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Abstract—Smart electronic contact lenses typically integrate
communications modules, electronic circuitry, sensors and an
energy storage reservoir. These smart contact lenses can be
used in medical applications that include monitoring patient
glucose and intraocular pressure (IOP). However, due to the
health hazards associated with chemical batteries, as well as
the inconvenience of consistently charging the energy storage
reservoir, a sustainable and reliable energy harvesting system is
required. Therefore, the aim of this research is to design and
develop an optimised harvester for a contact lens application. In
fact, this paper introduces a novel hybrid microenergy harvester
concept, which aims to produce sufficient electricity to power an
electronic contact lens using light and electromagnetic radiation
that are scavenged from photovoltaic cells and radio frequency
technology.

Index Terms—Contact Lens, Energy Harvesting, Wearable
Electronics

I. INTRODUCTION

Advancements in the microelectronics industry have en-
abled the integration of electronic components on soft contact
lenses. Therefore, these smart or electronic contact lenses can
be used as effective health monitoring platforms for measuring
glucose [1] and intraocular pressure (IOP) [2]. However, to en-
sure uninterrupted and long term monitoring of patients, these
platforms require self-sustainable and autonomous power. This
can be achieved using energy harvested from the lens’ external
environment. Moreover, a hybrid microenergy harvester that
combines the advantages of more than one harvester, while
mitigating the limitations of each, is particularly beneficial for
such an application.

Based on the power requirements of the smart contact lens,
we have therefore selected two different kinds of microenergy
harvesters. We also demonstrate the feasibility of combining
these harvesters in a hybrid method to ensure continuous and
self-sustainable power supply.
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Various energy harvesting solutions have been proposed in
the literature for smart contact lenses. For example, Yuan et
al. demonstrated a wireless health monitoring contact lens
powered by radio frequency (RF) [3]. In addition to RF energy,
an abiotic glucose fuel cell was devised by Frei er al.. These
researchers explored the feasibility of harvesting energy from
metabolites in tear fluid [4]. Moreover, the concept of using
flexible solar cells on contact lenses has been previously
proposed by de Roose et al. [5]. Despite their intermittent
nature, these cells are particularly attractive for wearable
applications due to their high energy density. Consequently, we
will explore the use of solar and RF energy sources for a smart
or electronic contact lens. This combination of harvesters is
particularly attractive, since the amount of harvestable energy
is predictable [6].

According to the literature and depending on the application,
the total power consumption of an electronic contact lens
varies between 0.14uW and about 25uW [S], [7]-[9]. The
power consumption of the lens’ driver chip depends on its pro-
cess, architecture and frequency. To design a self-sustainable
contact lens system, the ideal power consumption should be
no more than 10pW. Figure 1 shows our proposed design for a
self-powered contact lens based on solar cells and RF energy
harvesters.

In the subsequent section, we will describe our methodology
in developing the harvester and assess the benefits as well as
the drawbacks of these different power solutions.

II. METHOD

To design the hybrid harvester, we will develop a multi-
physics simulations model of the system, which will be used
to optimise the harvester design. The simulations model will
be compared with experimental data. For the purpose of our
simulations, we will rely on the use of either COMSOL or
FlexPDE. These tools will be used for optimising the design
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Fig. 1. Self-powered contact lens with hybrid energy harvesters

of RF harvesters in combination with solar cells. The power
management unit will include a rectifier circuit, low pass
filter and low dropout regulator (LDO). These components
ensure the stability of the output voltage to the contact lens
components.

A. Solar Energy

Solar cells are among the highest energy density harvesters
available today. For outdoor applications, typical power con-
version efficiencies (PCE) for AM1.5 conditions vary between
10.5% for thin film crystalline materials to 26.7% for silicon
solar cells [10]. However, these PCE are for rigid materi-
als, which are non ideal for wearable contact lens applica-
tions. Moreover, solar energy harvesting is intermittent and
is severely reduced in indoor or implantable conditions. For
example, Zhao et al. indicated that the amount of harvestable
power in a 6mm? implantable solar cell is approximately
84uW [11], [12]. Thus, an additional harvester is required to
overcome these limitations.

B. RF Energy

Harvesting RF energy from surrounding electromagnetic
radiation ensures that power is not intermittent. In that case,
a loop or spiral antenna at the edge of the contact lens can be
used. In the literature, when a contact lens with integrated
antenna was placed 1.0 m away from a 1 W RF source,
it could harvest around 100uW in free space. In a saline
solutions, the received power dropped to nearly 10uW [13].
These experiments demonstrate that RF energy might not be
sufficient to satisfy the power requirements of an electronic or
smart contact lens. However, it can be used to overcome the
intermittent nature of solar energy harvesters.

III. CONCLUSIONS

The design of a microenergy harvester for a wearable
contact lens application first requires an understanding of the
typical power requirements. Moreover, the size and design
of electronic components and circuitry need to be arranged
to overcome vision blocking. Additionally, the harvester
needs to ensure continuous power supply. Despite the high
energy density of solar cells, they are intermittent in nature,
which means that little or no energy can be harvested during
indoor conditions or at night. Consequently, additional energy

sources are required to compensate for this power shortage.
Accordingly, harvesting electromagnetic radiation using RF
harvesters may be a feasible option. Consequently, we have
demonstrated a novel concept for harvesting energy in a smart
or electronic contact lens using a combination of solar cells
and RF harvesters. Such a harvester needs to be compact
and yield a high energy density. Our future work involves
developing a multiphysics model to simulate and optimise
the hybrid microenergy harvester.
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