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Abstract—This paper presents a neuromorphic computing
model that classifies material textures using a neural coding
scheme based on threshold encoding. The proposed threshold
encoding converts raw tactile data of each texture into an event-
based data highlighting the spatio-temporal features needed to
recognize human touch. Achieved results show that the model
can categorize the input tactile signals into their corresponding
material textures with high accuracy and fast inference. This
work paves the way toward employing the proposed encoding
method in more complex tactile based applications from the
theoretical and hardware implementation aspects.

Index Terms—Neuromorphic, Spatio-temporal, spiking neural
network, Event-driven, Tactile perception

I. INTRODUCTION

Human sense of touch represents a fundamental aspect in in-
teracting with the adjoining environment on a daily basis. The
human exquisite somatosensory system enables to discriminate
and recognize numerous exposed bodies/actions to our skin,
such as textures, objects, innocuous and noxious touches
[1]. The somatosensory system involves the activation of the
primary sensory tactile neurons so-called mechanoreceptors
(slowly-adapting type 1: SA-1, and fast-adapting type 1: FA-
1) innervating the glabrous skin of the human fingertip [2].
Consequently, the aforementioned neurons will sequentially
convey detected mechanical stimuli to the somatosensory
cortex by means of peripheral afferent fibers to perform
information decoding [2]. Endowing robotics and prosthetic
devices with such human trait, would enable performing and
manipulating more complex tasks, and physically interact
with other agents in an efficient way. However, mimicking
the human touch artificially is still far-flung, due to many
limitations and challenges [3].

Neuromorphic computing has attracted recent researches
focusing on the implementation on tactile sensing systems
since it features brain-inspired computing primitives [4] [5] [6]
Hardware tailored neuromorphic devices exhibit an extreme
computational efficiency due to their capability of performing
in-memory computations where memory and computations
are parallelized like neurons. This non-Von Neumann based
architecture enable achieving efficient computations in terms
of energy consumption and inference time. From the biological
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aspect, neuromorphic systems emulates in some measure the
physiological behaviours of the mechanoreceptors by gener-
ating and processing spike-based encoding that are observed
in natural senses [7]. Such induced encoding fetch spatio-
temporal information about the applied mechanical stimuli,
and that is expedient in the domain of touch since tactile
perception is based on spatial and temporal perspective. Many
works employed neuromorphic computing with tactile sensing
systems for human touch applications such as touch modality
classification [8], edge orientation classification [6], texture
classification [9], [10], and object shape recognition [11]. As
mentioned above, spatio-temporal features elicited from the
neural encoding of the stimuli represent the center of attention
in the sense of touch. For instance, textures are well known
to have different micro-geometries and topology that controls
their degree of smoothness/roughness. Therefore, each texture
yields a distinguishable temporal feature that has a delicate
interplay with its coarseness level.

Spiking neural networks (SNNs) have recently emerged as
a feasible tool capable of performing synaptic learning and
classification based on spatio-temporal features by means of
bio-inspired learning algorithms. Neurons in SNNs interface
by means of spike trains that are temporal signals in nature,
therefore, SNNs are considered a potential candidate to deal
with the temporal dynamics of a signal. In [9], a simple
2 fully connected layers spiking neural network has been
implemented to classify 20 naturalistic textures collected from
two different tactile sensors: SynTouch Biotac sensor piezo-
resistive based and iCub Roboskin piezo-capacitive based
under different experimental conditions. SLAYER back prop-
agation based learning approach has been adopted to learn
from the neural coding of the raw data. Authors in [10] im-
plemented 2 layer SNN to classify 8 artificial textures collected
from piezo-electric tactile sensors, using unsupervised Spike-
Timing-Dependent Plasticity (STDP) as a learning approach.
Experimental results report a classification accuracy more than
80%. Udaya et al. [5] proposed a 2 layer SNN endowed
with homeostatic synaptic learning mechanism to classify 10
naturalistic textures under varying sensing conditions. In [12],
authors employed K-nearest neighbour (KNN) to classify 10
textures. 2 features based on: coefficient of variation and av-
erage spike rate have been extracted from the neural encoding
of the textures done by Izhikevic model, and used to train the
classifier and perform classification. Sankar et al. [13] used a
soft bio-mimetic fingertip to classify 13 artificial textures. The
authors converted the raw tactile data of the textures acquired
by piezoresistive sensor into neural encoding by means of



Izhikevic model. Moreover, support vector machine (SVM)
was employed to classify the textures based on hand-crafted
features extracted from the encoding. Experimental results
reports a classification accuracy of 98.65%.

Considerable works in the literature addressed the imple-
mentation of machine and deep learning approaches for texture
classification applications. However, the deployment of such
models on hardware devices encounters many challenges such
as: memory requirements, computational load and energy
consumption. Neuromorphic systems have been introduced to
solve aforementioned problems due to their binary encoding
(1: spike and O: no spike) and dedicated hardware accelerators
that supports online learning strategies based on biologically
plausible learning rules. This paper presents a soft SNN
implementation for texture classification based on threshold
encoding. The simplicity of the proposed encoding scheme
could be used in future works that target the implementation on
neuromorphic or low-power edge-devices for real-time infer-
ence. The main contribution of this work can be summarized
as follows:

e A neural encoding scheme based on threshold encod-
ing that converts raw tactile information into event-
representations with a salient biologically plausible fea-
tures i.e. spatio-temporal information.

o A soft SNN framework based on a simple 2-layer spiking
network that can be deployed on a neuromirphic device.

o The proposed system overcomes similar state of the art
solution in [9] by achieving a classification accuracy of
100%.

II. EXPERIMENTAL SETUP

In this work, an online available dataset [14] has been used
for analyzing tactile sensing perception. The dataset consists of
20 naturalistic textures listed as follows: Cotton, Bath Towel,
Carpet Net, Leather Fake, Wood Hard, Foam, Metal, Fiber
Board, Cork, Eva, Soft Material 1 & 2, Sponge Soft, Felt,
Polypropylene Thin, Polypropileno Smooth, Paper 1 & 2 and
Styrofoam. A SynTouch BioTac sensor [15] piezoresistive
based composed of 19 channels is used to acquire pressure
readings of the textures. The BioTac sensor is attached as a
passive-end effector to the KUKA LBR iiwa robot in order
to acquire data under a completely controlled environment
in terms of applied force and velocity. The data has been
collected by placing the textures on a flat surface, meanwhile
the robotic arm including the sensor performs passive sliding
on the top surface of the material for 8 seconds with a constant
speed of 2.5 cm/s and a sampling rate of 100 Hz [14]. The
work in [9] used as well the dataset collected in [14].

III. METHODOLOGY

This section marks out a discussion with respect to the
proposed neural encoding mechanism based on threshold
encoding, and the architecture of the system.

A. Threshold Encoding

Tactile perception and cognitive task entails primarily the
collaboration of front-end sensors, that encodes the temporal
dynamic stimulus into an efficient and effective spike events.
Thus emulating to certain measure the function of perceptual
units of the human cognitive system [14]. Threshold encoding
is found to be effective in many cases [9] [4]. It aims to
encode the input stimulus using threshold crossing events in a
population of sensory neurons [16]. Moreover, it mitigates the
workload of the neural network in the classification part by
generating a linearly separable dataset and making the inputs
classifiable based on spike counts alone.

In this work, we proposed a threshold encoding mechanism
that depends drastically on the distinct raw tactile value of each
texture. The micro-topology of each texture collaborates in the
coarseness level, thus each texture will have its distinguished
temporal feature that will be used as a threshold event for the
input channels.

Algorithm 1 Threshold Encoding Procedure
1. Input:

o Input Channels: N «+— 19
o Raw Tactile Signal of N, Channel: P

2. Output: Event-Based Dataset D,
3.Methodology

1: for (n =1;n < M;n+ +) do / M: N.b of Textures

2: for i =1;i < N;i+ +) do
3: if Poyerage[IN ()] == Paverage[Texture(n)] then
1 if P[N(i)] > Paverage
SN(Z)(n) )0 else
4: end if
5: end for
6: end for
19 20

4. Return Deyy =D g Doas—1 Snvm € {0,1}

Algorithm 1 presents the procedure of the preformed
threshold encoding. A sequence of 20 spike trains S(,)
are generated by each input channel (V) depending on the
average of the raw tactile values of each texture (P,wemge =
(2% P)/SequenceLength). A total of 380 spike trains
Sn(iy(n) are generated, where (n) and N (i) represent the
number of textures and corresponding spike train source chan-
nel. Fundamentally, each spike train represents the temporal
encoding of a single texture. To elaborate more, and for the
sake of simplicity, S7 (First spike train of each channel) is
generated when the average of raw data corresponds to a
certain type of textures (i.e. CarpetNet), whereas the rest of
spike trains are affiliated to the state of different textures. The
total sequence length of the encoded values is set to 400 (
First 4 seconds were selected out of the total duration, with
sampling rate of 100 Hz). Moreover, the values that exceed
the threshold (taken to be the average of the raw data) are
considered as a spike, meanwhile values below this threshold
are set to be zero (non-spike). Therefore, an event-driven
dataset is generated carrying salient spatio-temporal features
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Fig. 1. An overview of the model architecture: (Left) Raw tactile data of
each texture acquired from the 19 channels of the BioTac Sensor; (Middle)
Threshold Encoding applied by the Hidden Layer; (Right) Decoding phase.

for each texture: population of active neuron or spike trains
for each texture (spatial) and encoding that exhibit distinctive
timing of spike (temporal).

B. Model Architecture

Figure 1 depicts the architecture of the system and the
workflow adopted in this work. A simple 2-layer feed-forward
spiking neural network comprising of a hidden and output
layer has been constructed to classify the textures. The raw
tactile data of each texture acquired by the 19 channels of
the BioTac sensor are conveyed to the hidden layer. The
hidden layer consists of 380 neurons that performs neural
coding based on threshold encoding to generate event-based
dataset (discussed in section III-A). Moreover, the output layer
incorporates 20 LIF neurons that decodes and classifies the
textures exposed to the network.

dult)

dt
Equation 1 models the voltage response of the Leaky Integrate-
and-Fire neuron. Neuron membrane potential «(t) generates
a spike when it exceeds a defined threshold, after getting
depolarized by means of the injected current I(¢) and the
action of the membrane time constant 7,,. After emitting a
spike, the voltage membrane undergo a repolarization phase
until reaching the resting value V...

The connection between hidden and output layer is derived
from the selection of the active neuron population for each
texture in the hidden layer according to the performed en-
coding mechanism. Accordingly, each texture active cluster
in the hidden layer is connected to one neuron in the output
layer, while the non active cluster is disregarded to reduce
the complexity of the network. Therefore, each neuron in the
output layer fires correspondingly to a particular texture. All
the simulations and models are implemented using Brian2
simulator [17].

= Urest — u(t) + R, X I(t) (D

IV. EXPERIMENTAL RESULTS
A. Textures Classification

Figure 2 shows the raster plot of the proposed network
along with the firing rate of each neuron in the output layer.
Apparently, the neurons in the hidden layer (figure 2: Top) are
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Fig. 2. Firing Activity of the network: (Top) Firing activity of the hidden
layer (380 neurons). (Middle) Firing activity of the output layer (20 neurons).
(Bottom) Mean firing rate of each neuron in the output layer.

sorted in an active and non active clusters per each texture,
after applying the threshold encoding mechanism. The collo-
cation process depends on the raw tactile information of each
texture associated with the crossing events imposed on each
generated spike train. Each neuron in the output layer fires
for one texture due to the fixed-connections with the hidden
layer, thus decoding successfully the received spike trains and
predicting their corresponding texture. The firing rate graph
(figure 2: Bottom) demonstrates a significant firing activity
for each neuron in the output layer, as for every texture, only
one neuron in the output layer is firing at maximum firing rate.
The temporal dynamics of each texture trigger the activation
of specific spike trains in the hidden layer according to the
pre-defined threshold events. Consequently the variation of
this temporal feature between the textures (due to typologies’
assortment) collaborates in triggering disparate spike trains,
thus the event-based dataset becomes linearly separable as
claimed in [18]. The network is capable of recognizing all the
20 textures with an accuracy of 100%, outperforming a similar
state of the art solution [9] that achieved a 94% accuracy.

B. Inference Time Response

Inference time is a metric to evaluate the overall perfor-
mance and efficiency. In this work, we measured the inference
time of each texture by taking the time difference (At)
between first generated decoding spike by the output neuron
t1 and launching the touch on the surface of texture ¢y as
shown in figure 3 (Top). Figure 3 (Bottom) shows a notable
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Fig. 3. Illustration of computed inference time. (Top) Output neuron inference
procedure. (Bottom) Measured inference time (ms).

contrast in the inference among the textures, implying that
each neuron in the output layer requires distinct duration
to perform successful decoding. This duration includes the
time of depolarizing the membrane potential of the neuron
until emitting a spike accordingly. The computed inferences
vary between 140 ms (Carpet net) and 20 ms (Wood hard)
indicating a rapid response by the network compared to the
state of the art solution [9]. Fundamentally, the obtained
disparity is due to the variation between the micro-topology
of each texture that yields a different and distinctive temporal
feature for each class. The output neurons depend mainly
on two factors to spike: frequency of received spikes from
the pre-synaptic neuron that collaborates in the depolarization
of the neuron’s membrane, and the inter-spike interval (ISI)
that affects the decay of the membrane potential. Moreover,
a smaller inter-spike interval associated with higher spike
frequency, induces a faster spike accumulation in the neuron’s
membrane thus a faster spike generation and a smaller in-
ference time. Therefore, each texture with its unique topology
possess a particular spike rate and ISI collaborating in different
responses of their corresponding output neuron.

V. CONCLUSIONS

This paper presents a neuromorphic computing model
comprised of a simple 2-layer feed forward spiking neural
network to classify naturalistic textures. An efficient neural
coding method based on threshold encoding has been de-
veloped to transform input raw tactile information to event-
representations, and to make the network classify textures
based on their spatio-temporal features. The proposed network
achieved a classification accuracy of 100% overcoming a

similar state of the art solution in [9] by using the event-based
dataset. Future work targets the expansion and generalization
of the proposed neural coding to recognize various human
touch modalities.
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