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Abstract— As the application domains of sampling-based 

motion planning grow, more complicated planning problems 

arise that challenge the functionality of these planners. One of 

the main challenges in the implementation of a sampling-based 

planner is their weak performance when reacting to uncertainty 

in robot motion, obstacles motion, and sensing noise.  

In this paper, a multi-query sampling-based planner is 

presented based on the optimal probabilistic roadmaps 

algorithm that employs a hybrid sample classification and graph 

adjustment strategy to handle diverse types of planning 

uncertainty such as sensing noise, unknown static and dynamic 

obstacles and inaccurate environment map in a discrete-time 

system. The proposed method starts by storing the collision-free 

generated samples in a matrix-grid structure. Using the resulted 

grid structure makes it computationally cheap to search and find 

samples in a specific region. As soon as the robot senses an 

obstacle during the execution of the initial plan, the occupied 

grid cells are detected, relevant samples are selected, and in-

collision vertices are removed within the vision range of the 

robot. Furthermore, a second layer of nodes connected to the 

current direct neighbors are checked against collision which 

gives the planner more time to react to uncertainty before getting 

too close to an obstacle. The simulation results in problems with 

various sources of uncertainty show significant improvement 

comparing to similar algorithms in terms of failure rate, 

processing time and minimum distance from obstacles. The 

planner was also successfully implemented on a TurtleBot in two 

different scenarios with uncertainty. 

I. INTRODUCTION 

In the field of motion planning, sampling-based planners 
have been successfully applied to solve difficult problems in 
high-dimensional spaces. Theses algorithms are unique in the 
fact that planning occurs by sampling the configuration space. 
Original sampling-based planners such as Probabilistic 
Roadmaps (PRM) [1], Rapidly-Exploring Random Trees 
(RRT) [2], and Expansive Space Trees (EST) [3], are proved 
to be probabilistically complete as the probability of finding a 
solution in these planners is one when the input size goes to 
infinity. These algorithms have been improved further to 
achieve some form of optimality in the generated solutions. 
Optimal sampling-based planners such as PRM* and RRT* 
[4] are asymptotically optimal as the solutions found by these 
algorithms converge asymptotically to the optimum, if one 
exists, with the probability one as the input size goes to 
infinity. 

The failure of a robot to navigate in uncertainty is 
becoming an important challenge as the robots are finding their 
way to operate in our homes, offices and outdoor environments 
and participate in complex tasks such as health monitoring and 
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elderly care. Because of the uncertainty associated with a 
robot’s motion and its sensory readings, the real robot state is 
often not available. Therefore, any path planner must be able 
to account for these uncertainties to provide safe and collision-
free navigation plans. Uncertainty in path planning is often 
caused by three main sources including motion error, sensing 
error, and imperfect environment map [5]. Despite the proven 
advantages of sampling-based algorithms in path planning and 
even in other fields such as computer games and drug design 
[6], they fail to deal with planning under uncertainty. The main 
necessity for a typical sampling-based path planner is to have 
a map of the environment or the knowledge to decide whether 
any given configuration is in collision with obstacles or not. 
These algorithms generate random or semi-random samples in 
the free configuration space and therefore, they should be able 
to detect collisions beforehand. This restrictive assumption 
strongly limits the applicability of sampling-based planners to 
robots operating in uncertain environments. In addition, as a 
part of most of randomized algorithms, a local planner should 
be available to detect possible collision-free connection 
between two given configurations. Moreover, dealing with 
dynamic obstacles poses additional complexity to the 
uncertain path planning problem. Not knowing the position of 
a dynamic obstacle or equivalently the collision status of a 
configuration over time, leads a typical sampling-based 
planner to failure. Recently, conventional sampling-based 
planners have been upgraded to deal with some levels of 
uncertainty including sensing error, uncertain environment 
map and dynamic obstacles. These methods will be discussed 
in the next section however, an overall evaluation on the 
performance shows that they are computationally demanding 
as compared to their counterparts that do not consider 
uncertainty. Furthermore, focusing on one aspect of 
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                  (a)                                     (b)                                     (c) 

Figure 1.  A part of the solution computed by the proposed planner in a simple 

2D environment with a static unknown obstacle. (a) The robot is following 

the pre-planned path. (b) As the robot senses the new obstacle, the graph is 
adjusted and the path is repaired accordingly. (c) As the robot keeps moving, 

the graph keeps being adjusted and the generated path is improved during the 

planning. The obstacle and its expanded version are shown by gray and red 
squares respectively.  The robot is the grey circle with the green circle around 

it as the vision range and the generated path is the thick red line. 



  

uncertainty normally requires deterministic knowledge on 
other aspects. For instance, having an efficient path planner to 
deal with dynamic obstacles require a very accurate sensory 
system. In other words, the cumulative effect of all sources of 
uncertainty can be difficult to model and account for in the 
planning phase before task execution. 

In this paper, an extension of the optimal Probabilistic 
Roadmaps (PRM*) [4] is proposed which is able to handle 
different types of planning uncertainty in a single package 
without a considerable increase in the computational cost. 
First, a sampling radius 𝑅𝑠(𝑛) is applied to the sampling 
process to have a more sparse and monotone graph and avoid 
oversampling. Second, it stores the generated samples in a 
grid-based matrix 𝐺𝑅, based on the corresponding cartesian 
coordinates (𝑥𝑖 , 𝑦𝑖)𝑇 to make it computationally cheap when 
performing regional adaptation on the graph. Next, an 
uncertainty matrix, 𝐶𝑂𝐿, will be updated with a predefined 
frequency, ∆𝑡, which directly updates itself based on the 
information provided by the robot’s sensor(s). The most 
important part of the proposed algorithm is a graph-adjustment 
component which adjusts the resulted graph in real-time by 
refining not only in-collision nodes but also the corresponding 
connected neighbors. The proposed incremental graph 
adjustment process enables the planner to deal with any new 
obstacle in the same way without knowing whether the 
obstacle is static or dynamic. Other types of uncertainty such 
as noisy sensors or inaccurate maps are treated the same way 
since regardless of the source of uncertainty, it results in 
encountering an obstacle when it wasn’t accounted for. Figure 
1 shows the performance of the algorithm in dealing with a 
static unknown obstacle. The performance of the proposed 
planner is tested in several simulation scenarios with 
uncertainty. Furthermore, to test the results on a real robot, an 
implementation procedure is introduced that converts the 
output of the planner to a control vector for a non-holonomic 
mobile robot moving in a 2D indoor environment. This 
implementation is tested on a TurtleBot in two different path 
planning scenarios with uncertainty. 

The remainder of this paper is organized as follows: 
Section II is a summary of the related literature. Section III 
contains formal definitions and notations about the problem 
while section IV describes the proposed algorithm. The 
simulation and experimental results are provided in section V 
and finally the work is concluded and potential future work is 
discussed in section VI. 

II. BACKGROUND 

A common restrictive assumption in sampling-based 
algorithms is that the environment is well defined such that the 
relative location of the robot to obstacles is completely known. 
This assumption is valid in static environments where 
industrial manipulators are used or in CAD applications in 
which the environment is user-defined. For autonomous robots 
operate in uncertain environments that cannot be modeled or 
estimated, the assumption of a well-defined static environment 
does not hold true. There is an uncertainty that arises because 
of sensing errors and noise and the imprecision of actuators 
and other uncontrollable factors such as unknown static or 
dynamic obstacles [7]. In the past years, sampling-based 
algorithms have been updated to deal with various sources of 

uncertainty. Based on single or multi-query nature of the base 
planner, different improvements have been proposed in the 
presence of uncertainty. Even though for a single-query 
planner, regenerating a search tree may be a valid approach, it 
requires appropriate parameters tuning and various heuristics 
in different instances. There are several extensions of RRT 
algorithm to deal with uncertainty [8-11] which mostly deal 
with dynamic obstacles and show poor performances when 
facing other forms of uncertainty such as imperfect sensing or 
noisy environment maps. 

In the field of multi-query algorithms, several extensions 
of PRM planner have been introduced to deal with uncertainty. 
A PRM was proposed for dynamic motion planning based on 
regenerating a roadmap while assuming an obstacle-free space 
[12] while the data structure of PRM was improved to 
accommodate changes in the environment and consequently, 
in the roadmap. However, this algorithm only handles dynamic 
environment. A similar approach attempts to use a tree-based 
planner to connect the roadmap nodes in dynamic 
environments and encodes obstacle positions in local 
connections [13]. A generalized PRM was introduced in 
surroundings where obstacle movements are restricted to local 
sectors [14]. PDR maintains a roadmap whose paths can be 
deformed, thus numerous paths can be obtained between two 
configurations [15]. A sampling-based motion planner was 
proposed to deal with sensing uncertainty through a utility 
guided process that incorporates uncertainty directly into the 
planning procedure [16]. Guided Cluster Sampling (GCS) is a 
global motion planner which was introduced to handle 
problems with uncertainty. GCS uses the point-based Partially 
Observable Markov Decision Process (POMDP) approach [5]. 
GCS uses domain specific properties to construct a more 
suitable sampling strategy. A real-time path planner was 
proposed that guarantees probabilistic feasibility for 
autonomous robots with uncertain dynamics operating amidst 
dynamic obstacles with uncertain motion patters [17]. This 
method builds a learned motion pattern model by combining 
the flexibility of Gaussian process with the efficiency of RRT 
planner. BU-RRT* [18] is a novel optimizing sampling-based 
motion planner that guarantees feasibility of linear systems 
subject to a bounded uncertainty. FIRM [19] is a feedback-
based information roadmap for planning under uncertainty 
which is a belief-space variant of the PRM planner. In this 
method, the costs associated with the edges are independent of 
each other and it preserves the optimal substructure property. 
FIRM also relies on feedback from local planners to reduce the 
uncertainty propagation between states. The problem of 
motion planning for a linear system subject to Gaussian 
motion noise was considered and the CC-RRT*-D planner 
[20] was developed to deal with risk-aware path planning 
under uncertainty. This planner employs the chance-constraint 
approximation and leverages the asymptotically optimal 
property of RRT* framework to compute risk-aware and 
asymptotically optimal trajectories under motion uncertainty. 
A Sampling-based real-time motion planning algorithm has 
been proposed [21] for planning under state uncertainty which 
is an extension of the closed-loop rapid belief tree. A RRT-
based planner (HFR) was reported that is able to perform high-
frequency re-planning under uncertainty using parallel 
sampling-based planners [22]. RRTX [23] is a tree-based 
asymptotically optimal planner which is capable of solving 
dynamic motion planning problems by refining and repairing 



  

the same graph over the entire navigation. Whenever obstacles 
change or the robot moves, a graph rewiring cascade quickly 
remodels the existing search-graph and repairs its shortest 
path. Recently, a localization-aware sampling-based planner 
has been introduced [24] for incremental motion planning 
under uncertainty using a measure of localization ability of the 
samples. This planner puts more samples in regions where 
sensor data is able to achieve higher uncertainty reduction 
while maintaining adequate samples in regions where 
uncertainty reduction is poor.  

Most of the abovementioned planners focus on one source 
of uncertainty and at some level require accuracy on other 
aspects which is not the case in complex planning problems 
under different forms of uncertainty. Furthermore, total 
processing time of the planner when dealing with uncertainty 
is a crucial factor which usually is neglected. Having a motion 
planning algorithm with a computationally expensive process, 
is not practical when dealing with a real robot. To understand 
the effect of high process runtime in the implementation of a 
planner consider a mobile robot that stops for a minute each 
time it senses a new obstacle. 

III. PROBLEM FORMULATION 

In this section, the basic definitions and descriptions of the 
proposed algorithm is provided. A mobile robot is moving in 
a 𝑑-dimensional state space. Initially, there is a map of the 
environment that at least specifies the boundaries of the space. 
The only requirement of the planner is to have or to be able to 
generate an initial solution before the navigation starts. 

Let 𝑄 ⊆ ℝ𝑑 be the state space of the navigation problem 
which includes two main subset such as 𝑄𝑜𝑏𝑠 ⊂ 𝑄 where the 
state is in collision with obstacles, and 𝑄𝑓𝑟𝑒𝑒 = 𝑄\𝑄𝑜𝑏𝑠 where 

the robot is free to move. Let (𝑥𝑖𝑛𝑖𝑡 , 𝑦𝑖𝑛𝑖𝑡)𝑇  and (𝑥𝑓 , 𝑦𝑓)𝑇  be 

the desired initial and final configurations of the robot 
respectively.  

Definition 1 (Samples): Let (𝑥𝑖 , 𝑦𝑖)𝑇 ∈ 𝑄 be a randomly 
selected configuration in 𝑄 and 𝑆 = {(𝑥𝑖 , 𝑦𝑖)𝑇 , 𝑖 = 1, … , 𝑛} be 
the set of 𝑛 randomly generated samples in 𝑄. We consider 𝑆 
as a valid set of samples if: 

(𝑥𝑖 , 𝑦𝑖)𝑇 ∈ 𝑄𝑓𝑟𝑒𝑒 , ∀ (𝑥𝑖 , 𝑦𝑖)𝑇 ∈ 𝑆 and 

||(𝑥𝑖 , 𝑦𝑖)𝑇 , (𝑥𝑗 , 𝑦𝑗)𝑇|| ≤ 𝑅𝑆(𝑛), ∀ (𝑥𝑗 , 𝑦𝑗)𝑇 ∈ 𝑆 

𝑆 = [
𝑥1 … 𝑥𝑛

𝑦1 … 𝑦𝑛
] 

where ||𝐴, 𝐵|| denotes the Euclidean distance between two 

points 𝐴 and 𝐵 and 𝑅𝑆(𝑛) = [𝐿(𝑄𝑓𝑟𝑒𝑒)(𝑛 − 𝜆)/(𝜋𝑛2)]
1

2⁄  is 

a sampling radius based on the number of samples, 𝑛. L is the 
Lebesgue measure (i.e. volume) and  𝜆 is a positive scaling 
constant. More details about the sampling radius can be found 
in [25]. 

Definition 2 (Collision-free path): A sequence of states,  

𝜎: [0,1] → ℝ𝑑 is called a collision-free path between 
(𝑥𝑖 , 𝑦𝑖)𝑇and (𝑥𝑗 , 𝑦𝑗)𝑇 if: 

• 𝜎(𝜏) ∈ 𝑄𝑓𝑟𝑒𝑒 ,   ∀ 𝜏 ∈ [0,1] 

• 𝜎(0) = (𝑥𝑖 , 𝑦𝑖)𝑇 𝑎𝑛𝑑 𝜎(1) = (𝑥𝑗 , 𝑦𝑗)𝑇 

If  𝜎(0) = (𝑥𝑖 , 𝑦𝑖)𝑇 , 𝜎(1) = (𝑥𝑗 , 𝑦𝑗)𝑇 and for all 𝜏 ∈
(0,1), 𝜎(𝜏) = 0, then there is a direct collision-free path, 𝜎𝐷 , 
between (𝑥𝑖 , 𝑦𝑖)𝑇and (𝑥𝑗 , 𝑦𝑗)𝑇 

Definition 3 (Graph): Let 𝐶𝑂𝑁𝑛×𝑛 = [𝑐𝑜𝑛𝑖,𝑗] be a matrix 

showing the connection between all (𝑥𝑖 , 𝑦𝑖)𝑇 , (𝑥𝑗 , 𝑦𝑗)𝑇 ∈ 𝑆. 

Any two pair of samples in 𝑆 are connected if there exist a 
collision-free direct path between them and the length of this 
path is less than a given connection radius 𝑅𝑐(𝑛). 

𝑐𝑜𝑛𝑖,𝑗 = {

||𝜎𝐷(𝑖, 𝑗)||               if:                                   

𝜎𝐷(𝑖, 𝑗) ≠ ∅   and   ||𝜎𝐷(𝑖, 𝑗)|| ≤ 𝑅𝑐(𝑛)
 

0                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                   

 

𝑅𝑐(𝑛) = 𝛾[log (𝑛)/𝑛]
1

𝑑⁄  

𝛾 > 𝛾∗ = 2(1 + 1
𝑑⁄ )

1
𝑑⁄ [𝐿(𝑄𝑓𝑟𝑒𝑒)/𝜁𝑑]

1
𝑑⁄  

𝐶𝑂𝑁 = [

𝑐𝑜𝑛1,1 ⋯ 𝑐𝑜𝑛1,𝑛

⋮ 𝑐𝑜𝑛𝑖,𝑗 ⋮
𝑐𝑜𝑛𝑛,1 ⋯ 𝑐𝑜𝑛𝑛,𝑛

] 

where 𝑑 is the dimension of the configuration space and 𝜁𝑑 is 
the volume of the unit ball in the d-dimensional Euclidean 
space. The concept of connection radius was taken from the 
PRM* [4] algorithm to guarantee asymptotically optimal 
solutions. 

Definition 4 (Optimal path planning): Let Σ be the set of 
all feasible paths between (𝑥𝑖𝑛𝑖𝑡 , 𝑦𝑖𝑛𝑖𝑡)𝑇 and (𝑥𝑓 , 𝑦𝑓)𝑇. The 

optimal path planning problem between (𝑥𝑖𝑛𝑖𝑡 , 𝑦𝑖𝑛𝑖𝑡)𝑇 and 

(𝑥𝑓 , 𝑦𝑓)
𝑇
 can be defined as finding the path 𝜎∗, that minimizes 

a given cost function, 𝑠: Σ → ℝ≥0, while connecting 
(𝑥𝑖𝑛𝑖𝑡 , 𝑦𝑖𝑛𝑖𝑡)𝑇 to (𝑥𝑓 , 𝑦𝑓)𝑇 through 𝑄𝑓𝑟𝑒𝑒 . 

Definition 5 (Uncertainty): Let 𝐶𝑂𝐿𝑛×𝑛(𝑡) be a matrix that 
represents the uncertainty in the planning problem as a 
function of time. 

𝐶𝑂𝐿𝑛×𝑛(𝑡) = [col𝑖,𝑗(𝑡)], 𝑖, 𝑗 = 1, … , 𝑛 

col𝑖,𝑗(𝑡) = {
0        if in time 𝑡:     𝜎𝐷(𝑖, 𝑗) ≠ ∅
1                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐶𝑂𝐿(𝑡) = [

𝑐𝑜𝑙1,1(𝑡) ⋯ 𝑐𝑜𝑙1,𝑛(𝑡)

⋮ 𝑐𝑜𝑙𝑖,𝑗(𝑡) ⋮

𝑐𝑜𝑙𝑛,1(𝑡) ⋯ 𝑐𝑜𝑙𝑛,𝑛(𝑡)

] 

The matrix of uncertainty shows whether, in a specific time 
𝑡, a given configuration (𝑥𝑖 , 𝑦𝑖)𝑇 is in collision with obstacles 
or not by the value of col𝑖,𝑖(𝑡). It also shows if there is a direct 

path 𝜎𝐷(𝑖, 𝑗) between any two configurations 
(𝑥𝑖 , 𝑦𝑖)𝑇 , (𝑥𝑗 , 𝑦𝑗)𝑇, by the value of col𝑖,𝑗(𝑡). This matrix will 

be updated continuously during the navigation by analyzing 
the readings of the robot’s sensory system. 

IV. ALGORITHM 

In this section, the proposed algorithm is presented in detail 
which includes the graph construction and graph adjustment. 
Like any multi-query planner, the graph construction phase 
starts by learning the configuration space through sampling. 
Initially, it requires to have an approximation on the 
boundaries of the space. Having any additional information is 
optional and does not affect the performance of the planner. 



  

According to the initial available map, the sampling takes 
place and the set of all samples 𝑆 = {(𝑥𝑖 , 𝑦𝑖)𝑇} is created and 
filled with randomly selected collision-free configurations. At 
the same time, another matrix structure 𝐺𝑅 = {(𝑥𝑖 , 𝑦𝑖)𝑇} is 
created which stores the elements of 𝑆 in a grid structure with 
a predefined resolution ∆𝐺𝑅< 𝑅𝑆(𝑛). The main difference 
between 𝑆 and 𝐺𝑅 is the order of storing the coordinates. 
While 𝑆 saves the coordinates on a first-come first-served 
base, 𝐺𝑅 stores the coordinates in a 2D structure based on their 
corresponding grid cell. Considering a sample (𝑥𝑖 , 𝑦𝑖)𝑇in 𝑆, 
the corresponding position of (𝑥𝑖 , 𝑦𝑖)𝑇 in 𝐺𝑅, (𝛼, 𝛽) can be 
calculated as follows: 

𝛼 = ⌈
𝑥𝑖

∆𝐺𝑅
⁄ ⌉ , 𝛽 = ⌈

𝑦𝑖
∆𝐺𝑅

⁄ ⌉ 

where ⌈𝛼⌉ shows the smallest positive integer, which is greater 
than or equal to 𝛼. Having a grid resolution smaller than the 
sampling radius 𝑅𝑆(𝑛) guarantees that any given cell in the 
grid matrix at most, includes one sample. Using this simple 
structure make it computationally cheap to search the visible 
area around the robot and find the neighbor nodes without 
searching the whole graph. At the current position of the robot, 
the surrounding grid cells are considered as visible if the center 
of the cell is within the sensing range. This strategy provides 
enough number of visible grid cells without being pessimistic 
or optimistic as presented in Figure 2. 

 
                    (a)                                     (b)                                      (c)  

Figure 2.  Different strategies for recognizing a grid cell as visible. (a) A 

pessimistic strategy that accepts a cell if the entire cell is within the sesnsing 
range, (b) an optimistic strategy that accepts a cell if it is partially visible, and 

(c) the proposed strategy that recognizes a cell if the center of the cell is 

visible. Unrecognized cells are shown by white color. 

After generating the samples and storing them in 𝐺𝑅, the 
graph will be constructed based on the values in 𝐶𝑂𝑁 matrix 
and an initial solution will be generated using a graph search 
algorithm such as A*. Now the robot is ready to move towards 
the final position. Algorithm. 1 presents the Graph_Construct 
phase. As the robot starts to move, the surrounding area is 
scanned and visible grid cells, as shown in Figure 2(c), are 
marked as free or occupied based on the readings of the 
sensor(s), 𝜌(𝜃, ∆𝑡). By knowing the occupied grid cells within 
the vision range, it is possible to update the uncertainty matrix 
𝐶𝑂𝐿. For every grid cell within the range, the value of the 
corresponding nodes in the uncertainty matrix will be updated. 
If a node was defined as free before and now, the 
corresponding grid cell to that node is not reachable, i.e. 
occupied, the status of that node will be updated to occupied, 
col𝑖,𝑖(𝑡) = 1. On the other hand, if a node was marked as 

occupied before and now it is reachable, it’s corresponding 
uncertainty value is updated to 0. The next step is to adjust the 
graph based on the new values in the matrix of uncertainty as 
presented in Algorithm 2. An instance of the graph adjustment 
is shown in Figure 3, where the graph adjustment is shown in 
two different positions and some vertices are removed or 
added back to the roadmap. 

ALGORITHM 1: GRAPH_CONSTRUCT  

1 𝑆 ← {(𝑥𝑖 , 𝑦𝑖)𝑇}, 𝐺𝑅 ← (𝛼𝑖, 𝛽𝑖)𝑇 , 𝐶𝑂𝑁 ← {𝑐𝑜𝑛𝑖,𝑗}, 𝑖, 𝑗 = 1, … , 𝑛 

2 while 𝑟𝑒𝑎𝑐ℎ = 𝑓𝑎𝑙𝑠𝑒 and 𝑓𝑎𝑖𝑙 = 𝑓𝑎𝑙𝑠𝑒 

3 | 𝑡𝑖𝑚𝑒 = 𝑡𝑖𝑚𝑒 + ∆𝑡; 
4 | Scan: 𝜌(𝜃, 𝑡𝑖𝑚𝑒) 

5 | Update 𝐶𝑂𝐿𝑛×𝑛 

6 | Graph-Adjust 

7 | GraphShortestPath[𝑠𝑝𝑎𝑟𝑠𝑒(𝐶𝑂𝑁), (𝑥𝑐 , 𝑦𝑐)𝑇, (𝑥𝑓 , 𝑦𝑓)𝑇 = [𝑑𝑖𝑠𝑡, 𝑝𝑎𝑡ℎ]                      

8 | if    ||(𝑥𝑐 , 𝑦𝑐)𝑇, (𝑥𝑓, 𝑦𝑓)𝑇|| ≤ 𝜀    then      

9 | | 𝑟𝑒𝑎𝑐ℎ ← 𝑡𝑟𝑢𝑒 

10 | If    𝑝𝑎𝑡ℎ = ∅                              then      

11 | | 𝑓𝑎𝑖𝑙 ← 𝑡𝑟𝑢𝑒, Return 

12 | 𝑀𝑜𝑣𝑒 ← 𝑑 = 𝑉 × ∆𝑡 

ALGORITHM 2: GRAPH_ADJUST  

1 𝐶𝑂𝐿𝑛×𝑛(𝑡) = [col𝑖,𝑗(𝑡)], 𝑖, 𝑗 = 1, … , 𝑛 

2 for  all  (𝑥𝑖 , 𝑦𝑖)𝑇 ∈ 𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑟𝑎𝑛𝑔𝑒 

3 | if  𝑐𝑜𝑙𝑖,𝑐 = 1 and 𝑐𝑜𝑛𝑖,𝑐 ≠ 0 then 

4 | | 𝐶𝑂𝑁(𝑖, : ) = 0, 𝐶𝑂𝑁(: , 𝑖) = 0; 
5 | if  𝑐𝑜𝑙𝑖,𝑐 = 0 and 𝑐𝑜𝑛𝑖,𝑐 ≠ 0  then 

6 | | for  all  (𝑥𝑗 , 𝑦𝑗)𝑇 ∈ 𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑟𝑎𝑛𝑔𝑒 

7 | | | if  col𝑖,𝑗(𝑡)=1 then 

8 | | | | 𝐶𝑂𝑁(𝑖, 𝑗) = 0, 𝐶𝑂𝑁(𝑗, 𝑖) = 0; 
9 | if  𝑐𝑜𝑙𝑖,𝑐 = 0 and 𝑐𝑜𝑛𝑖,𝑐 = 0 then 

10 | | 𝐶𝑂𝑁(𝑖, 𝑐) = ||(𝑥𝑖 , 𝑦𝑖)𝑇, (𝑥𝑐 , 𝑦𝑐)𝑇||, 𝐶𝑂𝑁(𝑐, 𝑖) = 𝐶𝑂𝑁(𝑖, 𝑐); 
11 | | for  all  (𝑥𝑗 , 𝑦𝑗)𝑇 ∈ 𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑟𝑎𝑛𝑔𝑒 

12 | | | if  col𝑖,𝑗(𝑡)=0 and 𝑐𝑜𝑛𝑖,𝑗 ≠ 0 then 

13 | | | | 𝐶𝑂𝑁(𝑖, 𝑗) = ||(𝑥𝑖 , 𝑦𝑖)𝑇, (𝑥𝑗 , 𝑦𝑗)𝑇||, 𝐶𝑂𝑁(𝑗, 𝑖) = 𝐶𝑂𝑁(𝑖, 𝑗); 
 

 
Figure 3.  The Graph-Adjust procedure. (a) The original graph before sensing 

the obstacle, (b) the obstacles are detected and in-collision edges are 
determined as shown by red color, (c) the adjusted graph after removing the 

in-collision edges and (d) after the robot moves to another position with a 

different sensing outcome, all of the previously removed edges are added 
back to the graph if the corresponding uncertainty values are not zero. The 

black point is the robot’s current position and the green circle represents the 

robot’s vision range.  

Now, the graph connection matrix, 𝐶𝑂𝑁 will be updated 
based on the changes in 𝐶𝑂𝐿. First, for all nodes within the 
vision range, if there is a direct path 𝜎𝐷(𝑐, 𝑖) between robot’s 
current position (𝑥𝑐 , 𝑦𝑐)𝑇 and that node (𝑥𝑖 , 𝑦𝑖)𝑇 in the current 
𝐶𝑂𝑁, i.e. 𝑐𝑜𝑛𝑖,𝑐 ≠ 0, and the corresponding value of col𝑖,𝑖(𝑡) 

has been updated to 1, then all of the connections of that node 
will be removed in the graph connection matrix, 𝐶𝑂𝑁(𝑖, : ) =
0, and 𝐶𝑂𝑁(: , 𝑖) = 0. The opposite procedure applies on the 
nodes that have been disconnected before and now are have a 
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collision-free connection to the current node. Next, for all 
other nodes within the sensing range and connected to the 
neighbors of the current node, in-collision connections are 
removed and collision-free connections are added to adapt the 
graph to the uncertainty of the space. The graph adjustment to 
two immediate layers of neighbors enables the robot to detect 
collision without getting close to the obstacles. This process 
can be extended for more than two layers; however, it worsens 
the computational cost of the process since more nodes need 
to be checked for collision. Applying the Graph_Adjust 
procedure has another benefit that improves the planning 
efficiency. According to lines 9-13 in Algorithm. 2, if there are 
some nodes that have been removed from the graph in previous 
iterations of the algorithm and now the planner can conclude 
that they are not in collision, they will be added back to the 
graph. This situation happens when an obstacle is blocking a 
collision-free node or there is a dynamic object in the 
environment. This is more effective than adding back the 
edges to the graph as soon as they are out of the vision range. 
Adding back the removed edges as soon as they are not visible 
anymore may cause a local minimum in which the robot keeps 
moving between two positions forever. Figure 4 shows an 
example of the local minima situation.  

 
                   (a)                                    (b)                                    (c) 

Figure 4.  A local minimum trap where the robot moves between two local 

optima forever. (a) The robot is at 𝑨 and the current shortest path goes 

through point 𝑩. (b) When the robot reaches point 𝑩, the graph is adjusted 

and now the path goeas through point 𝑪. (c) As the robot reaches point 𝑪, 

some parts of the nodes that are out of the vision range are added back to the 

graph which forces the robot to move back to point 𝑩. This loop continious 

for ever. 

Limiting the graph adaptation to the visible region avoids 
local minima. Now that the graph was adjusted, the shortest 
path from the robot’s current position to the final configuration 
will be calculated and the robot continues moving but in the 
latest generated path. This procedure repeats with a constant 
frequency ∆𝑡 (sec.) until the robot reaches the obstacle or 

concludes that no solution exists. As presented in Figure 3, the 
proposed planner is capable of disconnecting the in-collision 
nodes and reconnecting free nodes. 

V. RESULTS AND DISCUSSION 

To evaluate the performance of the algorithm and compare 
it with similar planners, the algorithm was simulated and 
further implemented on a real mobile robot. The results are 
described in the following sections. 

A.  Simulation Studies 

The planner was simulated in MatLab R2017a to perform 
in four different planning scenarios as presented in Figure 4. 
All simulations were run on a desktop with a 3.40-GHz Intel 
Core i7 processor with 32 GB of memory. In the first case, a 
mobile robot is moving in a 2D bounded environment without 
initially having any obstacles. As soon as the robot finishes the 
pre-planning, two polygonal obstacles are added to the 
environment and the robot starts to navigate without having 
any knowledge about them. In the second scenario, the robot 
is supposed to move in a known maze, but after reaching the 
middle of the maze, a door is closed which blocks the current 
path of the robot and the current solution becomes infeasible. 
Next, the robot is supposed to move in a plain 2D bounded 
environment which later contains two dynamic obstacles 
moving in different directions. Finally, the robot is given a 
noisy map while the real map of the environment is quite 
different. The planner is required to guide the robot through 
the actual map only by initially having the noisy map. Since 
similar situations are created in the experimental studies on a 
TurtleBot, the size of the environments and the robot was set 
to be exactly the same as the experiments which will be 
discussed later. The performance of the planner is compared to 
six similar algorithms as presented in Table 1 for dealing with 
different types of planning uncertainty as described in section 
II including GCS [5], RR-GP [17], BU-RRT* [18], FIRM 
[19], CC-RRT* [20] and RRBT-LAS [24]. The results are 
described based on path length (PL) in meters, which is the 
total travelled distance by the robot, processing time (RT) in 
seconds, which is the total planning time minus the navigation 
time, failure rate (FL), which is the percentage of failure, and 
the minimum shortest distance to the obstacles (DM) in 
meters, which is calculated using the following equation: 

TABLE 1. PERFORMANCE COMPARISON BASED ON THE SIMULATION RESULTS. 

𝒏 = 𝟐𝟎𝟎 GCS [5] 
RR-GP 

[17] 

BU-RRT* 

[18] 
FIRM [19] 

CC-RRT*-D 

[20] 

RRBT-LAS 

[24] 
Proposed Planner  

Scene 1 

PL(m) / Std 13.38 / 1.63 14.87 / 2.66 13.85 / 1.55 12.44 / 3.55 13.80 / 2.59 14.53 / 2.45 11.71 / 0.57 

RT(sec) / Std 18.57 / 2.55 12.36 / 4.00 11.90 / 2.57 15.87 / 4.08 12.39 / 1.89 11.99 / 5.66 4.66 / 0.08 

Fail(%) 1 2 2 1 0 2 0 

DM(m) / Std 0.20 / 0.02 0.22 / 0 05 0.19 / 0 05 0.19 / 0.06 0.20 / 0 08 0.20 / 0.07 0.21 / 0.03 

Scene 2 

PL(m) / Std 10.22 / 2.87 12.90 / 1.73 12.38 / 1.85 9.63 / 1.22 13.13 / 2.71 11.64 / 2.99 9.18 / 0.62 

RT(sec) / Std 5.80 / 1.32 5.19 / 2.66 4.87 / 1.96 6.16 / 1.24 4.21 / 1.99 6.01 / 2.59 2.19 / 0.11 

Fail(%) 6 5 5 4 2 3 0 

DM(m) / Std 0.29 / 0.09 0.31 / 0.08 0.32 / 0.11 0.28 / 0.09 0.33 / 0.05 0.34 / 0.08 0.34 / 0.05 

Scene 3 

PL(m) / Std 18.20 / 3.18 21.04 / 3.80 19.19 / 4.00 18.34 / 3.33 17.55 / 4.50 16.87 / 2.97 15.96 / 2.87 

RT(sec) / Std 5.19 / 0.28 4.32 / 0.44 4.08 / 0.60 3.50 / 0.29 4.11 / 0.70 4.08 / 0.22 2.44 / 0.12 

Fail(%) 1 1 0 0 0 0 0 

DM(m) / Std 0.25 / 0.08 0.27 / 0.06 0.28 / 0.08 0.27 / 0.08 0.29 / 0.07 0.28 / 0.07 0.29 / 0.03 

Scene 4 

PL(m) / Std 47.44 / 3.19 45.19 / 5.22 40.40 / 5.00 42.99 / 4.13 42.36 / 3.15 41.82 / 3.04 38.69 / 1.88 

RT(sec) / Std 12.88 / 0.56 15.90 / 0 78 10.15 / 0.33 10.02 / 0.26 12.55 / 0.52 11.17 / 0.88 8.77 / 0.14 

Fail(%) 7 8 8 5 6 5 2 

DM(m) / Std 0.28 / 0.07 0.31 / 0.10 0.29 / 0.08 0.29 / 0.09  0.27 / 0.09 0.34 / 0.11 0.35 / 0.09 
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𝐷𝑀 = min
𝜔

{min
𝜃

(||(𝑥𝑐, 𝑦𝑐)𝑇 , 𝑜𝑏𝑠. ||)} ,   𝜔 =
𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

Δ𝑡
  

where 𝜃 is the sensing angle of the robot and Δ𝑡 is the time 
between two consecutive scans of the environment by the 
robot. Table 1 shows the results when all planners used a set 
of 200 samples per run, Euclidean distance for heuristics and 
local planner, and uniform sampling with the sampling radius 

with the scaling factor of 𝜆 = 𝑛1 2⁄ . Instead of using a fixed 
final configuration, each execution was concluded as 
successful if the distance of the robot to the goal was less than 
a fixed distance 𝐷𝑓 = 0.1 (𝑚). For tree-based planners, the 

fixed step size was replaced by the sampling radius 
𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 = 𝑅𝑠(𝑛). During simulations, each actual obstacle 
was expanded by the size equal to the radius of the robot which 
for a TurtleBot, 𝑅𝑟𝑜𝑏𝑜𝑡 ≅ 0.18 (𝑚). Same radius was used 
against the boundaries of the environments. Since no post-
processing was applied to the simulation results, the scanning 
of the planner was designed to take place each time the robot 
reaches a new node, which gives an equal number of scans and 
segments of the final path. The results indicate that the 
proposed planner outperforms each one of the studied 
algorithms in all performance variables. The planner maintains 
a stable path length and distance to the obstacles, while it 
significantly reduces the processing time and failure rate. As 
stated before, the processing time includes the initial sampling 
and roadmap construction time plus the computational cost 
related to the graph adjustment procedure. The failure rates 
also indicate the applicability of the planner to planning 
problems with uncertainty. The planner failed to guide the 
robot only in the last test environment and only two times out 
of 100 executions due to the elevated level of inaccuracy and 
noise in the given map. 

B.  Experimental Setup 

To implement the proposed algorithm on a real robot, few 
modifications are required. Since one of the major drawbacks 
of sampling-based algorithms is their widely regarded 
suboptimal paths, we applied a post-processing procedure [26] 
on the results of the algorithm which can remove the redundant 
nodes from the final solution. Furthermore, a path smoothing 
technique was applied to refine the resulted paths by finding 
the inner circle of each three consecutive nodes on the post-
processed path as presented in Figure 6.  

 
Figure 6.  The performance of the post processing procedure for a given path. 

The original path between yellow and green squares is highly suboptimal 

(black line). Redundant nodes are removed and the rest are connected to 

provide a shortcut path (blue line). A smoothing technique is then employed 

to smooth the sharp edges of the final solution (red dotted line). 

Next, the result of the algorithm after post-processing and 
path smoothing should be transferred to the robot. The final 
solution consists of three vectors, including 𝐹𝑆, which stores 
the nodes on the final path, 𝐶𝑈 containing the curvature 
information when the robot is moving on a curve and finally 
𝐷, which contains the travelled distance between any two 
consecutive notes of the final solution. These three vectors will 
be used later to compute the control vector of the robot, 
𝐶𝑜𝑛𝑡𝑟𝑜𝑙, which includes segmental linear (𝑣𝑖) and angular 
(𝜔𝑖) velocity of the robot as well as the during of each segment 
(𝑡𝑖). 
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                               (d)                                                                                (e)                                                                                  (f) 

Figure 5.  An instance of the simulation results. (a) A plain environment (3.73×4.03(m)) which contains two initially unknown static obstacle and 282 

nodes in the graph, (b) same environment but with two dynamic obstacles and 294 nodes in the graph, (c) a maze (5.97×3.22(m)) where two doors will 

close (D1 and D2) as the robot starts to move and 266 nodes in the graph, (d) the actual map of an office (24×15(m)), (e) a noisy map of the same office, 

and (f) the solution provided by the proposed planner is shown on the combination of these two maps using a graph with 540 nodes. The robot is a circle 

with the radius of 0.177(m). The dimensions of the environments and the robot are chosen carefully to match the simulations with the experimental studies.  



  

𝐹𝑆 = [
𝑥1 … 𝑥𝑚

𝑦1 … 𝑥𝑚
] ,   𝑚 = 2 × ||𝑝𝑎𝑡ℎ|| − 2 

𝐶𝑈 = [
𝑟1 … 𝑟𝑚−1

𝛼1 … 𝑑𝑚−1
] ,  𝛼𝑖 ∈ {−1,  0,  + 1} 

𝐷 = [
𝑑1 … 𝑑𝑚−1

𝜃1 … 𝜃𝑚−1
] 

𝐶𝑜𝑛𝑡𝑟𝑜𝑙 = [

𝑣1 … 𝑣𝑚−1

𝜔1 … 𝜔𝑚−1

𝑡1 … 𝑡𝑚−1

], 

𝜔𝑖 =
𝛼𝑖𝑣𝑖

𝑟𝑖
,     𝑡𝑖 =

𝛼𝑖𝜃𝑖

𝜔𝑖
+

(1 − 𝛼𝑖)𝑑𝑖

𝑣𝑖
 

where 𝛼𝑖 shows the turning direction. The robot goes straight 
if  𝛼𝑖 = 0, turns right if  𝛼𝑖 = +1 and turns left if  𝛼𝑖 = −1. 
At the beginning, the robot is given an initial control vector 
based on the solution found by the original roadmap. As the 
robot starts to move, it scans the surrounding area on a fixed 
predefined frequency ∆𝑡 = 2 (sec) which means if the robot 
is moving on a straight line with the linear speed of 𝑣𝑖, then is 
scans the surrounding area every 𝑑 = 2 × 𝑣𝑖 . The sensing 
range of the robot was limited to one meter. 

C.  Experimental Studies 

The performance of the algorithm was tested on a 
Turtlebot2 with an Asus Xtion Pro Live camera, an A1 
RPLIDAR 360o laser range finder, and an onboard computer 
with a 2.60-GHz Intel Core i5 processor with 8 GB of memory 
in two different planning problems as shown in Figure 7. And 
Table 2. First, the robot is navigating in a 2D plain 
environment where two unknown static obstacle appear after 
the initial planning. This problem is similar to the first 
simulation scenario in Figure 6(a). Second, the robot is moving 
in an office with a highly inaccurate map and in the presence 
of unknown static and dynamic obstacles. During the 
experiments, the linear speed of the robot was set to be 
0.2(𝑚 𝑠𝑒𝑐⁄ ) and the angular velocity was calculated 
accordingly. The definitions of PL, RT Fail and DM is same 
as described before. Even though the initial placement of the 
robot is important for successful implementation, but the 

planner could adopt to minor errors in the initial pose of the 
robot.  

TABLE 2. EXPERIMENTAL RESULTS IN TWO DIFFERENT SCENARIOS. 

𝒏 = 50 100 500 1000 

Experiment 1 

PL(m)/Std 12.13 / 0.18 12.08 / 0.13 11.62 / 0.12 11.94 / 0.07 

RT(sec)/Std 0.27 / 0.08 0.38 / 0.08 0.48 / 0.11 0.63 / 0.14 

Fail(%) 5 0 0 0 

DM(m)/Std 0.23 / 0.13 0.24 / 0.12 0.21 / 0.08 0.20 / 0.09 

Experiment 2 

PL(m)/Std 49.67 / 2.85 48.40 / 2.97 46.18 / 2.65 43.19 / 2.98 

RT(sec)/Std 1.34 / 0.08 2.78 / 0.08 4.25 / 0.17 7.25 / 0.15 

Fail(%) 53 17 5 3 

DM(m)/Std 0.38 / 0.10 0.37 / 0.13 0.38 / 0.07 0.35 / 0.11 
 

Since the postprocessing and smoothing steps were 
implemented on the planner, one extra rule had to be added to 
the navigation. Whenever the environment scan resulted in 
graph adaptation and the solution path was repaired, an 
additional smoothing step takes place to prevent the robot from 
completely stopping and changing the orientation. Instead, the 
robot moves on a curve in order to follow the new path. 
Furthermore, Figure 8 shows the changes in the failure rates of 
the planner relative to the initial graph size. Having a too small 
graph leads to failure but as soon as few samples are added, 
the planner performs effectively. It also shows that after 
certain values, the size of the graph becomes affectless on the 
success or failure of the planner. The stability of the results 
presented in Figure 9 indicates that despite the randomized 
nature of the planner, it generates stable results with low 
variation over different runs.  The stability of the results is 
because of the sampling-radius and the graph adjustment 
behavior. Since the samples are evenly distributed in the space, 
the resulted solution and corresponding processing time and 
distance to the obstacles change with lower variances. On the 
other hand, the graph adopts to the recent changes without 
adding new samples to the graph and this procedure keeps the 
appearance and behavior of the original graph.  The failure rate 
was not included in stability analysis since the percentage of 
failure was averaged over 100 iterations. 
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Figure 7.  Experimental studies on a TurtleBot including (a) a similar environment to the first simulation example in Figure 6(a), with two static unknown 
obstacles where the robot only knows the boundaries of the environment and (b) the TurtleBot is moving in an office-like environment when the only available 
map is a noisy map generated by gmapping algorithm.  



  

 
Figure 8.  Performance of the proposed algorithm in terms of failure rate in 
during the experimental studies. The results are averaged over 100 different 
runs of the planner. The size of the graph plays an important role in the 
success rate of the planner. 

 
Figure 9.  The performance of the proposed algorithm in generating stable 

results. For both experiments, the variations in path length, processing time 
and minimum distance to the obstacles are shown for 100 different runs. 

VI. CONCLUSION 

A multi-query planner was proposed to deal with 
uncertainty challenge in robotic motion planning. The 
proposed algorithm employs two new mechanism to deal with 
unknown changes. First, a sample classification component 
takes place parallel to the sampling procedure, which stores the 
generated samples in a grid-based matrix. This makes it 
computationally free to look for samples in any specific region 
of the configuration space during the planning. Since it 
requires only a simple calculation, it does not affect the overall 
processing time of the planner. Next, a graph adjustment 
procedure takes place during the execution of the initial 
solution to adapt the to the problem uncertainty. This 
mechanism detects the sensible grid cells and the 
corresponding nodes by means of a moderate cell recognition 
strategy that prevents too optimistic or too pessimistic cell 
recognition. Then the selected nodes are checked for collision 
and if they are in collision, the corresponding edges from 
current node to those will be removed. Furthermore, A second 
layer of nodes around the current node will be checked and in-
collision edges are disconnected to reduce the response time of 
the planner to uncertainty in the planning. Several simulation 
and experimental tests have been conducted which show the 
efficient performance of the proposed planner in producing 
semi-optimal solutions with low computational cost and 
insignificant failure rates even when working with a small 
graph. The presented work could be further investigated for 
more complex problems when even the boundaries of the 
environment Is not known to limit the sampling domain. 
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