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Abstract

In this paper, a generic optimization problem arising in
supply chain design is modeled in a game theoretic frame-
work and solved as a decentralized problem using a mecha-
nism design approach. We show that the entities in a supply
chain network can be naturally modeled as selfish, rational,
and intelligent agents interested in maximizing certain pay-
offs. This enables us to define a supply chain design game
and we show that the well known Groves mechanisms can
be used to solve the underlying design optimization prob-
lem. We illustrate our approach with a representative three
stage distribution process of a typical automotive supply
chain.

1 Introduction

Traditionally, resource allocation problems have been
approached in a centralized way. However, more recently,
decentralized approaches, in particular, game theoretic ap-
proaches, have been suggested, for example, see the survey
paper by Cachon and Netessine [1], the paper by Fan, Stal-
laert, and Whinston [3], and the papers by Kutanoglu and
Wu [7, 9]. Our interest in this paper is on using a game the-
oretic and mechanism design oriented approach for solving
supply chain design and optimization problems.

A supply chain network could be considered as a con-
glomeration of nearly autonomous entities which have their
own objectives and utilities to maximize, which may not
necessarily result in a social optimum for the overall net-
work. Individual entities of a supply chain can be realisti-
cally modeled as rational, selfish, and intelligent agents try-
ing to outwit one another so as to maximize individual goals
and not reporting their true costs or values to any central
design authority (or supply chain manager). An appropri-

ate model for such a system is a non-cooperative game with
incomplete information. Motivated by this, we argue in fa-
vor of a decentralized design paradigm for supply chains
and propose a mechanism design approach for design of
supply chains. Several authors have explored this line of
thinking in recent times. For example, Fan, Stallaert, and
Whinston propose a decentralized way of designing a sup-
ply chain organization [3] based on a multicommodity net-
work flow formulation. The supply chain planning prob-
lem is solved by these authors using a combinatorial auc-
tion framework. In a series of recent papers, Kutanoglu and
Wu [7, 9] have used Vickrey-Clarke-Groves (VCG) mech-
anisms [2] for solving distributed resource planning prob-
lems arising in semiconductor capacity allocation, electron-
ics component manufacturing, etc.

1.1 Contributions and Outline of the Paper

The following are the specific contributions of the paper.

e We first present a generic optimization problem arising
in supply chain design and show the traditional central-
ized way of solving this problem (Section 2).

e We define the supply chain design game as a Bayesian
game with incomplete information, leading to a decen-
tralized approach for supply chain design (Section 3).

e We propose a mechanism design approach based on
Groves mechanisms for solving the supply chain de-
sign game. Based on this, we present an iterative algo-
rithm for decentralized design (Section 4).

e We show the efficacy of the proposed approach and al-
gorithm using a stylized case study of a three stage dis-
tribution process of an automotive supply chain (Sec-
tion 5).
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2 A Generic Supply Chain Design Optimiza-
tion Problem

The formulation here is on the same lines of [4].
Consider a make-to-order, linear supply chain with n
stages/partners/players. The processing time or lead time
for an end customer order at any stage ¢ is a continuous ran-
dom variable T;. Let us assume that T;; ¢ = 1,...,n are
independent random variables and there is no time elapsed
between the end of process 7 and commencement of pro-
cesst+1(2=1,...,n—1). We assume that 7; is normally
distributed with mean w; and standard deviation o;. Under
these assumptions, the end-to-end lead time Y of unit or-
der for the supply chain is givenby Y = > | T;. Y is
normally distributed with mean p = > | y; and variance
o? = Y | o7 since it is the sum of n independent Gaus-
sian random variables. Let us assume that for any stage 1,
the parameters, u; and o; can take values from known sets
but otherwise are fixed. The cost of processing a single or-
der at stage ¢ is given by the function v;(p;, 0;). Note that
the function v; (u;, 0;) captures the cost versus delivery lead
time tradeoff at stage 7. Let us assume that a Central Design
Authority (CDA) who is managing the overall supply chain
needs to determine optimal values for the parameters j; and
o; of each stage ¢ so that a superior level of delivery perfor-
mance is achieved at minimum cost. In what follows, we
formally define what we mean by superior level of delivery
performance. A more rigorous treatment can be found in
[4].

We assume that the CDA’s target is to deliver the orders
to the respective customers within 7 4= 7" days of receiving
the order. We call T the target delivery date and 7 the toler-
ance. We also define L = 7 — T to be the lower limit of the
delivery window and U = 74T to be the upper limit of the
delivery window. The process capability indices Cp,, Cpi,
and Cp,y,, which are popular in the areas of design toleranc-
ing and statistical process control, can be used to measure
the performance of the end-to-end delivery process Y. See
[6, 8, 4] for a comprehensive treatment of process capability
indices. The three indices Cy,, Cpk, and Cp,,, for the end-to-
end delivery process Y are defined in following way:

U-L T
@ = e w M)
_ min(U-—p,p—-L) (d
o = 30 -\ 3o @
U-L T
Opm = = (3)

6¢ 3vo2 + b2

The yield of the end-to-end delivery process Y plays a crit-
ical role in defining superior level of delivery performance.
The yield is simply the probability of delivering an order
within a specified interval 7 £ 7" and can be expressed in

terms of its capability indices C),, Cpy, and Cp,, in the fol-
lowing way [4].

Yield = ®(3Cu,)+P(6C, —3C,,)—1 (4)
where ®(.) is the cumulative distribution function of the
standard normal distribution. It can be verified that a unique
(Cp, Cpp) pair results in a unique yield, therefore, the 3-
tuple (Cp, Cpi, Cpm) can be substituted by the pair (Yield,
Cpm) for the purpose of measuring the delivery perfor-
mance. Being an indicator for precision and accuracy of
the deliveries, we prefer to call the yield of the process as
Delivery Probability (DP) and C,,,, as Delivery Sharpness
(DS).

2.1 Supply Chain Design Optimization Problem
(SCOP)

The following parameters are known in a typical SCOP
problem.

1. The delivery window (7, T') as fixed by the CDA.
2. Mean p; of random variable 7,7 = 1,2,..., n.

3. DP and DS (or C),;,,) for end-to-end lead time (Y") as
fixed by the CDA.

4. Cost functions K; = v;(0;) submitted by each stage i
to the CDA. The function /C; captures the cost incurred
at stage ¢ for attaining a standard deviation of o; in the
processing time of unit order at stage ¢. For the sake of
conceptual and computational simplicity, we choose a
second order polynomial of the form:

Ki = Aio + Ajnoi + Ao (5)

The decision variables of the SCOP problem are the stan-
dard deviations o} of each individual stage ¢ ( = 1,...,n).
The objective of the SCOP is to minimize the end-to-end
delivery cost and the problem formulation becomes:

minimize

n n

Z (Aio + Aioi + Aipo?) (6)

>
I
™
g
I

subject to
DS for end-to-end lead time > C;m @)
DP for end-to-end lead time > DP* (8)
o > 0Vi 9)

We focus on this optimization problem in the rest of this
paper.
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2.2 Centralized Design Paradigm

In the centralized way of solving the SCOP problem, first
the CDA invites each stage to submit its cost function. After
receiving the true cost function from each stage, the CDA
solves an optimization problem that will minimize the to-
tal expediting cost while ensuring a required level of de-
livery performance. The solution of this optimization prob-
lem yields the optimal values for the design parameters (o)
which are communicated back to the respective stage by the
CDA. This scheme is shown in Figure 1.
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Figure 1. The centralized design paradigm

3 Supply Chain Design Game

A critical assumption in the centralized design paradigm
is that each stage of the supply chain is loyal to the CDA in
the sense that each stage honestly submits its cost curves to
the CDA. However, in most real world situations, the man-
ager of each stage of a supply chain is typically selfish, ra-
tional, and intelligent and hence cares more about maximiz-
ing his/her own department’s and own employees’ welfare
rather than welfare of the whole organization. Therefore, it
should not be surprising if the managers of individual stages
report untruthful cost functions to the CDA (because, in
their perception, doing so may help them improve their own
individual utilities/welfare). In such a situation, the behav-
ior of the entities (namely the individual stage managers) is
just like that of players in a noncooperative game. This mo-
tivates us to use an approach based on economic mechanism
design [2]. The theory of economic mechanism design, in
particular Groves mechanism [5, 2], basically suggests a
way in which the CDA can choose a set of compensation
rules that will induce the subunit managers to communicate

accurate information and arrive at optimal decisions. A cru-
cial point of these compensation rules is they do not require
the organization leader to possess any additional informa-
tion in order to compensate the employees or even to have
knowledge of the true accuracy or completeness of informa-
tion. Before applying the Groves mechanism, we set up the
game model. Following is some notation that will be used
subsequently:

X; = {0} = Set of values for standard deviation o;
X=X1xX5...xX,

o= (01,02,...,0n)

= A standard deviation profile of stages; o0 € X

v; + X; — R = True cost function (actual type) of stage ¢
w; : X; — R = Reported cost function (type) of stage i
V; = {v;} = Set of possible types of stage 4

W,; = {w;} = Set of possible reported types of stage
V=VixVox...xV,

W=Wy xWyx...xW,

Voi=Vix...xVieg x Vi x...xV,
W_oi=Wix...x W1 X Wip1 x ... x W,

Let us assume that v, w,v_;, and w_; represent a typi-
cal element in the sets V, W, V_;, and W_,, respectively.
We make the following assumptions about the types of the
stages.

1. The standard deviation o; can take values from the set
(0,77], that is, X; = (0, 77].

2. The true type of any stage ¢ is of the form
vi(03) = aio + ai10; + aipo;  Vo; € (0,77

where we assume that v;(o;) is a non-negative and
non-increasing function of o;, that is, not all the three
coefficients a;o, a;1, and a;2 are non-negative simulta-
neously.

3. For each stage ¢, it is possible to obtain an interval for
each of the three coefficients a;g, a;1, and a;2. That is,

aio € [aio, @0 ;a1 € [ain, i) 5 aiz € [ai2, iz

These intervals are such that choosing the coefficients
from the intervals will always result in a cost func-
tion v;(o;) which is non-negative and non-increasing.
Also, for a given type v;(o;), the values of all the three
coefficients lie in the corresponding intervals.

4. The previous assumption enables us to view the type
set V; of stage i as [aio, @io| X [ai, @it] X [aiz, @iz
which is a compact subset of R3. The set V' can also
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now be viewed as a compact subset of *3". Each point
of such a compact subset of 3" represents a unique
type profile of the stages.

5. Let A; be a o— algebra over the type set V; (a compact
subset of N3). Let A be a o—algebra over the set V/
(a compact subset of R3"™) which is generated by the
algebras A;.

6. We assume that P is a probability measure over the
o—algebra A and hence (V, A, P) forms a probabil-
ity space. We call P as the common prior distribution
over type profiles of the stages and assume that it is
common knowledge among all the stages. Let AV
represent the set of all the probability measures that
can be defined over the measurable space (V, A).

7. Let the manager of each stage ¢ have a belief func-
tion p; : V; — AV_;! which describes the conjec-
ture of stage ¢ about the types of other stages given
its own type. That is, for any possible type set v;,
where v; C V; and ; € Ay, pi(.|y:) will be a prob-
ability measure over the measurable space (V_;, A_;)
and will represent what the i*" stage manager would
believe about the type sets of other stages if his own
stage’s type set were ;.

The Bayesian Game [10] underlying the design problem can
now be described as:

I = [{Al}?:l 7{‘/1'}?:1 7{Wi}?:1 )
{pi()}izy » {wi ()} (10)
where,
A; = Manager of stage ¢ of the supply chain
Vi = Set of possible types of stage ¢
= [aio, @) x [ai1, @) x [aiz, @iz
W; = Set of possible reported types of stage ¢

= Action set for the manager of i*" stage
pi Vi AV

= Belief function for the manager of i*" stage

4 Decentralized Design using Groves Mecha-
nisms

Consider the SCOP problem shown in Figure 2. Here,
the mean processing time p; for each stage 7 is assumed to
be fixed and the problem of the CDA is to determine the
optimal value for standard deviation o; for each stage 7. Let
us assume that v;(c0;) is the true cost function of stage i,

UAV_; represents the set of all the probability measures that can be
defined over the measurable space (V_;, A_;)

which is known only to the manager of stage ¢. On receiv-
ing a request from CDA, the i*" stage manager reports a cost
function w; (0;) to the CDA which may not be the same as
Uy (O’ i ) .

The problem of the CDA is to find an optimal standard
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Figure 2. The decentralized design paradigm

*

deviation profile, say (o7, ...,07), of the stages that will
result in the required level of delivery performance at min-
imum possible cost. The CDA can solve the above design
problem using some optimization solver with v;() replaced
by w;(). Let (67,...,5.) be the solution of the resulting
SCOP problem. If the CDA knows in advance that the man-
agers of the various stages are selfish, rational, and intel-
ligent then there is no reason for the CDA to believe that
that the cost functions reported are indeed their true cost
functions. Therefore, blindly solving the SCOP problem
will result in a non-optimal solution of the problem, that is
(67,...,07) is not an optimal solution for the CDA’s prob-
lem. One way to tackle this situation is for the CDA to
offer an incentive I; to each stage ¢, which is a function of
(657,...,6}),1e I, : X1 x ... x X,, — R (see Figure 2),
so as to induce truth revelation. In such a case, the CDA
will first need to solve the problem in the usual centralized
fashion by simply assuming that the reported cost functions
by all the stages are indeed their true cost functions. This,
in general, will give a non-optimal solution (57, ...,5%) of
the underlying SCOP problem. Then, based upon the solu-
tion (67,...,d}), the CDA will decide the incentive I; for
each stage ¢. In such a case, the net payoff (utility) of stage
i will be equal to u; = I; — v;(6}) (in the literature, such
a utility function is known as quasi-linear utility function
[2]). Note that the payoff of stage ¢ is dependent on what
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cost functions are being reported by all the stages because
the reported cost functions w; will decide (67, ...,5) and
that in turn will determine the incentive I; of stage 7.

Now if the CDA can come up with an incentive struc-
ture (I3, ..., I,) such that the utility u; of each stage i gets
maximized only when its reported type is the same as its
true type, i.e. w; = v;, then each manager will understand
this fact and has no incentive to report an untruthful cost
function. The resulting solution will indeed be an optimal
solution, i.e. (67,...,0%) = (07,...,0%). The Groves
Mechanism is a powerful way to construct such an optimal
incentive structure [5].

4.1 Groves Incentives

The Groves incentive I; for stage 7 can be computed as
follows [5]:

Ii=a; =Y w;(5}) (11)
J#i

where (67, ..., 0;) is the optimal solution of the underlying
SCOP problem with v; replaced by w;. «; is some constant
which can be assumed to be the same for all the stages and
can be used to normalize the value of I; so that it has a
meaningful value. In such a case, the utility function u; for
stage ¢ is given by

Ui (81, -y Sny ;)

= / Wi(51, -+ 8, Vi, Vi )dpi (V—|v;)
v_;EV_;

- / wi(51(01), -, 52 (0n))dpi(v—ifus)
v_;€V_;

= / wi(wi, ..., wn)dpi(v—i|v;)

v, EV_;

= [ G5 - (i)
v, EV_;

- / i — S w0y (37) — 05 dps(o_lvr)
v_; €V_; J#

We can prove easily that for the above utility function, the
truth revealing strategy profile s = (s,...,s!) is indeed

a dominant strategy equilibrium s* = (s7,...,s}) of the

underlying game which means adopting the incentive struc-
ture (11) will elicit true cost functions from the stages.

4.2 An Algorithm for Decentralized Design
We suggest following iterative algorithm which the CDA

can use to solve the SCOP problem in a decentralized man-
ner.

Step 0: Initial Bidding Phase The CDA invites the stages
to bid their cost functions and each stage bids its cost func-
tion w; (o) which need not be its true cost function.

Step 1: Allocation Phase The CDA solves the following
optimization problem. The solution of this optimization
problem yields the tuple (67,...,5%).

Minimize

i=1
subject to
DS for end-to-end lead time > C;m
DP for end-to-end lead time > DP*
o > 0Vi

The CDA uses the tuple (67, ..., d};) to compute the incen-
tive I; for each stage ¢ in the following way:

I = a; = Y w;(57)

J#i

The CDA allocates to each stage 7 a target of attaining the
&} variability. The CDA also allocates a fund of w;(5}) to
meet the expediting expenditure. The CDA also allocates
an incentive /; to stage ¢ for its performance. Thus, the net

*

gain of stage 7 is I; — v;(57).

Step 2: Iterative Bidding and Allocation

The CDA successively invites all stages to revise and
resubmit their cost functions if they wish to. Then each
stage ¢ looks at its current allocation (57, I;) and bids a
revised cost function w; (o) with the hope that in the next
round its net gain will improve. Some of the stages may
not revise their cost functions if they find that that their net
gains may not improve.

After receiving the revised bids from each stage, the
CDA again invokes Step 1 and solves the allocation prob-
lem. This initiates the next round of bidding and allocation.
This iterative bidding and allocation process continues un-
til no stage revises its cost function. The process therefore
terminates when each stage bids the same cost function as
in the previous round.

We assert that above algorithm will converge to a point
where each stage bids its true cost function. The proof for
this assertion directly follows from the fact that the truth re-
vealing strategy is a dominant strategy for each stage under
the Groves incentives structure (as already stated in Section
4.1). The convergence is guaranteed as long as the individ-
ual stages place improving bids if improvement is possible
and as long as the individual stages have enough computing
power to compute these improving bids.
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5 A Case Study

To show the efficacy of the iterative algorithm, we
present a numerical experiment motivated by the outbound
logistics operations in a typical automotive supply chain.
Assume that a finished product (automotive vehicle) is
transported from plant first by truck, then by rail, and finally
by atruck to the dealer. We assume that each shipment leg is
in custody of a department manager who has an idea about
the delivery cost and the delivery performance of different
transportation service providers available for the leg. We
make the following assumptions:

1.

Proceedings of the Seventh IEEE International Conference on E-Commerce Technology (CEC’05)

The CDA has an ideal target of delivering a vehicle to
the dealer on the 30*" 4 5 day counting from the day it
is ready for shipping at the plant.

There are three shipment legs in the journey of a ve-
hicle from plant to dealer. We call these the first leg
(truck), the second leg (rail road), and the third leg
(truck). For each leg, there are alternate transporta-
tion service providers. We assume that there are 10
alternate service providers for each leg.

The mean shipment time of a vehicle on the first leg,
the second leg, and the third leg of its journey is 4 days,
21 days, and 7 days respectively. For each leg, the
mean is the same for all the alternate service providers
available for that leg.

For each leg, the variability in the shipment time as
well as the shipping cost for different alternate service
providers is a private information of the department
manager for the leg. Tables 1, 2, and 3 show the private
information

. The shipment time at each leg is normally distributed

for all the service providers. Moreover, the shipment
times at the three legs are mutually independent.

. The CDA wishes to achieve C; > 1.8 and C;k > 1.08

for the end-to-end lead time Y.

. The manager of leg i (i = 1,2,3), uses his/her pri-

vate information to compute the true cost function as a
quadratic function v; = a;+b;0;+¢; a?, using the least
square curve fitting method. For the present instance,
these functions turn out to be:

vi(o1) = 022.638—16.0170; + 4.01502
va(0y) = 231.085 — 68.62405 + 5.758073
v3(03) 052.255 — 29.82705 + 5.63602

1530-1354/05 $20.00 © 2005 IEEE

Service | Standard Deviation | Shipping Cost
Provider o1(days/unit ) K1($/unit )
1 0.25 20.00
2 0.50 15.00
3 0.75 12.00
4 1.00 10.00
5 1.25 09.00
6 1.50 08.00
7 1.75 07.50
8 2.00 07.25
9 2.25 07.00
10 2.50 07.00

Table 1. Private information of the manager
for the first leg

Service | Standard Deviation | Shipping Cost
Provider o2(days/unit ) K2 ($/unit )
1 2.5 105
2 3.0 70
3 35 55
4 4.0 45
5 4.5 40
6 5.0 35
7 5.5 32
8 6.0 30
9 6.5 29
10 7.0 28

Table 2. Private information of the manager
for the second leg

Service | Standard Deviation | Shipping Cost
Provider o3(days/unit ) K3($/unit )
1 0.75 35.0
2 1.00 27.0
3 1.25 22.0
4 1.50 19.0
5 1.75 18.0
6 2.00 16.0
7 2.25 14.5
8 2.50 13.5
9 2.75 13.0
10 3.00 12.5

Table 3. Private information of the manager
for the third leg
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5.1 Centralized Design

Each manager submits the true cost function and CDA
just solves the single optimization problem. For the above
case study, the CDA solves an appropriate optimization
problem. Using the Lagrange multiplier method it is easy to
show that the above optimization problem has global mini-
mum at

o7 = 0.2018 days, o5 = 0.8284 days, o5 = 0.3611 days

The optimal costs for the different legs and the total optimal
cost turn out be:

vi(oy) = 19.569 $/unit

vo(oy) = 178.190 $/unit

vs(0%) = 042.219 $/unit
K* = 239.978 $/unit

5.2 Decentralized Design

First, let us compute the incentives and net payoffs to the
managers in the case when each of them reveals the true
cost function, that is w;(.) = v;(); Vi = 1,2, 3. Assuming
a1 = ag = ag = 250 $/unit, it is easy to see that

Il = a;— (va(oh) + v3(03)) = 29.591 $/unit

IL = as— (vi(o}) +v3(0o})) = 188.212 $/unit

IL = az— (vi(o]) +v2(03)) = 052.241 $/unit

ur(s5(.),s5(),85() = @I —wvi(of) = 10.022 $/unit

ua(sh(.),85(),85() = I —wva(os) = 10.022 $/unit
us(si(.),s5(),85())) = It —wv3(o}) = 10.022 $/unit

Now will show a few iterations of our algorithm.

Round # 0

Step 0.1: Bidding Phase: In the initial bidding phase, each
manager submits a cost function w; (o) to the CDA that has
higher (than true) costs. Let us assume the following initial
cost functions as submitted by the managers:

wi(o1) = 25.0—10.00; + 5.007
wo(og) = 240.0 — 65.00 + 6.002
w3(o3) = 055.0 — 25.003 + 6.007

It is easy to verify that w;(o;) > v;(0;); Voi; Vi = 1,2, 3.
Step 0.2: Allocation Phase: In this phase, the CDA solves
the following allocation problem:

Minimize

3
Z wi(ai)
i=1

= 320 — (10.007 + 65.005 + 25.005)

+(5.007 + 6.005 + 6.003)

subject to
T? d? 25
2 2 2
o] +o3+o03 = T = a7 —
9C;; 9C;, 29.16
op > 0Ve=1,2,3

The solution of the above optimization problem results in
&1 = 0.136 days, 65 = 0.855 days, &5 = 0.329 days

The CDA can use the above values to compute the incen-
tives for the managers which turn out to be:

I = o1 — (w2(63) + w3 (d3)) = 13.759$/unit
I = as— (w1 (&T) + ’LU3( 3)) = 178.832 $/unit
Is = a3— (w1 (&T) + wo (5’;)) = 37.446 $/unit

Now the manager for each leg computes his/her own payoff
in following manner:

w = I — ’Ul( T) = —6.789 $/unit

uy = I — ’Ug(&;) = 2.209 $/unit

ug = I3 — ’03( ;) = —0.598 $/unit
Round # 1

Step 1.1: Bidding Phase: Observe that in the previous
round, the net payoff of each manager is less than what
he/she would have got with a truth revealing strategy. How-
ever, it is not possible for a manager to compute his/her
payoff under a truth revealing strategy profile a priori be-
cause he/she does not know the actual cost functions of the
other managers. Therefore, each manager just tries to maxi-
mize his/her own payoff by hiking the costs. After knowing
the incentives I; and variability target ¢; from the CDA in
the previous round, each manager will further revise his/her
cost function in a way that can hopefully fetch him/her more
payoff. Let us assume that the managers bid the following
cost functions in this round:

wy(o1) = 030.0— 08.001 + 7.007
wy(03) 250.0 — 60.003 4 7.002
wy(o3) = 060.0 —20.003 + 7.002

It is easy to verify that w;(ai) > w;(0;); Vo Vi=1,2,3.
Step 1.2: Allocation Phase: In this phase, the CDA solves
an appropriate allocation problem and the solution of the
problem results in:

&1 = 0.127 days, 65 = 0.954 days, &5 = 0.318 days
Incentive and payoff for the manager of each leg turns out

to be the following.

’

I = ai— (wy(53) + wy(53)) = —3.444$/unit
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I, = ay—(w(67)+wy(53)) = 166.560 $/unit
I as — (wy (6F) + wy(53)) = 21.804 $/unit
u, = I, —vi(6F) = —24.109 $/unit
Uy Iy — v2(53) = —4.259 $/unit
uy = Iy —v3(63) = —21.529 $/unit

Round # 2

Step 2.1: Bidding Phase: Having realized the fact that hik-
ing the cost is not improving payoffs, each manager slashes
the cost in this round. Let the bids received by the CDA in
this round be as follows:

wy (1) = 023.0 —14.001 + 4.507
wy (02) = 235.0 — 67.00 + 6.003
wy(03) = 054.0 — 27.003 + 6.002

It is easy to verify that wi(o;) > w, (o) >
vi(0;);Voi; Vi =1,2,3

Step 2.2: Allocation Phase: Solving the CDA’s problem in
a way similar to the previous two rounds, we get the follow-

ing values for the various quantities.

o7 = 0.1828 days, 55 = 0.8419 days, 553 = 0.3392 days
I = a— (w;’ (53) + wy (5%)) = 21.624 $/unit

I, = as—(w) (57)+wy(5%)) = 183.878 $/unit

I; = as—(w) (7)) + wy(55)) = 46.564 $/unit

u, = 11 —01(57) = 1.780 $/unit

1"

uy = I, —vy(53) = 6.487 $/unit
5 — v3(53) = 3.779 $/unit

Ug =
Thus, we see that as the cost function reported by a man-
ager approaches the true cost function, the payoff for the
manager improves and and attains maximum value when
the manager reports the true cost function.

6 Conclusions

In this paper, we have use of game theory and mech-
anism design theory in proposing a new, realistic, and
promising way of designing supply chains. We showed
that a supply chain network is best viewed as a conglom-
eration of semi-autonomous or near-autonomous entities,
where the individual entities have their own individual goals
and utilities to optimize which may not necessarily result in
optimizing a system-wide objective. This leads to a non-
cooperative game model which we called the supply chain
design game. We then showed that mechanism design the-
ory, in particular, Groves mechanisms, provides a natural
framework for modeling and analyzing the supply chain de-
sign game. The application of Groves mechanism design

approach to supply chains enables a central design authority
to determine incentives/penalties which induce truth revela-
tion by individual entities of the supply chain. This in turn
leads to the design of high performance supply chains at
minimum cost. We showed the application of the proposed
approach to the design of a stylized version of a typical three
stage automotive distribution process.

The research has opened up a new approach for supply
chain design which is more realistic and natural. The ap-
proach needs to be developed into a comprehensive design
methodology for supply chain networks and this calls for
addressing many questions. (1) With modern supply chains
becoming information driven and with technologies such as
RFID tags driving revolutionary possibilities, how can one
leverage decentralized approaches such as proposed in the
paper towards a better design/operation of supply chains?
(2) What are the limits of anarchical behavior of selfish
agents in the supply chain design game? How can game
theory and mechanism design be applied to allow maximum
freedom to individual entities and yet maximize overall, so-
cial benefits?
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