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Abstract—Epidemiological models constitute a fundamental 
means to understand the behavior and evolution of infectious 
diseases, as well as the mechanisms of action to counteract them. 
If an infectious disease spreads rapidly and affects a big 
population, it is vital to have effective control schemes that 
optimize the amount of available resources to mitigate the 
propagation of the disease, before it becomes a risk condition for 
public health systems. Inspired by this idea, we consider an 
extension of the SIR epidemic model and study the application of 
an impulsive control action to this system that minimizes vaccines 
and treatment given to population, using an inverse optimal 
control (IOC) approach.

Index Terms—Inverse optimal control, impulsive control, 
epidemic model, seasonality.

I. INTRODUCTION

Since the appearance in 1927 of the Kermack and 
McKendrick’s mathematical model for the spread of infectious 
diseases, also known as the SIR epidemic model, several 
epidemiological models have been proposed by a variety of 
researchers to explain the mechanisms of propagation for this 
kind of diseases. Epidemiological models have become 
important tools in analyzing the spread and control of 
infectious diseases such as measles, rubella, influenza, malaria, 
rabies, gonorrhea, cholera, tuberculosis and HIV/AIDS [1]–[3].
Vaccination of susceptible individuals and treatment of 
infectives are two commonly used methods for preventing and 
controlling epidemic outbreaks. If adequate and opportune 
control schemes, based on these two forms, are applied to 
infectious diseases, most of them could be driven toward 
eradication [4]. On the other hand, if poor and inefficient 
control actions are taken to bring down an infectious disease, it 
could remain endemic.

The aim of this letter is to demonstrate that an appropriate 
impulsive control action, based on the combined strategy of 
vaccination and treatment, can be applied to an epidemiological 
model to prevent the spread of an infectious disease, and even 
achieve its eradication. In order to do this, the rest of the paper 

is organized as follows. Section II introduces background 
information about the classical SIR epidemic model. Section III
describes the control schemes applied on epidemic models to 
mitigate the propagation of infectious diseases at the theoretical 
level (two namely, constant and impulsive). In Section IV, the 
problem of the inverse optimal control for impulsive dynamical 
systems is addressed, because of the control action proposed for 
the infectious model will be impulsive-type. In Section V, the 
impulsive control action that will drive the treated epidemic 
model toward a disease-free solution is found out, optimally 
combining the vaccination and treatment strategies. Numerical 
simulations and discussion of results are offered in Section VI.
And finally, some conclusions are drawn in Section VII.

II. THE SIR EPIDEMIC MODEL

In the classical SIR epidemic model, the population splits 
into three nonintersecting classes: individuals who are healthy 
but can contract the disease, called susceptible individuals S;
individuals who have contracted the disease, and can transmit it, 
called infected individuals I; and individuals who have 
recovered and cannot contract the disease again due to a 
permanent infection-acquired immunity, called recovered 
individuals R [3]. A set of assumptions is made on this model 
to simplify reality: first, the infected individuals are also 
infective right after contract the disease, meaning that 
incubation period is short enough to be negligible; second, total 
population size, N, remains constant during the study period, 
where N = S + I + R, with each of these three classes (S, I, R)
changing in time; and third, all classes are uniformly mixed. 
The model obtained on the above assumptions is as follows

, ,

It consists of a system of ordinary differential equations 
(ODEs) that describe the rate of change in each class. The 
constant β is called the transmission rate and it represents the 
probability at which susceptible individuals move to infected 
class after enter into contact with infective individuals; 
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therefore, the term βSI is the number of individuals who 
become infected per unit of time, and that is proportional to the 
amount of infectives and susceptibles (bilinear incidence). α is 
known as the recovery rate and it describes the percentage of 
infected individuals that naturally recovers per unit of time – or 
dies, if the disease is fatal; ergo, the term αI is the number of 
individuals who move from the infected class to the recovered 
one during the same timeframe [1], [3], [5]. 

The mathematical formulation of the epidemic problem 
above is completed given initial conditions such as S(0) = S0 > 
0, I(0) = I0 > 0, and R(0) = R0 ≥ 0. Also, S, I, and R quantities 
must satisfy the normalization condition S + I + R = 1 in the 
previous equations [2].  

Realistic infectious-disease models incorporate additional 
effects to the system’s equations to describe specific epidemics 
with different properties, and also to provide a better 
understanding of their particular dynamics. Among the possible 
aspects to be included are the following: mortality, immunity, 
stages of infection, age structure, social and sexual mixing 
groups, time evolution of epidemics, etcetera [1], [2], [4]–[6]. 

The model presented in (1) possesses particular 
characteristics that describe the standard results for the 
propagation of infectious diseases [3]. Since  and   
for all time, the number of susceptible individuals is always 
decreasing while the number of the recovered population is 
consistently increasing over time, independently of the initial 
conditions . In consequence, S and R exhibit 
monotonous behaviors bounded below and above by 0 and N, 
respectively, until a steady state is finally reached. Conversely, 
the number of infected individuals I may be monotonically 
decreasing to zero, or may display a nonmonotone behavior by 
first increasing to some maximum level, and then decreasing to 
zero (see Fig. 1). The sudden increase in the prevalence of an 
infectious disease, and its subsequent decline to zero, is the 
classical model of an epidemic outbreak [5]. For the SIR 
epidemic model, the prevalence first stars to increase if 

 ; hence, the necessary and sufficient 
condition for an initial increase in the amount of infected 
population throughout an infectious period (epidemic scenario) 

is , or   [5]. 

III. CONTROL SCHEMES 
In recent years, plethora of control schemes for infectious 

diseases have been proposed in literature by a diversity of 
authors (see [2], [4], [6]–[10] and the references therein); 
nonetheless all of these can be grouped into two broad 
categories: constant and impulsive schemes. The constant 
control scheme is a conventional control strategy in which 
vaccination, or treatment, is regularly (continuously in time) 
given to a fraction 0 ≤ p ≤ 1 of individuals in the population, in 
such a way that the number of susceptible and infected 
individuals are decreased, while the number of recovered 
people is increased. By contrast, impulsive (or pulse) control 
scheme is based on the strategy of applying vaccinations, or 
treatments, periodically to a portion p of the population in a 

very short time period, compared to the time scale for the 
dynamics of the disease [2], [8], [9]. 

According to Li, Cui, Anderson, and May, time-constant 
control strategies lead to epidemic eradication if the proportion 
of the successfully vaccinated individuals is larger than a 
certain critical value [8], [11]; however, in some cases it could 
result in a population coverage as high as 95% (measles, for 
example), and this control scheme becomes difficult and 
expensive to implement. Under these circumstances, pulse 
control strategies offer a more tractable and efficient control 
scheme; theoretical results show that the pulse vaccination 
strategy can be distinguished from the conventional strategy in 
leading the disease eradication at relatively low values of 
vaccination [8], [13]. 

IV. INVERSE OPTIMAL CONTROL FOR IMPULSIVE SYSTEMS 
Dynamical systems involving continuous-time dynamics 

and discrete (impulsive) events are called hybrid dynamical 
systems. Modern complex engineering systems with a highly 
interconnected and interdependent, physical and abstract, 
hierarchical structure, are characterized by continuous-time 
dynamics at the lower-level units and logical decision-making 
units at the higher levels of hierarchy represent some of such 
systems. However, hybrid systems also abound in nature and 
are not limited to engineering-controlled systems. For example, 
hybrid systems arise naturally in biology, pharmacology, 
economics, chemistry, among several others [14], [15]. 

A. Nonlinear Impulsive Dynamical Systems 
Impulsive dynamical systems can be viewed as a subclass 

of hybrid systems and consists of three elements [13]. 
i. A continuous-time differential equation, which governs 

the motion of the system between impulsive or 
resetting events; 

ii. A difference equation, which governs the way the 
states are instantaneously changed when a resetting 
event occurs; and 

iii. A criterion for determining when the states of the 
system are to be reset. 

Thus, an impulsive dynamical system has the form 

 

where t ≥ 0, , D is an open set with ,  
, where ,  

 is continuous,  is continuous, and   is 
the resetting set with  , ,  . 

It is assumed that the continuous-time dynamics fc (∙) is 
such that the solution to (2) is jointly continuous in t and x0 
between resetting events. The differential equation (2) is 
referred as the continuous-time dynamics; and difference 
equation (3), as the resetting law. In addition, the notation s(t, τ, 
x0) denotes the solution x(t) of (2) and (3) at time equation t ≥ τ 
with initial condition x(τ) = x0. Finally, a point  is an 
equilibrium point of (2) and (3) if and only if s(t, τ, xe) = xe for 



all τ ≥ 0 and t ≥ τ. Note that  is an equilibrium point of (2) 
and (3) if and only if fc (xe) = 0 and fd (xe) = 0. 

 

 
Fig. 1.  Comportment of infected population in the SIR epidemic model. Top: 
Behavior monotonically decreasing to zero, . Bottom: 
Nonmonotone behavior first increasing and then decreasing to zero (epidemic 
outbreak),  . 

B. Inverse Optimal Control 
In order to avoid the complexity in solving the Hamilton-

Jacobi-Bellman equations of an optimal control problem for 
nonlinear impulsive dynamical systems, Haddad, Chellaboina, 
and Nersesov characterized a class of globally stabilizing 
hybrid controllers for the inverse optimal hybrid control 
problem [13]. This minimizes some derived cost functional that 
provides flexibility in specifying the control law [13], [15]. 

Consider the controlled impulsive dynamical system 

 ,  ,
 

and hybrid performance functional 

 

 

where uc (∙) and ud (∙) are restricted to a class of admissible 
hybrid controls consisting of measurable functions such that 

 for all t ≥ 0 and  , ,  , 
  and satisfies L1c (x) ≥ 0, , , 
  and satisfies L1d (x) ≥ 0, , and . 

Also, assume there exists a continuously differentiable 
function  , and functions  and 

 such that V(0) = 0, V(x) > 0, , x ≠ 0, 

 ,         x ≠ 0,

,
 

, ,

where ud is admissible, and 

 as .

Then the zero solution x(t) ≡ 0 of the close loop system in 
(4) and (5) is globally asymptotically stable with the optimal 
hybrid feedback control law 

,           ,

 ,

and performance functional (6), with 

,
,

is minimized in the sense that 

 

, ,
 ,

where , , and  
 satisfies (4) and (5) for x(t), t ≥ 0. 

Complementary explanations and formal proof for the 
optimal hybrid control law above can be found in literature [13]. 

V. INVERSE OPTIMAL IMPULSIVE CONTROL FOR AN 
EXTENSION OF THE SIR MODEL 

A. SIR Epidemic Model with Seasonality 
There exist several variations of the classical SIR model to 

describe epidemics evolution with different characteristics with 
respect to mortality, immunity, infectivity, and time horizon [4]. 
One of these variations proposed by Liu and Stechlinski 
analyzes an infectious disease model with variable transmission 
rate and pulse control scheme as a means to eradicate the 
disease [2]; this is considered in this article to develop an 
inverse optimal impulsive controller. Population is divided into 
three distinct compartments: the susceptible, S; the infected, I; 
and the removed, R. Each individual may have either of the 
following transitions S→I→R, or stay in the susceptible state 



forever. Vital dynamics (births and deaths) are also included. 
The birth rate of the population into the susceptible class is μ > 
0, which equals the natural death rates in the three classes μS, 
μI, and μR. Thus, it is assumed that all individuals are born 
without the disease – i.e., there is not vertical transmission 
from mother to unborn child. The natural recovery rate from 
the disease for all individuals is α > 0. 

In this approach, the transmission rate β is treated as a time-
varying parameter motivated by seasonal changes in the 
transmission of an infectious disease, in contrast to major part 
of epidemic models that assume a constant transmission rate in 
time for a given population [2]. Hence, the transmission rate is 
modelled as a switching parameter βi > 0 with  , 
and is governed by a switching rule σ(t): (tn–1, tn] → {1,2,…,m}, 
for n = 1,2,…, which is a piecewise continuous function 
(assumed to be continuous from the left). That is, i = σ(t) on the 
interval (tn–1, tn], and at the switching times t = tn the parameter 
βi switches values according to the value of 

. The switching times satisfy 
 , with tn → ∞ as n → ∞. Denote 

the set of all such switching rules by  . 
We consider the following SIR epidemic model with 

seasonality, and pulse control of vaccination and treatment 

 ,                   , 
 , 
 ,                               
 ,               , 
 , 
 . 

Variables have been normalized by the total population N, 
which is constant, so that the meaningful physical domain for 
this system is  . The 
initial conditions are S(0) = S0 > 0, I(0) = I0 > 0, and R(0) = R0 
≥ 0 such that  . 

Furthermore, consider that a portion 0 ≤ p ≤ 1 of the 
infected population is successfully treated in a relatively short 
time period, compared to the timespan for the dynamics of the 
disease; and that the same portion p, but of susceptible 
population, is vaccinated at the same time. Then, suppose that 
infected individuals impulsively treated at times tk with k = 
1,2,…, and susceptible ones impulsively vaccinated, 
immediately enter the recovered class with permanent 
immunity. This is reasonable from a physical perspective, since 
the treatment and vaccination processes take a certainly short 
amount of time. 

B. Inverse Optimal Impulsive Controller 
Now that the SIR epidemic model with seasonality has been 

presented, we will set out the inverse optimal control for such 
system, which impulsively changes its state due to the pulse 
control employed to eradicate the disease. 

Epidemiological model in (17) can be represented as the 
controlled impulsive dynamical system in (4) and (5), with the 
state variables S, I, and R impulsively changed at the resetting 
times t = tk with k = 1,2,…, and suitable feedback control law 

(11,12) which solves the inverse optimal control (IOC) 
problem. Specifically, 

,                ,

 

0

, 

where  , and abs(∙) in ϕd (x(t)) takes the 
absolute value of the function. The reason for this positivity 
restriction is to make the problem physically interesting 
(positive fractions of infected, or susceptible, population can 
only be considered). 

Notice that, because of the impulsive control scheme 
proposed in (17), the continuous-time control function ϕc (x(t)) 
equals zero in (18), i.e., there exists no constant control action 
for the system. Moreover, ϕd (x(t)) drives now the impulsive 
control action in (20) to make it dependent of the system state, 
in such a way that a better performance is achieved. In this 
sense 

 

 

where p1 and p2 are the portions of individuals vaccinated 
and treated, respectively, every resetting time tk, dictated by the 
inverse optimal impulsive controller (22). Finally, the condition 

  establishes the initial condition x0 for (18) 
after a resetting time tk has occurred. 

VI. NUMERICAL SIMULATIONS AND RESULTS 
Numerical simulations of the impulsive-controlled SIR 

epidemic model defined in (18) and (23), with the inverse 
optimal control (22), are computed using MATLAB to 
illustrate the main theoretical results. All parameters values are 
chosen hypothetically owing to the unavailability of real world 
data but based on a realistic criterion. 

First, motivated by seasonal practical application (as the 
spread of a winter-infectious disease, like influenza), assume 
that the switching for the transmission rate, βi, is periodic, 
according to the next switching rule 

 

So, if switching intervals, for each transmission rate, are 
defined as τn = tn – tn–1, for n = 1,2,…, the period of the 



switching rule above is given by T = τ1 + τ2, where T = 1, τ1 = 
0.25, and τ2 = 0.75 years. Now, let the transmission rates take 
the values β1 = 9 during the winter, and β2 = 1 for other seasons, 
to emulate a scenario where the rate of incidence increases 
considerably over this period. 

Second, as stated in section II, the condition for an 
epidemic to occur is that  ; consequently, for the SIR 
model examined the inequality   must be 
satisfied, which can be reformulated as . 
Let’s consider the initial conditions, and the birth and the 
recovery rates as follows: S0 = 0.7, I0 = 0.3, R0 = 0, μ = 0.1, and 
α = 0.9. μ and α are selected to portray a moderated renewal 
rate of the total population in the timespan of simulation, and a 
strong ability to recover from the disease. 

Third, suppose that p1 = p2 = 0 unless t = tk = kT with k = 
1,2,…, that is, control pulses are applied every T time units, 
which implies executing impulsive treatment and vaccination 
yearly (it is assumed that there is no impulsive effect at the 
initial time t = 0). 

Last, parameters for the impulsive control function (22) 
have been optimized to get the desired behavior of the system 
in terms of the disease’s eradication. Final numerical values 
determined heuristically are 

,      ,      

Infected population I is selected as the variable that impact 
the contribution of the matrix P2 to the control law (22) at 
every resetting time tk, while susceptible population S affects 
the weights of R2d and P12, simultaneously. The following 
expressions summarizes what has been mentioned 

       

Simulation results in Fig. 2 show that the system converges 
to a periodic disease-free solution, where infected population I 
decreases to zero as the time approaches to infinity; this way, 
the infectious disease is successfully eradicated. However, we 
can observe that in an interval of approximately only 10 years, 
the system almost reaches the disease-free equilibrium. 
Through a tuning process of the control parameters R2d, P2, and 
P12, it is possible to define different times of converge for the 
same equilibrium point, or even to solutions where I ≠ 0 as t → 
∞ (endemic states). If the parameter values of the SIR epidemic 
model change to reflect more stringent conditions – e.g., higher 
βi transmission rates –, the system will probably take longer to 
converge to the periodic disease-free solution, or even will 
converge to one of the multiple existing endemic states, in 
which case, values for the impulsive control function (22) must 
be adjusted to obtain the desired behavior. 

Figure 3 illustrates how the inverse optimal controller 
works in estimating the number of susceptible individuals p1 

that should be vaccinated per year, and the number of 
individuals that should be treated p2, to achieve the eradication 
objective for the disease. The solid red lines indicate that, at the 
steady state of the system, vaccination strategy remains around 
5.6% of the total population throughout the entire time horizon 
considered. Conversely, the blue graphic establishes that the 
percentage of people that must be treated at the end of the 
simulation time is close to 0%, which makes sense since the 
infectious disease have been eradicated from population. Again, 
if control parameters R2d, P2, and P12, are modified, different 
percentages p1 and p2 could result. 

 

Fig. 2.  Solution to the SIR model with seasonality and inverse optimal 
impulsive control. The system reaches a disease-free equilibrium. 

In order to introduce a comparison between the inverse 
optimal impulsive control action proposed on this article and 
conventional control schemes employed to contain the spread 
of infectious diseases, we consider anew the SIR epidemic 
model with seasonality previously analyzed, and the parameter 
values used for simulation of Fig. 2. Figure 4 demonstrates the 
effects of constant (top graphic) and pulse (bottom) control 
schemes on the behavior of infected population in (17), where 
treatment of the infected and vaccination of the susceptible are 
simultaneously applied as control strategies. For the constant 
scheme, the control action is present all the way through the 
specified time period in a permanent fashion, while for the 
impulsive or pulse scheme, the control action takes place at 
only specific periodic time instants (yearly). In both traditional 
control schemes, the proportion of individuals to be treated or 
vaccinated is a fixed fraction of the infected or susceptible 
population and, to eradicate a disease, such a fraction requires 
to surpass a critical value which is defined by the parameters of 
the system, by the control scheme utilized, and by the disease 
itself; otherwise, the system will remain in an endemic state 
where the disease persists above some positive level [2]. 
Simulations results evidence that using similar control rates, 
the pulse scheme has a slightly better performance than the 
constant control approach, and therefore it is possible to 
eradicate a disease with a lower control action p with the 
former (and it implies a significant less amount of treatments 
and vaccines). Last, it is important to mention that any of the 
conventional control schemes requires greater control rates to 
have a disease-free equilibrium point compared to the inverse 
optimal impulsive control treated in this work, and those need 
to be computed in advance prior their application. 



 
Fig. 3.  Portion of total population to be vaccinated and treated at resetting 
times t = tk. 

 
Fig. 4.  Behavior of the infected population in the SIR epidemic model with 
seasonality. Top: Constant control scheme. Bottom: Pulse control scheme. 

VII. CONCLUSIONS 
We have considered the application of an impulsive control 

action, based on the IOC approach, to eradicate an infectious 
disease on a SIR epidemic model. The proposed control 
scheme proves to be an effective tool to help in the 
containment of infectious diseases, and to contribute to their 
possible eradication due to it minimizes the amount of vaccines 
and treatments given to population to reach the desired goal of 
a disease-free state. Unlike the conventional constant and pulse 
control schemes, the inverse optimal impulsive controller does 
not require to know in advance the parameters of the system 
whereon it will act to determine an adequate control action to 
mitigate the spread of a disease (which supposes an advantage 
over the traditional control schemes presented); however, the 
controller considered does require knowing the evolution of the 
current states of the system to perform such an operation. If any 
of the system's states is unknown, the performance of the 
impulsive controller can become dependent only on the 

remaining states. Even though this work does not consider any 
particular disease for the application of the control scheme 
above, results provide insight of efficient ways to tackle 
infectious diseases in realistic situations, that could be 
considered by epidemic researchers and social security entities. 
Note that in the inverse optimal control it is not require to 
provide a specific cost function to find an optimal solution in 
the system, but is the controller itself that uncovers the function 
cost in terms of an observed optimal response. 
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