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Abstract—Magnetoelectric devices are readily employed as 
sensors, actuators, and antennas, but typically exhibit low power 
output. This paper presents considerations for the viability of 
magnetoelectric composites for wireless power transfer in neural 
implantation. This is accomplished herein by studying different 
types of biocompatible encapsulants for magnetoelectric devices, 
their impact on the output voltage of the composites, and the 
rigidity of the materials in the context of tissue damage. 
Simulation results indicate that a polymer encapsulant, rather 
than creating a substrate clamping effect, increases the voltage 
output of the magnetoelectric, which can be further improved by 
careful polymer selection. These attributes are modelled using 
the finite element method (FEM) with COMSOL Multiphysics. 
The addition of a 0.2 mm poly(ethyl acrylate) encapsulating layer 
increases the piezoelectric voltage to 3.77 V AC output at a 
magnetic field strength of 200 Oe, as the magnetostrictive layer 
deforms inside the flexible outer polymer. Comparing voltage 
conditioning circuits, the output is sufficient for low-voltage 
neuronal stimulation when employing a simple bridge rectifier 
which boasts minimal charging time and ripple voltage lower 
than 1 mV. 

Keywords— Implantable electronics, Magnetoelectric, 
Polymer composites, Wireless power.       

I. INTRODUCTION

Implantable medical devices require tens of µW to a few 
mW which may be provided by an implanted battery with a 
life span of only a few years. Alternatively, wireless power 
transfer (WPT) systems employ rigid ceramics for ultrasonic 
power harvesting, traditional or flexible PCBs for 
electromagnetic coupling, biocompatible solar panels [1], or 
metamaterial-based WPT [2]. Magnetoelectric power 
harvesting presents an opportunity for flexible, miniaturised 
devices for implantation in future. 

Magnetoelectric (ME) coupling creates a change in 
polarisation (P) of a material for an applied magnetic field (H). 
The figure of merit for these materials is the ME coefficient, 
α, in which the value k acts as the “interfacial coupling 
parameter” for layered composites [3], and defined as  

!"
!#
=	𝛼$% =	𝑘&𝑒'𝑒, (1) 

where, this parameter is in turn multiplied by the 
piezomagnetic (em) and piezoelectric (e) coefficients [4]. 

Composites, comprised of magnetostrictive and 
piezoelectric materials, generate considerable power outputs 
compared to single phase ME, which are severely limited in 
their output power. Comparatively, composites offer a range 
of different structures. Piezoelectric rods in a magnetostrictive 
filler create a robust 1-3 pattern [5] (Fig. 1a). Polymers may  

Fig. 1 (A) Piezoelectric ‘rods’ embedded in magnetostrictive material (1-3 
geometry). (B) Microcomposite (described herein as ‘spheres’), which may 
take the form of piezoelectric and magnetostrictive particles set in a polymer 
(0-3). (C) Standard laminate ME bilayer, with magnetostrictive on top, 
piezoelectric below (2-2, described as ‘layers’). (D-F) von Mises stress of 
each geometry at resonant frequency, with constant DC magnetic bias and AC 
amplitude. 

be mixed with either particles of magnetostrictive material 
alone, or also include piezoelectric particles, as shown in Fig. 
1b. Layered composites (Fig. 1c) have the lowest current 
leakage [3] and may be produced from thin films [6]. The 
geometry significantly impacts the stress in the ME for the 
same magnetic field (Figs. 1d-f). 

ME antennas may be aggressively miniaturised [7], and 
the impact of ME antenna rigidity is somewhat mitigated by 
its potentially micrometre scale. However, polymer-based ME 
devices with useful output voltages are emerging, though they 
typically cannot compare with more traditional laminate 
designs. Polymer ME are especially attractive as implants 
located on or underneath the skull, which must be conformable 
to reduce damage to the skin or brain surface. 

A rigid trilayer with a volume of 1.26 mm3 is fabricated in 
[8] with an output power of 42.7 mW, adhering to safety
standards for magnetic field exposure. Rod-based ME are
modelled in [9] and fabricated in [5]. Particle composites are
also modelled in [9], which produced the results expected
from literature for the 0-3 (38.4 mV/cmOe) and 1-3 (~1.5
V/cmOe) case, with CFO as the MS material.

One of the most common piezoelectric ceramics is lead 
zirconate titanate (PZT), which has been proven as 
biocompatible during acute in vitro tests. For the chronic case, 
elution of PZT in biofluids highlights the high concentration 
of lead which could cause tissues to become cancerous [10]. 
To prevent tissue damage, the impact of biocompatible 
encapsulation on the output voltage is explored, with a 
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recommendation on the ideal polymer characteristics for 
increased voltage. 

II.       METHODOLOGY 
For this research, the COMSOL simulation required three 

physics solvers: Solid Mechanics, Magnetic Fields, and 
Electrostatics. The piezoelectric effect is captured by the 
Multiphysics coupling of Solid Mechanics with Electrostatics, 
and the magnetostrictive effect is captured by the coupling of 
Solid Mechanics and Magnetic Fields. Further to this, the 
setup included a permanent magnet to produce the DC bias; a 
Helmholtz coil which generates the AC perturbation; and a 
finite sphere of air. 

The permanent magnet was created by applying an 
Ampère’s law condition to the domain with a positive 
magnetization (M) in the y-axis, to override the original 
Ampère’s law which was automatically applied to all domains. 
Two multi-turn circular coils were introduced as the 
Helmholtz coil. 

In preparing the three main geometries for the 
Multiphysics simulations, a JavaScript named pack-spheres 
[11] was used to define the centre points of the particle 
composite materials, which were subsequently transferred to 
SOLIDWORKS, with the mesh exported to COMSOL. To 
reduce computational time and ensure the minimum mesh 
element size was suitable for a model built inside an air sphere 
with a radius of 1 m, each ME cube had sides of 1 cm. Both 
the spheres and rods had radius 1 mm, while the laminate 
structure was designed with two layers of equal thickness. In 
the case of the microcomposite, there were an equal number 
of magnetostrictive (MS) and piezoelectric (PE) particles set 
in a piezoelectric polymer. 

Simulation parameters for the three ME materials were 
limited by the availability of key values in the literature. The 
magnetostrictive material values corresponded to Hitachi 
2605SA1 Metglas. However, the B-H curve for this material 
was not included as a COMSOL material: in its place, the 
curve for 2605S3A-HFA was used. These are both iron-based 
materials with similar saturation magnetostriction values. The 
piezoelectric material was chosen as PZT-5H, with PVDF 
acting as the weakly piezoelectric polymer. The Young’s 
moduli for each of the relevant materials is displayed in Fig. 
2, beginning with soft brain tissue. 

Key aspects of the simulation setup include specifying a 
Fixed Constraint boundary condition on the surfaces which 
should be clamped, creating a Ground and Floating Potential 
on opposite faces of the piezoelectric layer, and defining the 
poling direction of the piezoelectric. By default, the poling 
direction aligns with the z-axis of the model. In contrast, the 
magnetization in this model was along the y-axis, creating a 
simple longitudinal-transverse structure. 

Initially, the magnetization (M) of the magnet was swept 
to illustrate the effect of DC bias for each of the geometries. 
Frequency sweeps were also performed to find the maximum 
output voltage with optimum DC bias and an AC magnetic 
field produced by the coil with 100 turns excited by 0.1 A. 

 
Fig. 2. For all materials presented here, the modulus is at least two orders of 
magnitude higher than brain tissue. Thin films may go some way to reducing 
the impact of rigid ME implants on tissue damage. Polydimethylsiloxane 
(PDMS), poly(ethyl acrylate) (PEA), polyvinylidene (PVDF), polyimide (PI), 
lead zirconate titanate (PZT-5H). 

Subsequently, the AC Helmholtz coil was excited with 
parameterised current I0 at the relevant resonant frequency and 
the voltage output plotted against the applied magnetic field. 
From this linear graph, the ME coefficient can be calculated 
by dividing the gradient of the line by the thickness of the 
piezoelectric layer [12]. A bias field was selected for the 
bilayer which could produce a resonant peak with the 
approximate magnitude of 1 V. While this constraint produced 
a lower value for the DC bias field, improved material 
selection would yield a magnetostrictive material with a bias 
field which would conform to medical guidelines. 

To investigate the clamping effects of a biocompatible 
encapsulant on a laminate ME, the thickness of three key 
biocompatible polymers (PDMS, PI, and PEA) was varied. 
Further to this, a model encapsulant material was created to 
investigate the effect of polymer density, Young’s modulus 
and Poisson ratio on the voltage output, as these represented 
the three variables which changed with each of the three key 
polymers. 

Once the voltage amplitude and phase were gleaned from 
the PEA-encapsulated example case, the ME voltage was 
modelled as a standard AC source. When this voltage source 
was combined with a bridge rectifier and Cockcroft-Walton 
multiplier, the voltage outputs, ripple voltages and charging 
periods were compared. 

III.       RESULTS AND DISCUSSION 

A. Comparison of ME Geometries 

It is clear from Fig. 3 that the 1-3 geometry has the largest 
resonant voltage, and as such would require the lowest bias 
field for a given output voltage. In the case of 1×105 A/m 
magnetization, it is important to note that the permanent 
magnet induces a magnetic field with an amplitude of 56.3 Oe, 
or 4.48 kA/m. Comparatively, the IEEE standard for exposure 
to magnetic fields above 3 kHz is limited to 163 A/m [13]. 

An important observation must also be made on the effect 
of an AC perturbation at the resonant frequency. Despite  
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Fig. 3. (A) For the three key geometries, the effect of increasing DC bias indicates that the 1-3 ‘rods’ show the greatest sensitivity, with a significantly higher voltage 
output compared to the spheres and bilayer. (B) With the magnetization of the permanent magnet in the y-direction equal to 1E5 A/m, the resonant peak of each 
geometry is shown here: 100 kHz, 60 kHz, and 200 kHz for the rods, spheres, and layers respectively. (C) ME constant calculated for the same bias field as part (B). 
The microcomposite or ‘spheres’ shows an improved value compared to the simple bilayer

having the lowest resonant voltage, the highest peak of the 0-
3 geometry is 103.5 times larger than the mean (non-resonant) 
voltage between 2-200 kHz, whereas the same ratio for the 1-
3 geometry equals 37.45. The maximum ME coefficient of the 
0-3 geometry is 16 mV/cmOe, less than half of the simulated 
voltage coefficient as reported by Sun et al. [9] for a CFO-
based ME device. This indicates a stronger correlation 
between the AC field magnitude and output voltage for the 
composite material when compared to the bilayer. The strong 
peak at 100 kHz for the 1-3 geometry corresponds to an ME 
coefficient of 101 mV/cmOe, which is less than 10% of the 
previously reported value [9]. 

 
B. Polymer Encapsulant Investigation 

The simple bilayer was chosen to perform encapsulation 
simulations, to reduce computation time. Fig. 4 illustrates the 
voltage output for a range of encapsulating layer thicknesses 
(0.2-1 mm), for three biocompatible polymers. In the first 
instance, the resonant voltage of the encapsulated device was 
higher than the unencapsulated device (Fig. 4a). The 
encapsulant also shifted the peak frequency of the ME device 
down from 200 kHz by a maximum of 40 kHz.  

(A)

 

(B)

 
(C)

 

(D)

 
Fig. 4. Frequency sweep for encapsulated ME devices with varying 
thicknesses. In each case, there is an optimum value: 0.4 mm for PDMS, 0.6 
mm for PEA, and 1 mm for PI. 

To retain the clamping condition on the top and bottom 
faces of the ME device, the Fixed Constraint conditions were 
instead placed on the corresponding faces of the encapsulant. 
This allowed the magnetostrictive layer to deform within the 
flexible polymer. As suggested in [14], in which an ME device 
was coated with parylene-C, the polymer introduces 
“increased mechanical coupling.” Voltage outputs from the 
model parameterised polymer are shown in Fig. 5. 

Table 1 illustrates that for each parameter, PEA aligns 
closest to the ideal value. This corresponds to the earlier 
simulations in which the 0.6 mm thick PEA layer voltage 
output was more than 2 V higher than the maximum PI value 
(Fig. 4c-d). The significantly lower voltage output for the 
PDMS-coated ME (Fig. 4b) did not align well with the 
expected outcome. In addition, the shape of the voltage peak 
suggested that the maximum voltage for the PDMS-ME would 
occur between 160 and 180 kHz. For a frequency of 175 kHz, 
and the 0.8 mm case, the PDMS-ME voltage was 3.77 V. The 
optimum polymer thickness corresponded to the maximum 
stress in the bilayer. 
TABLE 1. COMPARISON BETWEEN IDEAL AND REAL MATERIAL PROPERTIES. 

Polymer Young’s modulus 
(Pa) 

Poisson’s ratio 
(1) 

Density 
(kg/m3) 

Ideal 1E7 0.2 1100 
PDMS 7.5E5 0.49 970 
PEA 2.18E6 0.3 1210 

PI 3.1E9 0.34 1300 
 

C. Voltage Rectification and Smoothing 

The AC voltage output of an ME device must be rectified 
and smoothed for the purposes of neuronal stimulation. Low 
voltage devices deliver 1-4 V, while 5-10 V is classed as high 
voltage stimulation [15]. As such, the example case for a PEA-
coated (0.2 mm encapsulant thickness) bilayer was modelled 
in PSpice as a 3.77 V 160 kHz AC voltage source (see Fig. 6). 
Using a bridge rectifier and smoothing capacitor, this was 
reduced to 2.94 V DC with a ripple voltage of 0.90 mV. By 
contrast, a single-stage Cockcroft-Walton voltage multiplier 
with the same capacitor values delivered 3.80 V with a ripple 
voltage of 56 mV.  
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Fig. 5. Parameterised values for the Young’s modulus, Poisson’s ratio, and density illustrated a clear improvement in the output voltage for values summarised in 
Table 1. While one of these parameters was swept, the other two values were kept constant at E = 1E7 Pa, ν = 0.3, and ρ = 900 kg/m3. For each simulation, the 
solver mesh, bilayer setup, and layer thickness were unchanged. 
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Fig. 6. (A) Bridge rectifier and smoothing capacitor. (B) Single-stage 
Cockcroft-Walton voltage multiplier. (C) Output showing maximum voltage 
and charging period. (D) Ripple voltage around 1 mV for both circuits. 
Diode selection based on [16]. 

For comparable charging times, the bridge rectifier has a 
much lower ripple voltage, and a reduced voltage output. 
Increasing the capacitor size for the Cockcroft-Walton circuit 
would not only increase the charging time, but the physical 
size of the components. Since both voltage outputs are suitable 
for low-voltage stimulation, the rectifier is preferable. 

IV. CONCLUSION 
The impact of geometry and encapsulation on an ME 

device was explored for the purposes of ascertaining their 
suitability for implantable neuronal stimulation. Despite the 
rigid materials employed in the 1-3 geometry, it has the 
highest voltage output for a reduced bias field. Subsequently, 
it is shown that polymer coating may be used to maximise the 
deformation of the MS and increase the output voltage, while 
PEA is the superior choice in this case. This represents an 
important opportunity to improve the performance of ME 
composites. Finally, a bridge rectifier would be well suited to 
low-voltage neuronal stimulation, with reduced ripple and 
charging time compared to the Cockcroft-Walton multiplier. 
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