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Abstract—In this paper, a mathematical model for 

generating AWGN and Rayleigh fading is presented and 

argued based around the generation of Gaussian distributed 

numbers. This paper is focused on a multiple input multiple 

output (MIMO) channel model for the design and 

implementation of space-time coded MIMO modem systems 

such that the complexity of the design is as much as possible 

pushed into the digital domain and that the architecture is 

computationally efficient, driving the emphasis and complexity 

of implementation into software. We present an FPGA 

architecture to yield a Rayleigh fading and AWGN model for 

MIMO systems requiring up to four transmit and two receive 

antennas while requiring only a slight increase in logic 

resource over a single input single output model. The design 

entry was in VHDL and the target FPGA was the Xilinx 

Spartan 3 XC3S4000. 
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I. INTRODUCTION 

There has been much attention paid to the mathematical 
methods of generating Gaussian distributed numbers, 
particularly for computer based simulations. Most methods 
involve initially generating samples of a uniform random 
variable and then applying a transformation to obtain 
samples drawn from a unit variance and zero mean Gaussian 
probability density function. In real hardware systems, the 
environment will typically supply the noise required and so 
far less attention has been paid to hardware architectures for 
generating Gaussian noise, particularly to all digital 
architectures. With recent advances in Field Programmable 
Gate Array (FPGA) technology, hardware based simulations 
are receiving more attention due to their huge performance 
advantages over software based simulations [1-3][9-11]. It 
can take many hours to do a computer based simulation to 
obtain accurate error rate information above 10-6 for a given 
signal to noise ratio, particularly when simulating a complex 
Multiple Input Multiple Output (MIMO) communications 
link [5]. Such error rates can be obtained within minutes for 
an implemented hardware solution. Hardware based 
simulations not only offer real-time simulations but enable 
the designers to effectively and accurately evaluate their 
hardware architectures [12-13]. 

The authors of [1-3] have proposed suitable digital 
hardware architectures for generating Gaussian Noise, but 
the design requires up to 10% of an expensive Xilinx Virtex-
II FPGA. For multiple antenna communication systems 
many fading parallel coefficients as well as Additive White 
Gaussian Noise (AWGN) samples are required. The 
challenge is to design a channel model suitable for MIMO 
communications that will consume as little logic resource as 
possible. The principle contribution in this paper is the 
designs of a simple Rayleigh fading and AWGN model for 
MIMO systems requiring up to four transmit and two receive 
antennas while requiring only a slight increase in logic 
resource to that already proposed. In the rest of the paper, 

Section II describes the AWGN channel. In Section III a 
Rayleigh fading channel model is proposed. Section IV 
presents the FPGA based generations of Gaussian noise, 
AWGN and Rayleigh fading. The FPGA based 2×2 and 4×2 
MIMO channel models are given in Section V. Finally, 
conclusions are drawn in Section VI. 

II. ADDITIVE WHITE GAUSSIAN NOISE 

The Additive White Gaussian Noise (AWGN) is commonly 
used as the system noise model in communications systems. 
To simulate a communications system and characterise its 
performance in an AWGN channel, we must add white 
Gaussian noise to the transmitted signal. The complex noise 
sample to be added can be defined as follows: 
 

i t i
n A K=   (1) 

where Ki is a set of complex pseudorandom values of normal 
distribution with mean of 0 and variance of 1, and At is a 
real gain factor. In the simulations presented throughout this 
paper the data is expressed in voltage, so the noise signal 
must be expressed in voltage. Gaussian noise is normally 
distributed equally in-phase (I) and quadrature-phase (Q) 
channels, therefore the value At is defined as follows [4]: 
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where 
P

S is the average signal power and 
P

N  is the average 

noise power, B is the Bandwidth (Hz) and 
b

F  is the Channel 

data rate (Hz), and 
b o

E N  is the ratio of the energy per bit 
to noise power spectral density. 

III. RAYLEIGH FADING 

For mobile terrestrial communications systems, the channel 
path between transmitter and receiver is characterised by 
various obstacles and signal reflections. The receiver may 
not have a direct line of sight with the transmitter. In this 
type of environment, the received signal will be a 
superposition consisting of several reflected, diffracted and 
scattered waves all having different phase and times of 
arrivals. If there are sufficient enough paths in the multi-
path environment, then the central limit theorem holds that 
the channel impulse response will be well-modelled as a 
Gaussian process irrespective of the distribution of the 
individual components. The envelope of the channel 
response is said to be Rayleigh distributed if there is no 
dominant component to the scatter as such a process will 
have zero mean and phase evenly distributed between 0 and 
2π radians [4]. The Rayleigh fading channel model, H has 
i.i.d, complex, zero mean, unit variance entries [8]: 
 ij t ijh B K=   (3) 

where Kij is a set of complex pseudorandom values of 
normal distribution with mean of 0 and variance of 1 and Bt 
is a real gain factor defined as follows: 
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where P is the number of transmit antennas. 

IV. FPGA AWGN AND RALEIGH FADING GENERATORS 

A. Hardware Testbed 

The modem and channel model have been implemented in a 
Xilinx Spartan 3 XC3S4000 FPGA. The Testbed consists of 
a proprietary test card developed at BiTronix Ltd containing 
a PIC micro-controller with an RS232 control interface, SPI 
interface for FPGA programming and setup of internal 
registers, 100MHz crystal oscillator, 100MHz voltage 
controllers crystal oscillator and two 125MHz digital to 
analogue converters for I and Q output monitoring. The 
RS232 control interface should connect to a PC running 
HyperTerminal, this allows access and control of the 
internal FPGA registers. There is also a 90-bit output logic 
bus which can connect to a logic analyser for internal 
debugging and signal monitoring. The demodulated I and Q 
outputs were outputted via the on-board DACs to be 
monitored via an oscilloscope. Fig. 1 shows a block diagram 
of the setup. 

  Figure 1 Modem Testbed. 

B. The Gaussian Noise Generator 

There is little previous work on digital hardware Gaussian 
noise generators [1-3]. Below we briefly introduce the 
FPGA based Gaussian noise generator. The choice of 
algorithm presented here is the Box-Muller method. This 
method requires the approximation of nonlinear functions 
which will be shown to be easily achieved within an FPGA. 
     The Box-Muller algorithm generates two random 
samples y1 and y2 of Gaussian distribution (with zero mean 
and standard deviation σ=1) from two uniformly distributed 
variables, u1 and u2, with values between the range 0 and 1 
using the following set of equations [1] 

1 1( ) ln( )f u u= − , 

1 2 2( ) 2 sin(2 )g u uπ= , 2 2 2( ) 2 cos(2 )g u uπ=  (5) 

1 1 1 2( ) ( )y f u g u= , 2 1 2 2( ) ( )y f u g u=   
This leads to an implementation architecture shown in Fig. 2 
that has a four stage approach [1]: 

1.   Pseudorandom generation of 1u  and 2u  

2. Implementation of the functions f, 1g , 2g and the  
subsequent multiplications. 

3.  Exploitation of the central limit theorem to overcome    
quantisation and approximation errors using a sample 
accumulation stage. 

4.  A multiplexer-based circuit which multiplexes noise 
samples 1y and 2y to produce a single noise sample 
(n) per clock cycle. 

The generation of uniformly distributed realisations of u1 
and u2 can be simply achieved by using linear feedback shift 
registers (LFSRs). An m-bit LFSR with an irreducible 
polynomial can produce an output with periodicity of 2m-1. 
The required bit precisions of u1 and u2 are related to the 
maximum σ value that the full system will produce. It is 
shown in [1] that the maximum output is determined by f 
which takes on its largest values when u1 is smallest 
whereas g1 and g2 are bound by 2−  and 2 . A bit 
precision of 32 for u1 provides a maximum output of 6.7σ. 
A bit precision of 18 for u2 is sufficient without loss of 
performance [1]. Therefore, the total bit precision required 
for both u1 and u2 is 50 bits. Fifty 60-bit LFSRs with an 
irreducible polynomial can produce a period of over 1018, 
which is more than adequate for even the most of ambitious 
simulations. The polynomial used for each of the LFSRs is 
x60 + x59 + 1. 

 
Figure 2 Gaussian noise generator architecture 

The function 1( )f u to be produced is a nonlinear function. 

The non-linearity of f is greater as 1u  approaches the 
extremities. The function f can be determined by the use of a 
look up table, but a very large look-up table is required 
given that 1u  has a bit precision of 32. A more effective way 
is to break up the function into linear segments, using 
smaller segments for the more non-linear regions and larger 
segments for the more linear regions. Segment boundaries at 
locations 322n− and 1 2 n−

− , where 0 ≤ n < 32, provides 62 
segments. The function f can now be determined by the 
straight line graph equation: 
 1 1( )

a a
f u m u c= +   (6) 

where 
a

m  and 
a

c  are coefficients from a look-up table 
corresponding to segment a. As the segments boundaries are 
defined by integer powers of two, very simple logic is 
required for the address decoding of 1u .  
     The design presented in this paper is different from that 
of the one proposed in [1]. The coefficient ma ranges from -
3.1857×108 to -1.1848, the former value requiring at least 
28 bits to represent. However, it is also important to 
accurately represent the lower numbers and their fractional 
parts thereby requiring even higher bit precisions to cater for 
all values. Multipliers within an FPGA take up a lot of logic 
resource, for example a 32-bit input multiplier, yielding a 
64-bit output requires 1088 look-up tables (LUTs) in a 
Spartan 3 XC3S4000 device, whereas a 16-bit input 



multiplier requires only 280 LUTs. In this design the 
coefficients ma are scaled to maintain a bit precision of 16 

bits, this leads to the requirement of storing the scaling 
factor in another look-up-table so that the output can be 
corrected. The coefficient 

a
c  is scaled by the same amount. 

By ensuring the scaling factors are integer powers of two, 
the outputs can be adjusted by simple bit shifts rather than 
requiring a further multiplier. The block diagram for the 
circuit to calculate f can be seen in Fig. 3. The output 1( )f u  
from the FPGA is further scaled to 10 bits, this is to provide 
a 4-bit integer part and 6 bit fractional part. This yields an 
output resolution of 62− . 
There are many options for computing trigonometric 
functions, g1 and g2, two methods lend themselves well for 
FPGA implementation. The first is to make use of look-up 
tables to compute the sine and cosine functions and the 
second is to use a CORDIC (coordination rotation digital 
computer) engine. The former will require large amounts of 
block RAM when compared with the CORDIC method but 
will utilise less logic area. A memory intensive approach is 
not a good choice if block memory utilisation is an issue, 
conversely a computationally rich technique would not be 
suitable if it is desirable to conserve logic fabric resources 
[6]. The authors of [1] reject the CORDIC method for 
evaluating functions g1 and g2 on the basis of an execution 
time that is linearly proportional to the number of bits of the 
operand, thereby not suitable for applications requiring high 
accuracy and speed. Instead they propose the use of look-up 
tables which, as already mentioned, are memory intensive. 
The CORDIC method is embraced and by pipelining the 
CORDIC algorithm the speed limitations are overcome and 
the accuracy determined by the number of pipelined 
iterations. This eliminates the requirement for extra internal 
block RAM.  
    The amount of logic resource required by the CORDIC 
implementation is largely determined by the number of 
iterations required. A block diagram for the circuit to 
calculate the sine and cosine functions can be seen in Fig. 4. 
Eight pipe-lined iterations of the CORDIC engine are 
sufficient to keep the required logic resource to a minimum. 
The pipelining takes place within each of the 
adder/subtracter components shown in the 8-iteration 
CORDIC engine. Each of these components has a latency of 
one clock sample. Therefore, each iteration has a latency of 
one clock sample. The CORDIC engine is only capable of 
calculating the sine and cosine of angles (Xa) between 0 and 
π/2 radians. For values outside of this range the input angle 

needs to be modified to fall within this range and then the 
output values need to be corrected accordingly. The input 
angle will range between 0 and 2π and can be split into one 
of four quadrants: 
Quadrant 1: 0 / 2

a
X π≤ <   

Quadrant 2 : / 2
a

Xπ π≤ <  

Quadrant 3 : 3 / 4
a

Xπ π≤ <  

Quadrant 4 : 3 / 4 2
a

Xπ π≤ <  
The purpose of the course quadrant mapping circuit is to 
produce an output angle 

b
X  that falls within the range 

0 / 2
b

X π≤ <  using the following rules: 

1)   If 
a

X  is in Quadrant 1 then 
b

X  = 
a

X  

2)   If 
a

X is in Quadrant 2 then 
b

X = π - 
a

X  

3)   If 
a

X is in Quadrant 3 then 
b

X = 
a

X - π 

4)   If 
a

X is in Quadrant 4 then 
b

X = 2π – 
a

X  
The course quadrant correction circuit produces outputs g1 
and g2 based on the following rules: 

1) If 
a

X is in Quadrant 1 then 1 2( ), ( )
b b

g sin X g cos X= =   

2) If 
a

X is in Quadrant 2 then 1 2( ), ( )
b b

g sin X g cos X= = −  

3) If 
a

X is in Quadrant 3 then 1 2( ), ( )
b b

g sin X g cos X= − = −   

4) If 
a

X is in Quadrant 4 then 1 2( ), ( )
b b

g sin X g cos X= − =  
  Since further implementation, which exploits the central 
limit theorem, requires a division of √2 [1] while the 
computation of 1g  and 2g  requires the multiplication of √2, 
this term can be dispensed with, as shown above. The 
outputs of g1 and g2 have been scaled to 10 bits that have 4-
bit integer value and 6-bit fractional representation, the 
same as for function f.  
   The output n has been scaled to 10 bits, which have 4-bit 
integer value and a 6-bit fractional representation. A 
histogram plot of 2 million samples of noise data with a 
1000 bins is shown in Fig. 5. It is clear to see that the output 
values have a Gaussian distribution. 

                 
Figure 5 Histogram plot of output n 

C. The AWGN Generator 

The design is adapted further by the addition of a multiplier 
at the output n to adjust the amplitude of the noise samples 
for different Eb/No values required. The design is further 
changed to produce four Gaussian noise outputs by careful 
de-multiplexing of the output of the gain stage multiplier 
into four paths. However, the drawback of doing this is that 
four clock samples are required per output of noise sample 
on each port. Within Modem designs symbol rate 
interpolation filters are typically clocked at a frequency of 
four times the symbol rate. Therefore, by using the same 
interpolation clock frequency to supply the AWGN 
generator, four output noise samples are available for one 
modulation symbol period. As will be seen, this is enough to 
simulate up to two received antenna paths for complex 
modulated signals (such as QPSK). A block diagram for the 
modified design can be seen in Fig. 6. 

 
 

Figure 3 Circuit to calculate the 
function f 

Figure 4 Block diagram for the 
circuit to calculate functions g1 and 
g2 



     The AWGN gain factor 
t

A  is determined by (2). The 
gain value is a fixed point representation with 6-bit integer 
and 6-bit fraction. Histogram plots of over 500000 samples 
of all four outputs from the AWGN generator are shown in 
Fig. 7. It is clear to see that the output values have a 
Gaussian distribution. The design occupies approximately 
11% of a Xilinx Spartan-3 XC3S4000-4 FPGA, requiring 
3204 logic slices and can run at a clock speed of 100MHz, 
thus producing 4 noise samples every 25MHz. 

 
Figure 6 Modified Gaussian Noise Generator design to produce a 4 output 

AWGN generator 

          
Figure 7 Histogram plots of over 500000 samples of all four outputs from 

the AWGN generator 

D. The Raleigh Fading Generator  

The Raleigh fading generator design differs slightly from 
the AWGN generator and requires very little more logic 
resource. There are two primary differences; the first is that 
the gain factor resolution Bt in (4) is only 6 bits, as Bt < 1, 
the second difference is that there are up to 16 fading 
coefficients available at the output for MIMO designs 
requiring up to four transmit antennas (P=4). The design for 
the 16 coefficient output is shown in Fig. 8. 

  
Figure 8 Rayleigh Fading Generator with 16 outputs 

V. THE FPGA MIMO CHANNEL MODEL  

For a system with P transmit and M receive antennas as, the 
receive signal can be defined as:  
 y Hx n= +   (7) 
where y is the M x 1 received signal vector, x is the complex 
P x 1 transmit signal vector and H is the M x P complex 
channel gain matrix. The signal vector n consists of an M x 
1 independent and identically distributed complex Gaussian 
noise components of modulus variance normalised to one.  
A MIMO channel model design for a 2 × 2 and a 4 × 2 
system can be seen in Fig. 9 and Fig. 10, respectively. The 
output latches following the fading generator are there to 
allow for the synchronisation of fading coefficients to the 
start of a space-time block code. This is important in 
evaluating the optimum performance of the design of any 
space-time block coding system as often it is assumed that 
the fading coefficients will remain fixed for the length of a 
block code. For example, the Alamouti transmit diversity 
code [7] achieves maximum performance when the channel 
fading coefficients are assumed to be constant across two 
consecutive symbols. The channel simulations are 
performed on the I and Q symbols of a QAM system. 

)()( biaibrarpr ×+×=

)()( arbibraipi ×+×=

CBAQ ++=

 
Figure 9 FPGA MIMO channel model for two transmit and two receive 

antennas. 
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Figure 10 FPGA MIMO channel model for four transmit and two receive 

antennas. 

VI. CONCLUSION  

A simple mathematical model for generating AWGN and 
Rayleigh fading was presented and argued based around the 
generation of Gaussian distributed numbers. Using the Box-
Muller method and with consideration to the logic 
requirements of a modem design, a computationally 
efficient circuit for generating numbers with a Gaussian 
distribution was presented. A bit-true analysis of the design 
was carried out and shown at various stages together with 



the final implementation results. The design was modified 
further in an area-efficient manor, to include a gain factor 
and to produce non-correlated multiple outputs that all have 
a Gaussian distribution. A full channel model for a 2 × 2 and 
a 4 × 2 MIMO system was shown. We have demonstrated 
that it is possible to produce a Rayleigh fading MIMO 
channel model within a cheap Xilinx Spartan 3 FPGA. 
These models can be scaled up for more antenna MIMO 
channels.  
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