 16 16 129 125 4 2 5.31 11.32 16.63 0.80
16 16 8 127 125 4 2 4.83 10.37 15.20 0.73
16 8 16 127 125 4 2 4.94 10.91 15.85 0.76
16 8 8 129 127 2 2 4.52 9.99 14.51 0.70
8 16 16 126 123 6 3 5.16 9.68 14.84 0.71
8 16 8 125 120 9 5 4.68 8.59 13.27 0.64
8 8 16 126 123 6 3 4.75 9.20 13.95 0.67
8 8 8 128 123 6 5 4.36 8.21 12.57 0.60

Pave [mW] at 1 GHz.

VI. CONCLUSIONS

Today power efficiency is probably one of the most rel-
evant aspects in the design of embedded digital systems.
Consequently, numerous methods have been studied to save
power and increase performance by trading power for accuracy.
In this paper, the approximate computing technique named
Tunable Floating-Point has been proposed to tailor the necessary
precision in the parts of a deep neural network to achieve a
lower power consumption. The TFP-unit can work at different
precisions in the two phases of training and inference of neural
networks by simply setting the required precision of operations.

Experiments showed that TFP can be used in a novel flexible
mode to save more power at cost of reasonable errors.

Future work will address into adjusting “on-the-fly” (during
the execution of the algorithm) the precision of TFP operations
when some specific criteria in a neural network are met.

REFERENCES

[1] H. Esmaeilzadeh et al., “Architecture Support for Disciplined Approx-
imate Programming,” in Proc. of the 17th International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2012, pp. 301–312.

[2] M. Franceschi et al., “Approximate FPGA Implementation of CORDIC
for Tactile Data Processing Using Speculative Adders,” in 2017 New
Generation of CAS (NGCAS), Sep. 2017, pp. 41–44.

[3] A. Agrawal, et al., “Approximate Computing: Challenges and Opportu-
nities,” in 2016 IEEE International Conference on Rebooting Computing
(ICRC), Oct 2016, pp. 1–8.

[4] W. Xiong, et al., “The Microsoft 2016 Conversational Speech Recognition
System,” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2017, pp. 5255–5259.

[5] Y. Wu, et al., “Google’s Neural Machine Translation System: Bridging
the Gap between Human and Machine Translation,” arXiv preprint
arXiv:1609.08144, 2016.

[6] B. Catanzaro, “Computer Arithmetic in Deep Learning,” in Keynote
Talk at the 23rd IEEE Symposium in Computer Arithmetic, July 2016.
[Online]. Available: http://arith23.gforge.inria.fr/slides/Catanzaro.pdf

[7] IEEE Standard for Floating-Point Arithmetic, IEEE Computer Society
Std. 754, 2008.

[8] N. P. Jouppi et al., “In-Datacenter Performance Analysis of a Tensor
Processing Unit,” in ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA), 2017, pp. 1–12.

[9] M. Kim and P. Smaragdis, “Bitwise Neural Networks,” arXiv preprint
arXiv:1601.06071, 2016.

[10] NVIDIA Inc. NVIDIA Tesla V100 GPU Architecture. [Online].
Available: http://images.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper.pdf

[11] V. Popescu et al., “Flexpoint: Predictive Numerics for Deep Learning,”
in 25th IEEE Symposium on Computer Arithmetic, Jun. 2018.

[12] A. Nannarelli, “Tunable Floating-Point for Energy Efficient Accelerators,”
in 25th IEEE Symposium on Computer Arithmetic, Jun. 2018, pp. 29–36.

[13] M. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann
Publishers, 2004.

