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†Dept. Informática e Ingenierı́a de Sistemas - I3A, Universidad de Zaragoza, Zaragoza, Spain
§Department of Quantum and Computer Engineering, Delft University of Technology, Delft, The Netherlands
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Abstract—This paper optimizes the MNEMOSENE architecture,
a compute-in-memory (CiM) tile design integrating computation
and storage for increased efficiency. We identify and address
bottlenecks in the Row Data (RD) buffer that cause losses in
performance. Our proposed approach includes mitigating these
buffering bottlenecks and extending MNEMOSENE’s single-
tile design to a multi-tile configuration for improved parallel
processing. The proposal is validated through comprehensive
analyses exploring the mapping of diverse neural networks
evaluated on CiM crossbar arrays based on NVM technologies.
These proposed enhancements lead up to 55% reduction in
execution time compared to the original single-tile architecture
for any general matrix multiplication (GEMM) operation. Our
evaluation shows that while ReRAM and PCM offer notable
energy advantages, their integration with scaled CMOS is
limited, which leads to VGSOT-MRAM emerging as a promising
alternative due to its good balance between energy efficiency and
superior integration capabilities. The VGSOT-MRAM crossbar
arrays provide 12×, 49×, and 346× more energy efficiency than
PCM, ReRAM, and STT-MRAM ones, respectively. It translates,
on average for the considered workload, in 1.5×, 3×, and 14.5×
better energy efficiency of the entire system.

Index Terms—Compute in Memory, NVM, Memristor, MRAM,
Convolutional Neural Networks, Machine Learning.

I. INTRODUCTION

In the pursuit of improving the energy efficiency and compu-
tational prowess of future generations of computers, the focus
has steadily shifted towards compute-in-memory paradigms.
Contrasting the traditional von Neumann architecture that
segregates computing and memory units, in-memory computing
seamlessly integrates these units to yield significant energy
savings. A vast body of research has already been undertaken
on the design of memory arrays and their peripheral circuitry,
with various emerging NVM technologies, such as resistive
RAM (ReRAM), phase-change memory (PCM), spin-transfer
torque magnetic RAM (STT-MRAM) or voltage gate assisted
spin-orbit torque magnetic RAM (VGSOT-MRAM) under
exploration [1], [5], [8], [11].

One of the distinctive architectures in this domain is the
compute-in-memory-periphery (CiM-P) tile [9], [10], where
storage and computation are performed in the analog memory

array, with the resultant data delivered in the digital periphery.
This approach not only promotes energy efficiency but also
presents a more streamlined operational model.

The MNEMOSENE CiM architecture is an epitome of this
approach, featuring a NVM array and peripheral circuitry with
a defined instruction-set architecture (ISA) for bridging higher-
level programming languages to the underlying circuit designs
[9], [10]. Nevertheless, as cutting-edge as the MNEMOSENE
architecture is, there remains room for improvement. This
paper focuses on the shortcomings of the current design,
particularly concerning the memory transactions to internal
buffers constrains and single-tile architecture limitations.

This paper’s key contribution is threefold: We first propose
to revisit the current internal buffering in the MNEMOSENE
tile architecture to address the bottleneck issues caused by
expensive system memory requests. To this end, we suggest
implementing a double input buffer to decouple the data load to
the tile from the analog computation, alleviating such bottleneck
issues. This adjustment aims to reduce performance overheads
and enhance energy efficiency.

Secondly, we introduce enhancements to the MNEMOSENE
design enabling a multi-tile architecture. These enhancements
involve designing a shared scratchpad memory and an efficient
interconnection framework. By optimally sizing both the
scratchpad and the interconnection we can further mitigate
unnecessary delays, ensure efficient data retrieval, and enable
seamless synchronization across multiple tiles; thus augmenting
its computational capabilities.

Finally, to validate the proposal, we perform a comprehen-
sive analysis of both small and large convolutional neural
networks (CNNs), ranging from TinyML and AnalogNet
to more extensive networks like Nasnet and Resnet. The
performance of these CNNs under the enhanced MNEMOSENE
architecture provide valuable insights into the potential of
our proposed modifications. Finally, we perform an extensive
evaluation using in-house MRAM technologies, such as STT-
MRAM and VGSOT-MRAM, and state-of-the-art PCM and
ReRAM. This evaluation offers a broader perspective on the
implications of our proposed enhancements. The comprehensive
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(a)  Original single-tile architecture (c)  Proposed multi-tile architecture
(d)  Mapping a CNN model

to a multi-tile architecture
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(b)  Proposed single-tile architecture
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Fig. 1: CiM intra-tile and multi-tile organization. (a) MNEMOSENE original architecture, (b) double-buffer proposal, (c)
proposed multi-tile organization, and (d) mapping a CNN model to the multi-tile architecture. We highlight how after a CNN
is transformed to be computed as a GEMM using im2col, the different filters in a layer are distributed into a group of tiles.
Independent layers access separated areas on the two scratchpad memories, pipelining the read/writes from/to the buffered data.

analysis underscores the effectiveness of faster, low-power
NVM technologies such as VGSOT-MRAM for energy-efficient
CiM computations. The suitability of VGSOT-MRAM stems
from its ability to utilize reduced currents during inference
time, a characteristic attributed to its higher resistances.

The subsequent sections of this paper delve into the specifics
of the proposed extensions to the MNEMOSENE architecture,
followed by the analysis of neural network performance and the
comprehensive evaluation of the improved architecture under
different NVM technologies.

II. ENHANCING THE MNEMOSENE TILE ARCHITECTURE

Many studies in CiM have focused on developing standalone
accelerators tailored to address specific computational tasks.
General matrix multiplications (GEMMs) are the dominant
operations in today’s Machine Learning workloads. From
standard CNN to large transformers networks, the most
common layers are accelerated by its conversion to GEMM
operations [11], [12].

However, the number of CiM architectures designed to
seamlessly integrate with general-purpose multiprocessor sys-
tems remains relatively limited. One notable project that
exemplifies this integration is MNEMOSENE. In their work,
Zahedi et al. present a programmable single-tile architecture
alongside an ISA and a compiler that aims to establish
a standardized simulation framework for CiM designs [9],
[10]. This framework facilitates the creation of a flexible
interface between the CiM tile and the broader system, enabling
effortless interaction and integration within a general-purpose
multiprocessor environment. The defined ISA lies at the core
of this integration and aims to enhance the flexibility and
generality of the hardware by shifting the complexity towards
the compiler.

A. Original single-tile architecture
We now show the interactions between the main components

of a single CiM-tile architecture. More details on how the
different instructions work and what their circuit specifications
are can be found in [9], [10].

Figure 1a illustrates the original MNEMOSENE single-tile
architecture able to run a GEMM. One matrix is stored in the
memristive crossbar array through the write data (WD) buffer
while the other one is transferred row by row to the row data
(RD) buffer before the analog computation can take place.

A row computation is pipelined in two stages. Beyond these
stages, the tile controller plays a vital role in receiving nano-
instructions, decoding them into various control signals, and
efficiently scheduling their execution across each stage. In
Stage 1, the RD buffer serves as the recipient for the data
elements, which act as inputs for each crossbar row. Then,
the incoming elements are shifted one bit at a time into the
DACs to perform the analog computation in the memristive
crossbar array. The crossbar outputs are then collected from
each column by the Sample-and-Hold (S&H) unit. In Stage 2,
multiple columns share a single ADC. To handle this scenario,
the partial results from each column are sampled by the ADC
in a time-multiplexed manner. Following this, the addition units
combine these partial results to generate the final outcomes,
which are then stored in the output buffer.

B. Overcoming RD buffer limitations
Unfortunately, bringing the data to the RD buffer imposes

significant overhead in the original single-tile architecture. The
tile is required to wait for the system to refill the RD buffer for
each subsequent matrix row since the RD buffer is written byte
to byte. Consequently, the RD buffer may inadvertently cause
delays in standard workloads, thereby hindering the overall
efficacy of the compute-in-memory operations.



(b) Decoupling the data load to the tile from the analog computation.
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Fig. 2: Timing diagram of multiplying the first matrix row in both (a) the original single-tile and (b) the proposed optimization.
Colors match the components of Figure 1. RDBF stands for RD buffer fill, AC for analog computation, ADC for ADC
conversion and addition units, and IBF for IB fill. The penalty imposed by the RD buffer is highlighted in red in (a).

Figure 2a illustrates the timing diagram of computing the
first row of a GEMM. The timing depicts the breakdown of the
execution time among the different components. In the original
configuration, the RD buffer has one entry per crossbar row
(n rows in the figure) and every entry is 8 bits wide.

Filling the RD buffer consumes one cycle per buffer entry,
while the full execution of the 8-bit element requires a delay
that is dominated by the ADC conversion. On a permanent
basis, transferring the following row to the RD buffer imposes
a significant latency overhead that could be overlapped with
the analog computation (AC) of the previous row.

Therefore, the goal is to hide the RD buffer latency penalty
by overlapping it with the analog computation. To this end,
we propose to add an input buffer (IB) of the same size of the
RD buffer, see Figure 1b, to decouple the data load to the tile
from Stage 1. Thus, while the analog computation of the first
row is taking place, the second row is being fetched into the
IB in the background, see AC0 and IBF1 in Figure 2b. While
the analog computation of the current row, ACi, is finishing,
the next row, already loaded in the IB, is copied to the RD
buffer. Assuming the IB can be completely filled during the
analog computation of the previous element, the tile pipeline
execution is now dominated by Stage 2. In Section III-B we will
further investigate how the rest of the multi-tile components are
sized and parameterized so that the IB is seamlessly integrated
and can be completely filled in the background to avoid any
additional overheads.

Our experiments showed that the double input buffer
approach leads up to 55% reduction in execution time for
a single GEMM compared to the original MNEMOSENE tile
architecture.

III. ENABLING A MULTI-TILE ARCHITECTURE

A. Multi-tile µArchitecture

A multi-tile architecture is indispensable in CiM operations
due to inherent scalability and performance constraints asso-
ciated with single-tile configurations. As computational tasks

grow in complexity, the capacity of a single tile to effectively
address these requirements diminishes. Transitioning to a
multi-tile structure provides the system with the capability to
distribute computational tasks across multiple tiles, facilitating
parallel processing and augmenting overall performance.

Figure 1c depicts the proposed multi-tile architecture. It con-
sists of numerous tiles, logically placed in a two-dimensional
fashion, two inter-tile buses and two scratchpad memories. Each
bus is connected to a scratchpad memory, allowing decoupling
the read and write flows of the tiles. The scratchpad memory
serves both as intermediary with the outer system and to enable
tile-to-tile synchronization.

Figure 1d shows how a CNN model is mapped into such a
multi-tile architecture. The convolutions, which are the pivotal
computational task in CNNs, are turned into GEMM operations
by means of the image to column (im2col) transformation [12].
The ever-growing dimensions of these matrices hinder them to
fit into a single tile. Weight matrices are thereby broken down
into chunks and distributed across multiple rows and/or columns
of tiles 1 . Input matrices are also split up and forwarded to
the tiles matching the corresponding weight chunks. While
the analog computation takes place, a consistent data stream
flows from one scratchpad memory to the IB of the tiles 2 ,
and reciprocally, from the tile output buffer back to the other
scratchpad memory 3 . In this way, the partial results from
multiple tiles are aggregated in the additional logic conforming
the complete result of a GEMM. It is essential to note that the
output matrix of one layer may become the input matrix of
the subsequent layer 4 . Hence, certain layers read from the
top-positioned scratchpad and write to the one below, while
the adjacent layers operate vice versa.

B. Properly sizing scratchpads and interconnections

To overcome the limitations outlined in Section II-B, it
is crucial to optimally size the scratchpad memory and the
buses, preventing additional overheads during the population of
the tiles’ IBs. The architectural components delineated in the



TABLE I: NVM technologies specification.
ReRAM PCM STT-RAM VGSOT

Low Resistance State 5 kΩ 20 kΩ 6.2 kΩ 824.1 kΩ
High Resistance State 1 MΩ 10 MΩ 15 kΩ 2.1 MΩ
Memory Read Voltage 0.2 V 0.2 V 0.5 V 0.55 V
Memory Read Time 10 ns 10 ns 10 ns 3 ns

previous sections are predominantly dependent on the workload.
However, the flexibility of the MNEMOSENE architecture
enables comprehensive parameterization, allowing for optimal
customization for the task at hand. Experiments were conducted
to size the proposed components appropriately, validating the
design’s feasibility.

To accurately size the scratchpad memory, focus is placed on
identifying the CNN layer with the largest memory footprint.
This evaluation encompasses not only the dimensions of the
input and output matrices, but also takes into account the input
data of concurrent residual connections within the CNN. On
the other hand, to avoid additional communication overheads
between the scratchpad and the tiles, it is essential to ensure
that the inter-tile buses can transmit any matrix row from the
scratchpad to the tiles within the time frame in which the analog
computation (ACi) of the previous row takes place, as depicted
in Figure 2b. Therefore, the bus width must be properly sized to
accommodate the transmission of the matrix row of maximum
size within this time frame; note that excessive IBFi times in
Figure 2b would lead to undesired delays. Section IV-A shows
the optimal sizing values we obtained for both scratchpad
memory and buses and for the evaluated workloads.

IV. EVALUATION

A. Experimental Setup

Experiments utilized the MNEMOSENE simulator [9], [10]
with a 256x256 analog crossbar array per tile, and 8-bit datatype
size. All NVM technologies, ReRAM [3], PCM [6], STT-
MRAM [2], and VGSOT-MRAM, are configured in dual-state
memory cells; their most important figures are provided in
Table I. In the present experiments, the deployment of a weight
involves one column per weight bit. Our in-house STT-MRAM
devices are accompanied by a projected VGSOT-MRAM device
simulation that, making use of a higher voltage-controlled
magnetic anisotropy (VCMA) coefficient, relaxes the critical
write current and enables 4-pillar bitcells. DACs, S&Hs, and
ADCs specifications, as well as a 1GHz operating frequency,
matched the original MNEMOSENE papers [9], [10]. Input and
RD buffers were modeled with Nandgate 15nm technology [7].

The workload comprised two small AnalogNets CNN models
(keyword spotting -KWS-, and visual wake words -VWW-) [11],
and two Tensorflow CNN models (Nasnet [13], Resnet50 [4]).
Notably, Nasnet presented the layer with the largest memory
footprint, reaching 7.3 MB. To accommodate memory require-
ments, 2 scratchpad memories of 4 MB each were designed,
consisting of eight 512 KB banks each, modeled using an
in-house STT-MRAM data memory featuring 22nm technology
node, considering latency and energy for comprehensive CNN
inference evaluation. For efficient data transfer between tiles
and the scratchpad, a 48-byte bus width sufficed.
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Fig. 3: Energy/inference (in log scale) breakdown of the
different architectural components for each of the CNN models,
evaluating distinct NVM technologies.

B. Experimental Results

Table II summarizes the results after mapping one inference
of the different CNN models to our multi-tile architecture.
Looking from a workload perspective, and regarding the
memory footprint of the models, the small AnalogNet models
use at most 405 KB of the scratchpad memory, 5% of its total
size. Larger models thereby have larger memory requirements,
with 2.8 and 7.3 MB for Resnet50 and Nasnet, respectively. One
complete inference is performed and the latency and energy
results are reported. The tile execution is dominated by Stage
2, see Figure 2b, so all implementations of the same CNN,
regardless of the NVM technology, report the same expected
latency. While small models complete one inference within the
range of 1 ms, the larger ones take up to 39.5 ms to finish it.

Regarding energy, and due to the different conductances
of each NVM technology, the crossbar arrays report varying
energy consumption figures for the same CNN model. In
particular, for our in-house NVM technologies, STT-MRAM
provides ∼7× and ∼28× higher energy consumption than
ReRAM and PCM, respectively. Despite these higher power
consumption, the great advantage of STT-MRAM lies in its high
integration capabilities with scaled nodes [2]. As a successful
tradeoff, VGSOT-MRAM combining reduced area and lower
energy requirements, becomes the most promising technology
compared to other NVMs. Based on our in-house VGSOT-
MRAM devices projection, the VGSOT-MRAM crossbar arrays
are 12×, 49×, and 346× more energy efficient than PCM,
ReRAM, and STT-MRAM ones, respectively. It translates, on
average for the considered CNN models, in 1.5×, 3×, and
14.5× better energy efficiency of the entire system.

Figure 3 reports the energy per inference breakdown includ-
ing the independent architecture components for the different
CNN models and technologies. As can be seen, the energy
numbers differ significantly between CNN models. For instance,
for PCM and ReRAM, smaller analog CiM specific CNN
models operate in the range of 40 to 400 µJ, while standard
larger models (NasNet and Resnet50) consume 2 to 60 mJ per



TABLE II: Analyzed CNN models, required number of tiles, computational utilization, memory footprint, latency and energy.

CNN model Model size Required Computational Maximum One inference One inference total energy
(#Parameters) tiles utilization (%) footprint latency ReRAM PCM STT-RAM VGSOT

KWS Small 46 (7×7) 79.8 136.5 KB 185.8 µs 84.3 µJ 41.4 µJ 431.5 µJ 28.2 µJ
VWW Small 75 (9×9) 57.6 405.0 KB 1.3 ms 85.3 µJ 45.6 µJ 406.1 µJ 33.4 µJ
Nasnet Medium (5.3M) 6364 (80×80) 8.3 7.3 MB 39.5 ms 11.0 mJ 5.3 mJ 56.7 mJ 3.6 mJ

Resnet50 Large (25.6M) 2966 (55×55) 97.6 2.8 MB 10.9 ms 7.5 mJ 3.8 mJ 37.8 mJ 2.6 mJ

inference. Our research highlights that AnalogNet workloads,
optimized for analog CiM accelerators, demonstrated a better
utilization of tile resources versus peripheral areas and buffers.
Therefore we can highlight how optimizing its deployment
on analog hardware via Network-Architecture-Search (NAS)
not only improved NN accuracy [11], but also significantly
boosted energy efficiency, underscoring the value of NAS for
these specific accelerators.

The varying energy efficiency across different technologies
reveals a significant contrast in the energy consumption of
periphery and scratchpad components. On the one hand, the
energy consumed by these assisting components is minimal
compared to the overall energy for some technologies, see ADC
+ I/O Buffers + Scratchpad energy in Figure 3. For instance, for
STT-MRAM, the energy of the assisting components accounts
for at most 7.9% of the overall one for VWW. On the other
hand, for VGSOT-MRAM, these components emerge as the
primary energy factor, up to 96.8% of the overall one for
VWW. Further improving the energy efficiency of such low
power technologies will involve special efforts to improve the
peripheral components as well.

Depthwise-Convolution Analog vs Digital: During this
research and in line with findings from previous studies [11],
limitations with depthwise convolutions were encountered. Such
bottlenecks are critically notable when NasNet was deployed
on the multi-tile architecture. Compared to Resnet50, which
has 5× as many parameters (see Table II), Nasnet requires
more than twice as many tiles to be deployed, but reduces
significantly the computation utilization of the arrays (8.3% in
NasNet versus 97.6% in Resnet50). Out of the scope of this
work, but highlighted by it, our results underscore a crucial
need to adapt the NAS algorithm to the specific requirements
and constraints of analog tile-based systems [11].

V. DISCUSSION AND CONCLUSIONS

In this study, we have effectively addressed the primary
bottlenecks in the MNEMOSENE architecture. By enhancing
the original framework, we developed a robust multi-tile
architecture capable of improved parallel processing and
optimized buffering. Moreover, we successfully refined the
communication between the tiles and the scratchpads, providing
efficient data handling and significant performance enhance-
ment. The architectural enhancements served to ensure efficient
computation and storage integration, thereby propelling the
MNEMOSENE design forward.

In addition, a thorough evaluation involving a wide range
of neural networks and four different NVM technologies was
conducted. These evaluations revealed a marked discrepancy in
energy consumption across the different technologies. Amidst

these, VGSOT-MRAM emerged as a promising compromise.
It not only offers reduced area and lower energy requirements,
but also presents a high degree of integration and speed, thus
standing superior to STT-MRAM, and to both ReRAM and
PCM. This finding accentuates VGSOT-MRAM’s potential to
effectively bridge the gap between computational efficiency
and energy conservation in future technological advancements.
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