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Abstract—Aligning the entire genome of an organism is a
compute-intensive task. Pre-alignment filters substantially re-
duce computation complexity by filtering potential alignment
locations. The base-count filter successfully removes over 68%
of the potential locations through a histogram-based heuristic.
This paper presents FiltPIM, an efficient design of the base-
count filter that is based on memristive processing-in-memory.
The in-memory design reduces CPU-to-memory data transfer
and utilizes both intra-crossbar and inter-crossbar memristive
stateful-logic parallelism. The reduction in data transfer and
the efficient stateful-logic computation together improve filtering
time by 100x compared to a CPU implementation of the filter.

I. INTRODUCTION

DNA sequencing, the process of reading the genome of
a given organism, is the foundation of many scientific and
medical discoveries. For example, human genome sequencing
enables personalized medicine and early diagnosis of genetic
diseases [1]. A genome is a sequence of the bases [A, T, G, C],
with the human genome being composed of approximately 3.2
billion bases. As reading the entire DNA sequence at once is
infeasible for large-scale genomes, DNA sequencers typically
extract sub-sequences called reads. These reads are orders of
magnitude shorter than the whole genome sequence, ranging
from dozens of bases for short reads to thousands of bases
for long reads [2]. This work focuses on short reads.

DNA sequencing typically extracts numerous short reads,
ranging from hundreds of millions to billions for the human
genome. Then, through read mapping, a step towards the
genome assembly, the reads are aligned to a reference genome
of a similar organism. Many previous works have accelerated
read mapping on CPU [3]-[5], GPU [6], [7], and FPGA [8],
[9]. Standard hardware, however, suffers from the massive
amount of data transfer between the memory and the process-
ing unit (memory wall bottleneck). Therefore, processing-in-
memory (PIM) platforms have gained interest. Such platforms
inherently support parallel logic on sets of data residing in
memory without the need to read the data, thereby reducing
the memory wall bottleneck [10].

Read mapping can be divided into the indexing, pre-
alignment filtering, and sequence alignment stages, as shown
in Figure 1. To guide the mapping process, a full reference
genome of a similar organism is utilized. Initially, the indexing
stage generates potential locations on the reference genome
for each read. We focus on the pre-alignment stage, where
the similarity between a DNA read and reference fragments
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Fig. 1. DNA sequencing pipeline, demonstrating the indexing, prealignment
filtering, and sequence alignment stages. Figure adapted from [1].
© 2020, IEEE.

is evaluated via heuristics. This stage filters false-positives for
the computationally-intensive optimal sequence alignment.

Pre-alignment filtering aims to remove potential locations
with edit distance above a certain predefined edit threshold
(eth) compared to the read. Edits may be substitutions, inser-
tions, or deletions. They are allowed due to genome variations
among different organisms as well as sequencing errors. The
base count filter [1] is a pre-alignment filtering algorithm
that discards more than 68% of the potential locations by
using a histogram-based heuristic for similarly comparison.
Crucially, the base-count filter does not harm the sensitivity
of the mapper as it does not discard true locations.

The base count filter operates on massive amounts of data,
which makes it suitable for PIM. In this paper, we present
FiltPIM, a memristive processing-in-memory accelerator that
efficiently implements this filter. The PIM capabilities of
FiltPIM are based on memristive stateful logic [11]. Stateful
logic provides inherent inter-crossbar and intra-crossbar paral-
lelism. By reducing data transfer and exploiting both types of
parallelism, FlitPIM reduces filtering time by 100x compared
to the CPU implementation of the filter.

II. MEMRISTOR-AIDED LoGIC (MAGIC)

Memristive stateful logic is a PIM concept for representing
data with resistance and performing logic operations on the
resistances using the same cells in a memristive memory cross-
bar array [12]. One of the classic stateful logic techniques is
MAGIC [11]. MAGIC implements logic gates using memristor
cells within the same row (or within the same column) of
a memristive crossbar array, see Figure 2. The inputs of the
MAGIC gate are the states (resistance) of the input memristors
prior to the computation, and the output is the resistance
of the output memristor after computation. MAGIC NOR
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TABLE I
MAGIC OPERATIONS
Operation Cycles/bit Notes
NOR/NOT 1 NOT is a I-input MAGIC NOR
Copy 2 NOT(NOT(cell))
Half Adder 5 [15]
N-bit Adder 9-N+1 [14]
N-bit Subtractor 9-N+1 [16]
Popcount for 100 bits 414 Section II
N-bit MUX(X, Y, sel) 4-N ((z5 + sel’) + (y; + sel)’)
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Fig. 2. (a) MAGIC NOR gate. (b) Parallel mapping of the MAGIC NOR
gate to crossbar array rows, and (c) parallel computation across crossbars.
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Fig. 3. Calculating the popcount of a 4-bit column using MAGIC NOR/NOT.

is executed in two steps (clock cycles): (1) initializing the
output memristor to logical 1’ (low resistance), (2) applying
a voltage Vj across the gate.

MAGIC supports inherent parallelism as the same in-row
gate can be performed in parallel across multiple rows (see
Figure 2(b)) and across multiple crossbars (see Figure 2(c)).
Table I lists different operations that are implemented using
MAGIC NOR gates and specifies the number of cycles they
require per single bit operands (initialization cycles are not
included, as different initialization can be executed in parallel
in the same clock cycle [13]). All operations, except Popcount
(count 1’s in a given column), are straightforward.

Popcount is a special case of the reduction algorithm
introduced by Ronen et al. [14]. The algorithm is based on
a recursive-tree technique that pairs up numbers and accumu-
lates them in parallel, as seen in Figure 3. The first iteration
is to add each two vertically adjacent numbers by aligning
them in the same row (steps la, 1b, 1c in Figure 3), and then
summing them (step 2). We iteratively continue with summing
the vertically adjacent results (steps 3a, 3b, 4). In the last
iteration, we will the sum of all bits residing at the end of the
first row. A popcount of 100 bits requires 414 cycles.

ITII. BASE COUNT FILTERING

The base-count filter introduced by Wendi et al. [17],
aims to discard locations that have more than eth (edit-
threshold) edits. The filter is based on comparing the base-
count histograms of the read and the potential location. For
each base type B € [A,T,G,C], the base error is defined
as the absolute value of the count differences for the base.
These base errors are accumulated to receive a single error.
If that error is greater than 2 - eth, then the read and the
potential location must have an edit distance of at least eth

and thus the potential location is discarded. As histograms
are not influenced by permutation, then the heuristic does not
remove all locations with more than eth errors.

CPU implementations of the filter, such as GASSST [18],
limit the comparison to a sub-sequence of the read to reduce
computation complexity. In FiltPIM, we exploit the parallelism
of the memristive crossbars to compare base count for the
entire read, thus ensuring higher precision (higher number of
discarded locations) while reducing the execution time.

To evaluate the efficiency of the filter, we incorporate a
CPU implementation of the algorithm into mrFAST [19], a
state-of-the-art read mapping tool. Various human-genome
data-sets with 100-base reads were considered: ERR240726_1,
ERR240727 1, and ERR240730_1'. The filter successfully
discards more than 68% of all potential locations, while not
affecting the sensitivity of the mapper as no true locations
were discarded.

IV. BASE-COUNT FILTERING WITHIN A MEMRISTIVE
MEMORY ARRAY

In this section, we demonstrate an implementation of the
filtering algorithm within a single memristive crossbar array.
The array is structured to support reads of length up to 100-
bases, yet it can be expanded to support other lengths.

We consider 128x256 arrays. 128 rows allow pre-storage
of 100 bases of a reference genome within a column while
reserving the remaining cells for temporary storage. The 256
columns enable pre-storage of a significant portion of the
reference genome within each array: 65 - 100 = 6500 bases,
implying 130 columns as two adjacent bits are used to rep-
resent each base. An array is selected to participate in the
filtering only when a fragment of the sequence containing
the potential location fully resides within that array. The
selected array receives the base-count histogram of the read
(the number of occurrences of each base type [A, G, C, T])
and the exact potential location to be checked (a total of
4 x 7+ 32 = 60 bits), and returns true if the location is
to be discarded (returns 32 bits location + 1 bit result). To
check the location, a series of operations inside the array are
executed (see Figure 4):

e Step 1: For each base type B, the number of occurrences
for B in the read, Rp, is stored to reserved cells in the
array. 2 cycles to store each value. 8 cycles in total.
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Fig. 4. Base-count filtering within a memristive memory array. The steps in black are explained in detail in Section IV.
Step 2: A NOT operation is performed on the reference TABLE II
genome fragment of length read_length, starting at BASE COMPARISONS
potential_location, to copy it (inverted) to column P. It ~Compare “ab” | #Cycles Function Notes
is done in two steps, as the bases of the sub-sequence may against
span over two different 2-bit columns. Note that the bases NOT(A) 3 NOR(NOR(a), NOR(D))

. . . NOT(T) 1 NOR(NOR(a), b) NOR(a) already
will not overlap horizontally (as the number of bases in computed
each column is each to the read length). 4 cycles in total. NOT(G) 1 NOR(a, NOR(b)) NOR(b) already
Step 3: For each base type B, P is compared against computed

NOT(C) 1 NOR(a, b)

NOT(B). Each base is represented by two bits, as
follows: A="00", T="01”, G="10”, C="11". For each
type B, a different function is performed to compare a
base against it, as listed in Table II. 6 cycles in total.
Step 4: For each base type B, the matches of B in P are
counted by popcounting the 100-bit columns computed
in step 3. 1656 cycles in total.

Step 5: For all base types, the base counts in a potential
location’s sequence and in the read are aligned by copying
the results from step 4 to column X. Two NOTs are
performed to copy each result. 8 cycles in total.

Step 6: For all base types, in parallel, perform Sg — Rp
and then compute their 2’s complement (Rp — Sg) by
inverting all bits followed by performing Half Adder (HA)
8 times along the bits. 111 cycles in total.

Step 7: For all base types, in parallel, calculate |Sp —
Rp| by choosing the non-negative value between both
values calculated in step 6. To do this, we apply a MUX
operation (see Table I), where the most significant bit
(msb) of the result in column Y; is the selector. The result
in column Y5 is X and the result in column Yj is Y. If,
for example, the selector is *0” (msb(s,_r,) = 0), we
conclude that (Sp — Rp) > 0 and that this value shall
be chosen. 28 cycles in total.

o Steps 8-11: Addition is performed between all differences
in counts (four values in column Z). This is performed
in two iterations. In each iteration each two vertically
adjacent values are aligned in the same row, and then
full-adder (FA) is performed. 153 cycles in total.

e Step 12: The sum of all differences in count is subtracted
from the pre-defined constant (2-eth). 72 cycles in total.

o Step 13: Read out the msb of the final result of step 12.
1 cycle in total. If the msb of the result is ’1°, meaning
the sum of differences in counts is greater than twice the

error threshold, then the potential location is discarded.

In summary, using in-crossbar array operations, the validity
of a potential location for a given read can be checked in less
than 3000 MAGIC-NOR cycles including initialization cycles
(less than 2000 cycles without initialization cycles).

V. EVALUATION

To evaluate FiltPIM, we compare its performance against a
CPU-based implementation of an equivalent base-count filter.
The advantage of FiltPIM originates from its massive intra-
crossbar and inter-crossbar parallelism, and from the reduced
CPU-to-memory data transfer.



TABLE III
EVALUATION RESULTS FOR FILTPIM

[ ] Compute [ Notes [ FIPIM |
a Cycle time (ns) [14] 10
b PIM Crossbars 500, 000
c Latency per iteration (cycles) 3,000
d Latency per iteration (ns) axc 30,000
e # Potential locations 46 - 109
f # Tterations 5 x (e/b) T| 460,000
g Total latency (sec) dx f 13.8
[ ] Transferred Data [ [ |
h | Transfer per potential location (B) | data in&out | 8 45 = 13
1 Data transfer rate (GB/sec) 10
] Total data transferred (GB) hXxe 598
k Data transfer latency (sec) j/i 59.8
[ ] Total Time (sec) [ k+g [ 73.6 |

I Tterating 5 times the average locations per crossbar (5 - 46G /500K =
460K) in each crossbar, covers over 99% of all locations, decreasing
the filter’s efficiency by less than 0.7% (inferred from the locations
distribution among the crossbars).

The human genome consists of approximately 3.2 billion
bases. We pre-store the genome in 500,000 crossbars, each
containing 64+1=65 read-size (100 bases) fragments. The
genome portion within a crossbar has dimensions 100 rows x
130 colummns. The first and the last fragments in each crossbar
overlap with the neighboring crossbars to guarantee that each
potential-location fragment resides in a single crossbar.

A set of human-genome reads (ERR240727_1) is consid-
ered. When aligning the reads against a human genome refer-
ence (humanGIKv37), the indexing stage of mrFast provides
a total of 46 billion potential locations.

To evaluate the improvement of FiltPIM over CPU, we
developed an optimized standalone implementation for the
base-count filter, and measured the latency for checking 46
billion potential locations. The tool was executed on an
Intel(R) Xeon(R) CPU E5-2683 v4 at 2.1 GHz, with 256GB
of DRAM, 2400MHz DDR4, 2x 1TB HD and 480GB SSD.
We observed total latency of approximately 7360 seconds, of
which 70% are for data transfer and 30% for computation.

We analyzed FiltPIM performance using the algorithm from
Section IV. We assumed the same CPU-to-memory interface
(2400MHz DDR4). The actual data transfer rate may depend
on the full architecture of FiltPIM, which is out of scope for
this paper. Therefore, we assumed 10 GB/s, about half of the
peak performance rate for DDR4 2400 (19.2 GB/s). Table III
summarizes the results.

The results show that FiltPIM is faster than the CPU on
both the computation time (160x) and the data transfer time
(86x). In total, it reaches a speedup of 100x over the CPU.

We use the Bitlet model [14] to evaluate the power con-
sumption of FiltPIM. According to Bitlet, simultaneous oper-
ation of 1000 arrays, each using up to 100 rows, consumes 1W.
If we set the power budget limit at I00W, only 100K arrays can
operate simultaneously. This increases the compute (total) time
by 5x (1.75x). Figure 5 shows how increasing the number of
arrays working in parallel in FiltPIM affects its performance.
For over 200 working arrays, FiltPIM outperforms the CPU.
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Fig. 5. Execution time of two platforms running the same filter, the CPU and
FiltPIM. Lower latency means better performance.

VI. CONCLUSION

A base count filter improves the performance of DNA read
mapping by reducing the work for the computation-intensive
sequence alignment stage. This paper introduces FiltPIM, a
novel PIM base-count filter that accelerates filtering by 100x
compared to a CPU based base-count filter. This gain is due to
reduction in CPU-to-memory data transfer and to the massive
parallelism enabled by memristive crossbars. In future work,
we aim to build a complete architecture for FiltPIM and
measure its benefit to the entire read mapping pipeline.
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