
Accurate Energy Modelling on the Cortex-M0

Processor for Profiling and Static Analysis

Kris Nikov, Kyriakos Georgiou, Zbigniew Chamski,
Kerstin Eder∗ and Jose Nunez-Yanez†

January 31, 2023

Abstract

Energy modelling can enable energy-aware software development and
assist the developer in meeting an application’s energy budget. Although
many energy models for embedded processors exist, most do not account
for processor-specific configurations, neither are they suitable for static
energy consumption estimation. This paper introduces a set of compre-
hensive energy models for Arm’s Cortex-M0 processor, ready to support
energy-aware development of edge computing applications using either
profiling- or static-analysis-based energy consumption estimation. We use
a commercially representative physical platform together with a custom
modified Instruction Set Simulator to obtain the physical data and system
state markers used to generate the models. The models account for dif-
ferent processor configurations which all have a significant impact on the
execution time and energy consumption of edge computing applications.
Unlike existing works, which target a very limited set of applications, all
developed models are generated and validated using a very wide range of
benchmarks from a variety of emerging IoT application areas, including
machine learning and have a prediction error of less than 5%.

1 Introduction

One trillion new Internet of Things (IoT) devices are predicted to reach the
market by 2035 [ARM] ushered by the increasingly expanding edge computing
market. Typically, IoT devices are not part of a power grid but rather are
scattered in the environment and powered by limited energy sources, such as
batteries or energy harvesting. Thus, they are mostly based on small embedded
processors with a tiny energy footprint, such as the Arm Cortex-M0. This kind
of processor is inherently limited in processing power, making edge computing
challenging. Developers must apply extreme optimisations to trim down the

∗K. Nikov, K. Georgiou, Z. Chamski and K. Eder are with the University of Bristol, UK.
(e-mail: firstname.lastname@bristol.ac.uk)

†J. Nunez-Yanez is with Linköping University, Sweden. (e-mail: jose.nunez-yanez@liu.se)

1

ar
X

iv
:2

30
1.

12
80

6v
1

 [
cs

.S
E

]
 3

0
Ja

n
20

23

processing time, memory, and energy consumption of algorithms to enable their
execution on such small embedded devices. A trending example is the streaming
down of traditional machine learning algorithms to enable their execution on
tiny IoT devices [NS].

The burden now lies with the software engineers to develop edge computing
applications that can fit on the limited memory of the IoT embedded devices,
execute within reasonable timeframes, and run within the available energy bud-
get. Execution time and code size are easy to measure and well understood
by the typical software developer. On the contrary, energy consumption infor-
mation is not readily accessible, and something most software developers never
had to account for. For edge computing, however, energy consumption feed-
back during the applications’ development cycle is at least equally important as
execution time and code size [GCAG+20,GKCE17].

Hardware measurements are the most accurate way of acquiring a program’s
energy consumption information, but they are not broadly supported by the
hardware vendors and not within the know-how of typical software developers.
Energy modelling and the integration of energy models into the development
toolchains can solve both of these issues [GKCE17]. Once an accurate energy
model has been developed for a particular platform, it can be integrated into a
toolchain to allow for energy estimations with each compilation.

The literature offers a plethora of energy consumption models for embed-
ded processors [PBH09, BCF11, NNY20, NMW+22, YJK+20]. For an energy
model to be useful to the software developer, it must be able to convey en-
ergy consumption information at the source-code level. Thus, Instruction-Set-
Architecture-based (ISA) energy models [TMWT96] became the most popular,
because modelling at the ISA level allows for attributing energy costs to software
components, such as ISA Control Flow Graph (CFG) basic blocks. Although
ISA-based energy modelling approaches have benefits, extracting such models is
time-consuming and challenging. It requires devising often complex energy mea-
suring procedures to capture the energy consumption of each instruction in the
ISA. On the other hand, energy modelling using Performance Monitoring Coun-
ters (PMCs), also named hardware event counters, is a more accessible approach
compared to ISA-level modelling. It requires measuring the energy consump-
tion of representative programs, collecting execution statistics from PMCs and
then deducting energy consumption coefficients via mathematical analysis and
machine learning techniques [NNY20,NYNEH20,NMW+22].

This paper demonstrates how to build PMC-based models for multiple embedded-
processor configurations. The models can be used to attribute energy costs
to software components and facilitate both profiling-based and static-analysis-
based energy consumption estimation, similar to ISA-based models. Our main
contributions are:

1. Due to limited support for PMCs on most IoT platforms, we customised
an open-source Instruction Set Simulator (ISS) of the Arm thumb ISA,
namely the Thumbulator [Thu] to produce accurate execution statistics
useful for developing energy models.

2

2. We identified a set of PMCs that are both statically predictable at ISA
basic block level and offer an energy consumption estimation error (a Mean
Absolute Percentage Error (MAPE) of less than 5%) [Nik22].

3. We enhanced Thumbulator to include advanced configurations for the
STM32F0xx family of processors [STM]. We tracked the use of the in-
struction PreFetch buffer (ON/OFF) which increases the efficiency of
instruction fetching and the number of CPU WaitStates (0/1) required
to correctly perform read operations from Flash memory (mandatory at
higher CPU frequencies since flash memory latency is higher than the
CPU clock speed).

2 Energy Modelling Methodology

2.1 Measurement Setup

Our proposed methodology involves a custom measurement set-up to extract
energy consumption information from our target platform - the STM32F0-
Discovery board a.k.a. the device under test (DUT) - and collating the data
with PMC information from Thumbulator to obtain the full data used to gener-
ate the models. A diagram of the full set-up including the host PC and different
components is presented in Figure 1.

We have used a custom measurement board, called MAGEEC [Mag], to
intercept and sample the CPU power supply rails of the DUT. The samples are
collected at a frequency of 10kHz and then converted to digital values. All of
this is controlled via a python module called pyenergy, which is also used to
flash and run the pre-compiled workloads on the target device. The workloads
are compiled for bare-metal execution using GNU-GCC. The pyenergy control
program runs on a host platform, connected to the measurement set-up via
USB. All the physical DUT measurements are saved back on the host device as
a series of .csv files.

The PMCs used for platform state characterisation and model generation are
obtained using Thumbulator. The simulator has been modified to closely match
the execution profile and memory set-up of the DUT. Further details about
the modifications and the resulting accuracy are presented in Subsection 2.4.
The two sets of binaries are required because the simulator does not fully han-
dle access to off-core peripherals, e.g., PLL clock generators; these should be
skipped in Thumbulator binaries. However, the same location and alignment of
benchmark code for both types of binaries was maintained.

The aim of this work is to develop an accurate CPU model using ISS in-
formation, therefore the DUT peripherals and their interaction with the CPU
are not included in the energy measurement collection and simulation. Whole-
system modelling is a very important topic, especially for embedded devices and
IoT and remains an area for future research.

3

Operation

Data Movement

MAGEEC

Driver

Energy Measurement
Hardware

DUT

STM32F0-DISCOVERY

Intercept
processor

power supply

Triggers
Measuring

Host
pyenergy

Thumbulator

Data

Arm
Compiler

Thumbulator
Compiler

Energy
Measurements

PMCs

Modelling
Framework

Final
Models

Energy
Measurements

BEEBS CNN
Kernels

Fig. 1. Hardware and software harness for energy modelling of the Cortex-M0.

4

2.2 Benchmark Selection

Two sets of benchmarks were used for model characterisation and validation.
First, the BEEBS benchmark suite [PHB13]; an open-source embedded-system
benchmark suite designed for exploring the performance and energy consump-
tion characteristics of embedded architectures. It features several categories of
benchmarks, selected to represent real-world application areas such as Auto-
motive, Consumer and Security. 76 out of the 88 BEEBS benchmarks have
been used. The remaining twelve do not fit in the available memory of our
STM32F051 target chip on the DUT. The selected benchmarks have a mea-
sured energy Coefficient of Variability (CoV) of 2.61, which shows very high
heterogeneity. The second set of benchmarks is based on an industrial edge
computing application, developed by Irida Labs [IRI]. The application uses a
Convolutional Neural Network (CNN) and implements a smart monitoring sys-
tem that can monitor, in real-time, a car parking lot with multiple parking slots
to determine whether a slot is occupied or not. The different layers of the CNN,
namely Convolutional, MaxPool, and Full-Connected, were isolated and config-
ured with different hyper-parameters and optimisations, resulting in 154 distinct
benchmarks, with a measured energy CoV of 1.31 indicating the diverse nature
of the different CNN layers. Overall, a total of 230 benchmarks were used for
the training and validation of our energy model with a measured energy CoV of
3.41, further highlighting the diverse profile of the workload set. This number
goes significantly beyond the average number of used benchmarks reported for
existing energy models of embedded processors [BSE13, RLE15, KCNL08]. In
order to avoid over-fitting the model, we use 10-fold cross-validation to evalu-
ate the model performance across a variety of workload configurations. Further
details on model training are available in Subsection 2.5.

2.3 PMC-based Code-level Energy Modelling

PMC-based energy consumption estimation models are typically obtained via
multi-linear regression analysis, where coefficients, βx, are determined for each
counter, Cx, to predict the overall energy cost, i.e., E =

∑
x(βx × Cx) + α,

with α being the residual error term. The coefficients βx are the constants in
the energy model that are program independent while the counters Cx are the
variables that depend on the program and its input. For a specific program with
known counters, the energy model can be used to estimate the energy consumed
during the program’s execution.

For static-analysis-based energy consumption estimation, the overall energy
consumption estimate of a piece of code is typically constructed from the esti-
mates of the ISA basic blocks of the program [GKCE17]. Thus, a PMC-based
energy model can enable energy consumption estimation via static analysis only
if the counters used for the modelling and prediction can be statically predicted
at the ISA basic block level.

In order to make the model scalable for block-level static analysis we have
trained without using an intercept, so the residual is absorbed into the other

5

event weights. This means that at time 0 the energy predicted is zero. We have
also used a Non-Negative Least Squares (NNLS) solver to guarantee positive
weights for all the events in the final model, thus always guaranteeing predictable
energy consumption values from the model at discreet time slices.

2.4 Collection of Cortex-M0 Event Counters

Counter Description
C1 Executed instructions (no Muls)
C2 Multiplication instructions - Muls
C3 Taken branches
C4 RAM data reads
C5 RAM writes
C6 Flash data reads

Table 1: Statically predictable PMCs for energy-modelling.

The Cortex-M0 is a deeply embedded architecture with minimal resources
available on-chip and it does not expose any PMCs. Thus, we modified an open-
source ISS, namely Thumbulator [Thu], to extract the necessary event counters
for our energy consumption modelling. The modifications wrt. the reference
Thumbulator implementation [Thu] included four key aspects:

• Adaptation to reflect the memory organisation as well as the instruction
fetch mechanism used in the STM32F0xx processor family.

• Implementation of a range of event counters and the associated reporting
mechanism.

• Calibration and improvement of the timing behaviour of the simulation to
match the hardware’s behaviour.

The modified simulator can be used to simulate any of the processors in
the STM32F0xx family [STM] and can collect a large number of event coun-
ters that represent various aspects of the architecture’s runtime behaviour such
as the effective RAM and Flash memory accesses, taken branches, per-opcode
instruction execution statistics, and interactions between instruction- and data-
related memory accesses. The execution time model derived from event counts
reported by Thumbulator is fully cycle-accurate wrt. hardware execution when
the instruction PreFetch buffer is disabled or the WaitState count is 0. When
the PreFetch buffer is enabled and the WaitState count is 1, the MAPE of the
Thumbulator-based timing prediction is 1.55%. Theoretically this approach of
using an ISS can be applied to other vendors or microprocessors, particularly
where there is more available documentation about the micro-architectural im-
plementation. This would allow even finer and quicker tuning of the ISS to
match the DUT hardware.

Using the available architecture documentation and a series of modelling
cycles, we constrained the number of event counters used for the modelling to

6

the set of the counters that have the most significant impact on the energy con-
sumption and are suitable for static analysis. Most notably all these PMCs can
be statically predicted from code-block size using architecture models, which
makes them suitable for use in energy analysis tools. These counters also yield
the highest observed estimation accuracy compared to physical measurements
when compared with the retrieved estimations of other event counter combina-
tions. The selected counters are shown in Table 1.

2.5 Model Training and Validation

Hardware Config. Energy Consumption Model [nJ] Meas. Energy[J] MAPE [%]

[20, OFF, 0] E = 0.964258 × C1 + 1.652455 × C2 + 2.091986 × C3 + 1.109833 × C4 + 0.650563 × C5 + 0.633621 × C6 221.4 2.80

[20, OFF, 1] E = 1.282474 × C1 + 2.110668 × C2 + 2.191545 × C3 + 1.185609 × C4 + 0.416602 × C5 + 1.178991 × C6 274.9 2.97

[20, ON, 0] E = 1.003378 × C1 + 1.885309 × C2 + 1.802974 × C3 + 1.122833 × C4 + 0.849223 × C5 + 0.475831 × C6 226.38 2.86

[20, ON, 1] E = 0.895879 × C1 + 2.185851 × C2 + 2.001178 × C3 + 1.493364 × C4 + 1.076354 × C5 + 1.573758 × C6 227.9 3.68

[24, OFF, 0] E = 0.959172 × C1 + 1.888565 × C2 + 1.357556 × C3 + 1.089427 × C4 + 0.993145 × C5 + 0.562952 × C6 214.62 3.22

[24, OFF, 1] E = 1.178558 × C1 + 2.540429 × C2 + 2.042475 × C3 + 1.190892 × C4 + 0.979651 × C5 + 0.891088 × C6 264.88 3.16

[24, ON, 0] E = 0.985415 × C1 + 1.933276 × C2 + 1.448160 × C3 + 1.075671 × C4 + 1.011891 × C5 + 0.617510 × C6 220.03 3.36

[24, ON, 1] E = 0.883755 × C1 + 2.156046 × C2 + 1.633465 × C3 + 1.436556 × C4 + 1.152560 × C5 + 1.455166 × C6 220.05 4.15

[48, OFF, 1] E = 1.096677 × C1 + 2.364495 × C2 + 1.627854 × C3 + 1.173680 × C4 + 0.681475 × C5 + 0.652665 × C6 243.44 3.65

[48, ON, 1] E = 0.816331 × C1 + 2.014612 × C2 + 1.372157 × C3 + 1.402116 × C4 + 0.835035 × C5 + 1.250446 × C6 202.5 4.33

Table 2: Energy models for selected Cortex-M0 hardware configurations – Hard-
ware Configuration Format: [Frequency (MHz), PreFetch (ON/OFF), Wait-
State (0/1)] and MAPE: Mean Absolute Percentage Error

When using regression modelling, it is critical to include as broad and repre-
sentative a training sample as possible in the training phase. This ensures that
the model is as generic as possible and can capture a large part of the space
being modelled. Thus, instead of splitting our data into predefined training and
testing sets, we included all data into the training, and we used k-fold cross-
validation to ensure the retrieved models avoid over-fitting and selection bias.
In our case, we used 10-fold cross-validation and we used the R2 to evaluate the
performance of each of the ten models for each of the modelling configuration,
shown in Table 2. The 10-fold cross-validation yielded an R2 mean value of close
to 0.99 for all configurations, with a standard deviation of around 0.2%, where
an R2 value close to 1 indicates an excellent prediction. This demonstrates that
the counters selected for the model are accurately capturing the energy con-
sumption of a variety of programs. For the final model coefficients and results,
all the data points were used in the training.

Energy models for the different hardware configurations and their accuracy
are listed in Table 2. For all models the MAPE is less than 5%, compared to
hardware energy measurements. Compared to other relevant works our models
achieve lower error, while being trained and validated on a much larger variety of
benchmarks using only statically predictable events suitable for code-block-level
analysis [BSE13,RLE15,KCNL08].

Analysing the calculated model weights for the PMCs across the different
hardware configurations shows a high variation, however some interesting gen-
eral deductions can be made. For example, when the WaitState is 1 there is a
higher cost associated with Flash reads, due to the fact that the processor stays
idle while waiting for data from the memory. Also, the cost for RAM data reads

7

is close to or higher than RAM writes and Flash reads, because there are more
than twice as many RAM data reads operations than the other two and the
NNLS solver associates a large part of the energy consumption to them, even
if the operation itself uses much less energy. Introducing a WaitState clearly
increases energy consumption and thus the PMC coefficients for the entire DUT
(however it is needed for correct functionality at higher frequencies). When the
WaitState is 0, turning on the PreFetch results in slightly higher energy con-
sumption for the frequencies that support WaitState 0. Consequently, when the
WaitState is 1 and PreFetch is ON, there is a significantly reduced overall en-
ergy consumption with lower model weights for arithmetic PMCs and branches,
but higher model weights for data movement PMCs.

3 Conclusion and future work

This paper offers an open-source, ready-to-use energy model for the Arm Cortex-
M0 processor [Nik22]. The model can be used for profiling-based analysis to ac-
curately estimate the total energy consumption of a program and in static analy-
sis to predict the energy budget of a particular block of code with a MAPE of less
that 5%. The models also account for various frequency and flash instruction-
buffer configurations of the processor that can significantly affect the execution
time and energy consumption of an application. Our customised open-source
ISS [Thu] is also readily available to profile the execution time and energy con-
sumption of edge computing applications for any of the STM32F0xx family of
processors. This allows developers to choose the hardware configuration that
can meet the resource requirements.

Acknowledgement

This research has been supported by the European Union’s Horizon 2020 Re-
search and Innovation Programme under grant agreement No. 779882, Team-
Play (Time, Energy and security Analysis for Multi/Many-core heterogeneous
PLAtforms).

References

[ARM] ARM. A trillion devices — A trillion dollars. Accessed: 2020-11-
02.

[BCF11] C. Brandolese, S. Corbetta, and W. Fornaciari. Software energy es-
timation based on statistical characterization of intermediate com-
pilation code. In Low Power Electronics and Design (ISLPED)
2011 International Symposium on, pages 333–338, Aug 2011.

[BSE13] Mostafa Bazzaz, Mohammad Salehi, and Alireza Ejlali. An accu-
rate instruction-level energy estimation model and tool for embed-

8

ded systems. IEEE transactions on instrumentation and measure-
ment, 62(7):1927–1934, 2013.

[GCAG+20] Kyriakos Georgiou, Zbigniew Chamski, Andres Amaya Garcia,
David May, and Kerstin Eder. Lost In Translation: Exposing Hid-
den Compiler Optimization Opportunities. The Computer Journal,
Aug 2020.

[GKCE17] Kyriakos Georgiou, Steve Kerrison, Zbigniew Chamski, and Ker-
stin Eder. Energy transparency for deeply embedded programs.
ACM Trans. Archit. Code Optim., 14(1), Mar 2017.

[IRI] Irida Labs. Accessed: 2020-12-28.

[KCNL08] Vasilios Konstantakos, Alexander Chatzigeorgiou, Spiridon Niko-
laidis, and Theodore Laopoulos. Energy consumption estimation
in embedded systems. IEEE Transactions on instrumentation and
measurement, 57(4):797–804, 2008.

[Mag] MAGEEC measuring setup. Accessed: 2020-08-14.

[Nik22] Kris Nikov. Stm32f0discovery cortexm0 energy model data.
https://doi.org/10.5523/bris.v5vp60ddmvu02rukwb5vtguy9,
2022.

[NMW+22] Kris Nikov, Marcos Martinez, Simon Wegener, Jose Nunez-Yanez,
Zbigniew Chamski, Kyriakos Georgiou, and Kerstin Eder. Robust
and accurate fine-grain power models for embedded systems with
no on-chip pmu. IEEE Embedded Systems Letters, 2022.

[NNY20] Krastin Nikov and Jose Nunez-Yanez. Intra and inter-core power
modelling for single-isa heterogeneous processors. International
Journal of Embedded Systems, 12(3):324–340, 2020.

[NS] Danny Loh Naveen Suda. Machine Learning on Arm Cortex-M
Microcontrollers — White paper. Accessed: 2020-11-02.

[NYNEH20] Jose Nunez-Yanez, Kris Nikov, Kerstin Eder, and Mohammad Hos-
seinabady. Run-time power modelling in embedded gpus with dy-
namic voltage and frequency scaling. In Proceedings of the 11th
Workshop on Parallel Programming and Run-Time Management
Techniques for Many-core Architectures/9th Workshop on Design
Tools and Architectures for Multicore Embedded Computing Plat-
forms, pages 1–6, 2020.

[PBH09] S. Penolazzi, L. Bolognino, and A. Hemani. Energy and Perfor-
mance Model of a SPARC Leon3 Processor. In Digital System
Design, Architectures, Methods and Tools, 2009. DSD ’09. 12th
Euromicro Conference on, pages 651–656, Aug 2009.

9

https://doi.org/10.5523/bris.v5vp60ddmvu02rukwb5vtguy9

[PHB13] James Pallister, Simon Hollis, and Jeremy Bennett. Beebs: Open
benchmarks for energy measurements on embedded platforms.
arXiv preprint arXiv:1308.5174, 2013.

[RLE15] Priit Ruberg, Keijo Lass, and Peeter Ellervee. Microcontroller
energy consumption estimation based on software analysis for em-
bedded systems. In 2015 Nordic Circuits and Systems Conference
(NORCAS): NORCHIP & International Symposium on System-
on-Chip (SoC), pages 1–4. IEEE, 2015.

[STM] STM32F030x4/x6/x8/xC and STM32F070x6/xB advanced ARM-
based 32-bit MCUs - Reference Manual. Accessed: 2020-12-28.

[Thu] The Thumbulator Git repository modified for collecting perfor-
mance monitoring counters for the STM32F0-Discovery board.
branch: prefetch-model, Git-tag: teamplay-D4.5. Accessed: 2020-
11-09.

[TMWT96] V. Tiwari, S. Malik, A. Wolfe, and M. Tien-Chien Lee. Instruc-
tion level power analysis and optimization of software. Journal
of VLSI Signal Processing Systems for Signal, Image, and Video
Technology, 13(2-3):223–238, 1996.

[YJK+20] Yahya H. Yassin, Magnus Jahre, Per Gunnar Kjeldsberg, Snorre
Aunet, and Francky Catthoor. Fast and Accurate Edge Comput-
ing Energy Modeling and DVFS Implementation in GEM5 Using
System Call Emulation Mode. 36(8), may 2020.

10

	1 Introduction
	2 Energy Modelling Methodology
	2.1 Measurement Setup
	2.2 Benchmark Selection
	2.3 PMC-based Code-level Energy Modelling
	2.4 Collection of Cortex-M0 Event Counters
	2.5 Model Training and Validation

	3 Conclusion and future work

