



Abstract— As the application domains of sampling-based

motion planning grow, more complicated planning problems

arise that challenge the functionality of these planners. One of

the main challenges in the implementation of a sampling-based

planner is their weak performance when reacting to uncertainty

in robot motion, obstacles motion, and sensing noise.

In this paper, a multi-query sampling-based planner is

presented based on the optimal probabilistic roadmaps

algorithm that employs a hybrid sample classification and graph

adjustment strategy to handle diverse types of planning

uncertainty such as sensing noise, unknown static and dynamic

obstacles and inaccurate environment map in a discrete-time

system. The proposed method starts by storing the collision-free

generated samples in a matrix-grid structure. Using the resulted

grid structure makes it computationally cheap to search and find

samples in a specific region. As soon as the robot senses an

obstacle during the execution of the initial plan, the occupied

grid cells are detected, relevant samples are selected, and in-

collision vertices are removed within the vision range of the

robot. Furthermore, a second layer of nodes connected to the

current direct neighbors are checked against collision which

gives the planner more time to react to uncertainty before getting

too close to an obstacle. The simulation results in problems with

various sources of uncertainty show significant improvement

comparing to similar algorithms in terms of failure rate,

processing time and minimum distance from obstacles. The

planner was also successfully implemented on a TurtleBot in two

different scenarios with uncertainty.

I. INTRODUCTION

In the field of motion planning, sampling-based planners
have been successfully applied to solve difficult problems in
high-dimensional spaces. Theses algorithms are unique in the
fact that planning occurs by sampling the configuration space.
Original sampling-based planners such as Probabilistic
Roadmaps (PRM) [1], Rapidly-Exploring Random Trees
(RRT) [2], and Expansive Space Trees (EST) [3], are proved
to be probabilistically complete as the probability of finding a
solution in these planners is one when the input size goes to
infinity. These algorithms have been improved further to
achieve some form of optimality in the generated solutions.
Optimal sampling-based planners such as PRM* and RRT*
[4] are asymptotically optimal as the solutions found by these
algorithms converge asymptotically to the optimum, if one
exists, with the probability one as the input size goes to
infinity.

The failure of a robot to navigate in uncertainty is
becoming an important challenge as the robots are finding their
way to operate in our homes, offices and outdoor environments
and participate in complex tasks such as health monitoring and

* This work is supported by the Research Council of Norway as a part of

the Multimodal Elderly Care Systems (MECS) project, under grant
agreement 247697.

elderly care. Because of the uncertainty associated with a
robot’s motion and its sensory readings, the real robot state is
often not available. Therefore, any path planner must be able
to account for these uncertainties to provide safe and collision-
free navigation plans. Uncertainty in path planning is often
caused by three main sources including motion error, sensing
error, and imperfect environment map [5]. Despite the proven
advantages of sampling-based algorithms in path planning and
even in other fields such as computer games and drug design
[6], they fail to deal with planning under uncertainty. The main
necessity for a typical sampling-based path planner is to have
a map of the environment or the knowledge to decide whether
any given configuration is in collision with obstacles or not.
These algorithms generate random or semi-random samples in
the free configuration space and therefore, they should be able
to detect collisions beforehand. This restrictive assumption
strongly limits the applicability of sampling-based planners to
robots operating in uncertain environments. In addition, as a
part of most of randomized algorithms, a local planner should
be available to detect possible collision-free connection
between two given configurations. Moreover, dealing with
dynamic obstacles poses additional complexity to the
uncertain path planning problem. Not knowing the position of
a dynamic obstacle or equivalently the collision status of a
configuration over time, leads a typical sampling-based
planner to failure. Recently, conventional sampling-based
planners have been upgraded to deal with some levels of
uncertainty including sensing error, uncertain environment
map and dynamic obstacles. These methods will be discussed
in the next section however, an overall evaluation on the
performance shows that they are computationally demanding
as compared to their counterparts that do not consider
uncertainty. Furthermore, focusing on one aspect of

Authors are with the Robotics and Intelligent Systems Group (ROBIN),

Department of Informatics, University of Oslo, Blindern, 0316 OSLO,
Norway. E-mail: {weriak*, mdzu, jimtoer} @ ifi.uio.no.

Incremental Adaptive Probabilistic Roadmaps for Motion Planning

under Uncertainty

Weria Khaksar, Md. Zia Uddin, Senior Member, IEEE, and Jim Torresen, Senior Member, IEEE

 (a) (b) (c)

Figure 1. A part of the solution computed by the proposed planner in a simple

2D environment with a static unknown obstacle. (a) The robot is following

the pre-planned path. (b) As the robot senses the new obstacle, the graph is
adjusted and the path is repaired accordingly. (c) As the robot keeps moving,

the graph keeps being adjusted and the generated path is improved during the

planning. The obstacle and its expanded version are shown by gray and red
squares respectively. The robot is the grey circle with the green circle around

it as the vision range and the generated path is the thick red line.

uncertainty normally requires deterministic knowledge on
other aspects. For instance, having an efficient path planner to
deal with dynamic obstacles require a very accurate sensory
system. In other words, the cumulative effect of all sources of
uncertainty can be difficult to model and account for in the
planning phase before task execution.

In this paper, an extension of the optimal Probabilistic
Roadmaps (PRM*) [4] is proposed which is able to handle
different types of planning uncertainty in a single package
without a considerable increase in the computational cost.
First, a sampling radius 𝑅𝑠(𝑛) is applied to the sampling
process to have a more sparse and monotone graph and avoid
oversampling. Second, it stores the generated samples in a
grid-based matrix 𝐺𝑅, based on the corresponding cartesian
coordinates (𝑥𝑖 , 𝑦𝑖)𝑇 to make it computationally cheap when
performing regional adaptation on the graph. Next, an
uncertainty matrix, 𝐶𝑂𝐿, will be updated with a predefined
frequency, ∆𝑡, which directly updates itself based on the
information provided by the robot’s sensor(s). The most
important part of the proposed algorithm is a graph-adjustment
component which adjusts the resulted graph in real-time by
refining not only in-collision nodes but also the corresponding
connected neighbors. The proposed incremental graph
adjustment process enables the planner to deal with any new
obstacle in the same way without knowing whether the
obstacle is static or dynamic. Other types of uncertainty such
as noisy sensors or inaccurate maps are treated the same way
since regardless of the source of uncertainty, it results in
encountering an obstacle when it wasn’t accounted for. Figure
1 shows the performance of the algorithm in dealing with a
static unknown obstacle. The performance of the proposed
planner is tested in several simulation scenarios with
uncertainty. Furthermore, to test the results on a real robot, an
implementation procedure is introduced that converts the
output of the planner to a control vector for a non-holonomic
mobile robot moving in a 2D indoor environment. This
implementation is tested on a TurtleBot in two different path
planning scenarios with uncertainty.

The remainder of this paper is organized as follows:
Section II is a summary of the related literature. Section III
contains formal definitions and notations about the problem
while section IV describes the proposed algorithm. The
simulation and experimental results are provided in section V
and finally the work is concluded and potential future work is
discussed in section VI.

II. BACKGROUND

A common restrictive assumption in sampling-based
algorithms is that the environment is well defined such that the
relative location of the robot to obstacles is completely known.
This assumption is valid in static environments where
industrial manipulators are used or in CAD applications in
which the environment is user-defined. For autonomous robots
operate in uncertain environments that cannot be modeled or
estimated, the assumption of a well-defined static environment
does not hold true. There is an uncertainty that arises because
of sensing errors and noise and the imprecision of actuators
and other uncontrollable factors such as unknown static or
dynamic obstacles [7]. In the past years, sampling-based
algorithms have been updated to deal with various sources of

uncertainty. Based on single or multi-query nature of the base
planner, different improvements have been proposed in the
presence of uncertainty. Even though for a single-query
planner, regenerating a search tree may be a valid approach, it
requires appropriate parameters tuning and various heuristics
in different instances. There are several extensions of RRT
algorithm to deal with uncertainty [8-11] which mostly deal
with dynamic obstacles and show poor performances when
facing other forms of uncertainty such as imperfect sensing or
noisy environment maps.

In the field of multi-query algorithms, several extensions
of PRM planner have been introduced to deal with uncertainty.
A PRM was proposed for dynamic motion planning based on
regenerating a roadmap while assuming an obstacle-free space
[12] while the data structure of PRM was improved to
accommodate changes in the environment and consequently,
in the roadmap. However, this algorithm only handles dynamic
environment. A similar approach attempts to use a tree-based
planner to connect the roadmap nodes in dynamic
environments and encodes obstacle positions in local
connections [13]. A generalized PRM was introduced in
surroundings where obstacle movements are restricted to local
sectors [14]. PDR maintains a roadmap whose paths can be
deformed, thus numerous paths can be obtained between two
configurations [15]. A sampling-based motion planner was
proposed to deal with sensing uncertainty through a utility
guided process that incorporates uncertainty directly into the
planning procedure [16]. Guided Cluster Sampling (GCS) is a
global motion planner which was introduced to handle
problems with uncertainty. GCS uses the point-based Partially
Observable Markov Decision Process (POMDP) approach [5].
GCS uses domain specific properties to construct a more
suitable sampling strategy. A real-time path planner was
proposed that guarantees probabilistic feasibility for
autonomous robots with uncertain dynamics operating amidst
dynamic obstacles with uncertain motion patters [17]. This
method builds a learned motion pattern model by combining
the flexibility of Gaussian process with the efficiency of RRT
planner. BU-RRT* [18] is a novel optimizing sampling-based
motion planner that guarantees feasibility of linear systems
subject to a bounded uncertainty. FIRM [19] is a feedback-
based information roadmap for planning under uncertainty
which is a belief-space variant of the PRM planner. In this
method, the costs associated with the edges are independent of
each other and it preserves the optimal substructure property.
FIRM also relies on feedback from local planners to reduce the
uncertainty propagation between states. The problem of
motion planning for a linear system subject to Gaussian
motion noise was considered and the CC-RRT*-D planner
[20] was developed to deal with risk-aware path planning
under uncertainty. This planner employs the chance-constraint
approximation and leverages the asymptotically optimal
property of RRT* framework to compute risk-aware and
asymptotically optimal trajectories under motion uncertainty.
A Sampling-based real-time motion planning algorithm has
been proposed [21] for planning under state uncertainty which
is an extension of the closed-loop rapid belief tree. A RRT-
based planner (HFR) was reported that is able to perform high-
frequency re-planning under uncertainty using parallel
sampling-based planners [22]. RRTX [23] is a tree-based
asymptotically optimal planner which is capable of solving
dynamic motion planning problems by refining and repairing

the same graph over the entire navigation. Whenever obstacles
change or the robot moves, a graph rewiring cascade quickly
remodels the existing search-graph and repairs its shortest
path. Recently, a localization-aware sampling-based planner
has been introduced [24] for incremental motion planning
under uncertainty using a measure of localization ability of the
samples. This planner puts more samples in regions where
sensor data is able to achieve higher uncertainty reduction
while maintaining adequate samples in regions where
uncertainty reduction is poor.

Most of the abovementioned planners focus on one source
of uncertainty and at some level require accuracy on other
aspects which is not the case in complex planning problems
under different forms of uncertainty. Furthermore, total
processing time of the planner when dealing with uncertainty
is a crucial factor which usually is neglected. Having a motion
planning algorithm with a computationally expensive process,
is not practical when dealing with a real robot. To understand
the effect of high process runtime in the implementation of a
planner consider a mobile robot that stops for a minute each
time it senses a new obstacle.

III. PROBLEM FORMULATION

In this section, the basic definitions and descriptions of the
proposed algorithm is provided. A mobile robot is moving in
a 𝑑-dimensional state space. Initially, there is a map of the
environment that at least specifies the boundaries of the space.
The only requirement of the planner is to have or to be able to
generate an initial solution before the navigation starts.

Let 𝑄 ⊆ ℝ𝑑 be the state space of the navigation problem
which includes two main subset such as 𝑄𝑜𝑏𝑠 ⊂ 𝑄 where the
state is in collision with obstacles, and 𝑄𝑓𝑟𝑒𝑒 = 𝑄\𝑄𝑜𝑏𝑠 where

the robot is free to move. Let (𝑥𝑖𝑛𝑖𝑡 , 𝑦𝑖𝑛𝑖𝑡)𝑇 and (𝑥𝑓 , 𝑦𝑓)𝑇 be

the desired initial and final configurations of the robot
respectively.

Definition 1 (Samples): Let (𝑥𝑖 , 𝑦𝑖)𝑇 ∈ 𝑄 be a randomly
selected configuration in 𝑄 and 𝑆 = {(𝑥𝑖 , 𝑦𝑖)𝑇 , 𝑖 = 1, … , 𝑛} be
the set of 𝑛 randomly generated samples in 𝑄. We consider 𝑆
as a valid set of samples if:

(𝑥𝑖 , 𝑦𝑖)𝑇 ∈ 𝑄𝑓𝑟𝑒𝑒 , ∀ (𝑥𝑖 , 𝑦𝑖)𝑇 ∈ 𝑆 and

||(𝑥𝑖 , 𝑦𝑖)𝑇 , (𝑥𝑗 , 𝑦𝑗)𝑇|| ≤ 𝑅𝑆(𝑛), ∀ (𝑥𝑗 , 𝑦𝑗)𝑇 ∈ 𝑆

𝑆 = [
𝑥1 … 𝑥𝑛

𝑦1 … 𝑦𝑛
]

where ||𝐴, 𝐵|| denotes the Euclidean distance between two

points 𝐴 and 𝐵 and 𝑅𝑆(𝑛) = [𝐿(𝑄𝑓𝑟𝑒𝑒)(𝑛 − 𝜆)/(𝜋𝑛2)]
1

2⁄ is

a sampling radius based on the number of samples, 𝑛. L is the
Lebesgue measure (i.e. volume) and 𝜆 is a positive scaling
constant. More details about the sampling radius can be found
in [25].

Definition 2 (Collision-free path): A sequence of states,

𝜎: [0,1] → ℝ𝑑 is called a collision-free path between
(𝑥𝑖 , 𝑦𝑖)𝑇and (𝑥𝑗 , 𝑦𝑗)𝑇 if:

• 𝜎(𝜏) ∈ 𝑄𝑓𝑟𝑒𝑒 , ∀ 𝜏 ∈ [0,1]

• 𝜎(0) = (𝑥𝑖 , 𝑦𝑖)𝑇 𝑎𝑛𝑑 𝜎(1) = (𝑥𝑗 , 𝑦𝑗)𝑇

If 𝜎(0) = (𝑥𝑖 , 𝑦𝑖)𝑇 , 𝜎(1) = (𝑥𝑗 , 𝑦𝑗)𝑇 and for all 𝜏 ∈
(0,1), 𝜎(𝜏) = 0, then there is a direct collision-free path, 𝜎𝐷 ,
between (𝑥𝑖 , 𝑦𝑖)𝑇and (𝑥𝑗 , 𝑦𝑗)𝑇

Definition 3 (Graph): Let 𝐶𝑂𝑁𝑛×𝑛 = [𝑐𝑜𝑛𝑖,𝑗] be a matrix

showing the connection between all (𝑥𝑖 , 𝑦𝑖)𝑇 , (𝑥𝑗 , 𝑦𝑗)𝑇 ∈ 𝑆.

Any two pair of samples in 𝑆 are connected if there exist a
collision-free direct path between them and the length of this
path is less than a given connection radius 𝑅𝑐(𝑛).

𝑐𝑜𝑛𝑖,𝑗 = {

||𝜎𝐷(𝑖, 𝑗)|| if:

𝜎𝐷(𝑖, 𝑗) ≠ ∅ and ||𝜎𝐷(𝑖, 𝑗)|| ≤ 𝑅𝑐(𝑛)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑅𝑐(𝑛) = 𝛾[log (𝑛)/𝑛]
1

𝑑⁄

𝛾 > 𝛾∗ = 2(1 + 1
𝑑⁄)

1
𝑑⁄ [𝐿(𝑄𝑓𝑟𝑒𝑒)/𝜁𝑑]

1
𝑑⁄

𝐶𝑂𝑁 = [

𝑐𝑜𝑛1,1 ⋯ 𝑐𝑜𝑛1,𝑛

⋮ 𝑐𝑜𝑛𝑖,𝑗 ⋮
𝑐𝑜𝑛𝑛,1 ⋯ 𝑐𝑜𝑛𝑛,𝑛

]

where 𝑑 is the dimension of the configuration space and 𝜁𝑑 is
the volume of the unit ball in the d-dimensional Euclidean
space. The concept of connection radius was taken from the
PRM* [4] algorithm to guarantee asymptotically optimal
solutions.

Definition 4 (Optimal path planning): Let Σ be the set of
all feasible paths between (𝑥𝑖𝑛𝑖𝑡 , 𝑦𝑖𝑛𝑖𝑡)𝑇 and (𝑥𝑓 , 𝑦𝑓)𝑇. The

optimal path planning problem between (𝑥𝑖𝑛𝑖𝑡 , 𝑦𝑖𝑛𝑖𝑡)𝑇 and

(𝑥𝑓 , 𝑦𝑓)
𝑇
 can be defined as finding the path 𝜎∗, that minimizes

a given cost function, 𝑠: Σ → ℝ≥0, while connecting
(𝑥𝑖𝑛𝑖𝑡 , 𝑦𝑖𝑛𝑖𝑡)𝑇 to (𝑥𝑓 , 𝑦𝑓)𝑇 through 𝑄𝑓𝑟𝑒𝑒 .

Definition 5 (Uncertainty): Let 𝐶𝑂𝐿𝑛×𝑛(𝑡) be a matrix that
represents the uncertainty in the planning problem as a
function of time.

𝐶𝑂𝐿𝑛×𝑛(𝑡) = [col𝑖,𝑗(𝑡)], 𝑖, 𝑗 = 1, … , 𝑛

col𝑖,𝑗(𝑡) = {
0 if in time 𝑡: 𝜎𝐷(𝑖, 𝑗) ≠ ∅
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐶𝑂𝐿(𝑡) = [

𝑐𝑜𝑙1,1(𝑡) ⋯ 𝑐𝑜𝑙1,𝑛(𝑡)

⋮ 𝑐𝑜𝑙𝑖,𝑗(𝑡) ⋮

𝑐𝑜𝑙𝑛,1(𝑡) ⋯ 𝑐𝑜𝑙𝑛,𝑛(𝑡)

]

The matrix of uncertainty shows whether, in a specific time
𝑡, a given configuration (𝑥𝑖 , 𝑦𝑖)𝑇 is in collision with obstacles
or not by the value of col𝑖,𝑖(𝑡). It also shows if there is a direct

path 𝜎𝐷(𝑖, 𝑗) between any two configurations
(𝑥𝑖 , 𝑦𝑖)𝑇 , (𝑥𝑗 , 𝑦𝑗)𝑇, by the value of col𝑖,𝑗(𝑡). This matrix will

be updated continuously during the navigation by analyzing
the readings of the robot’s sensory system.

IV. ALGORITHM

In this section, the proposed algorithm is presented in detail
which includes the graph construction and graph adjustment.
Like any multi-query planner, the graph construction phase
starts by learning the configuration space through sampling.
Initially, it requires to have an approximation on the
boundaries of the space. Having any additional information is
optional and does not affect the performance of the planner.

According to the initial available map, the sampling takes
place and the set of all samples 𝑆 = {(𝑥𝑖 , 𝑦𝑖)𝑇} is created and
filled with randomly selected collision-free configurations. At
the same time, another matrix structure 𝐺𝑅 = {(𝑥𝑖 , 𝑦𝑖)𝑇} is
created which stores the elements of 𝑆 in a grid structure with
a predefined resolution ∆𝐺𝑅< 𝑅𝑆(𝑛). The main difference
between 𝑆 and 𝐺𝑅 is the order of storing the coordinates.
While 𝑆 saves the coordinates on a first-come first-served
base, 𝐺𝑅 stores the coordinates in a 2D structure based on their
corresponding grid cell. Considering a sample (𝑥𝑖 , 𝑦𝑖)𝑇in 𝑆,
the corresponding position of (𝑥𝑖 , 𝑦𝑖)𝑇 in 𝐺𝑅, (𝛼, 𝛽) can be
calculated as follows:

𝛼 = ⌈
𝑥𝑖

∆𝐺𝑅
⁄ ⌉ , 𝛽 = ⌈

𝑦𝑖
∆𝐺𝑅

⁄ ⌉

where ⌈𝛼⌉ shows the smallest positive integer, which is greater
than or equal to 𝛼. Having a grid resolution smaller than the
sampling radius 𝑅𝑆(𝑛) guarantees that any given cell in the
grid matrix at most, includes one sample. Using this simple
structure make it computationally cheap to search the visible
area around the robot and find the neighbor nodes without
searching the whole graph. At the current position of the robot,
the surrounding grid cells are considered as visible if the center
of the cell is within the sensing range. This strategy provides
enough number of visible grid cells without being pessimistic
or optimistic as presented in Figure 2.

 (a) (b) (c)

Figure 2. Different strategies for recognizing a grid cell as visible. (a) A

pessimistic strategy that accepts a cell if the entire cell is within the sesnsing
range, (b) an optimistic strategy that accepts a cell if it is partially visible, and

(c) the proposed strategy that recognizes a cell if the center of the cell is

visible. Unrecognized cells are shown by white color.

After generating the samples and storing them in 𝐺𝑅, the
graph will be constructed based on the values in 𝐶𝑂𝑁 matrix
and an initial solution will be generated using a graph search
algorithm such as A*. Now the robot is ready to move towards
the final position. Algorithm. 1 presents the Graph_Construct
phase. As the robot starts to move, the surrounding area is
scanned and visible grid cells, as shown in Figure 2(c), are
marked as free or occupied based on the readings of the
sensor(s), 𝜌(𝜃, ∆𝑡). By knowing the occupied grid cells within
the vision range, it is possible to update the uncertainty matrix
𝐶𝑂𝐿. For every grid cell within the range, the value of the
corresponding nodes in the uncertainty matrix will be updated.
If a node was defined as free before and now, the
corresponding grid cell to that node is not reachable, i.e.
occupied, the status of that node will be updated to occupied,
col𝑖,𝑖(𝑡) = 1. On the other hand, if a node was marked as

occupied before and now it is reachable, it’s corresponding
uncertainty value is updated to 0. The next step is to adjust the
graph based on the new values in the matrix of uncertainty as
presented in Algorithm 2. An instance of the graph adjustment
is shown in Figure 3, where the graph adjustment is shown in
two different positions and some vertices are removed or
added back to the roadmap.

ALGORITHM 1: GRAPH_CONSTRUCT

1 𝑆 ← {(𝑥𝑖 , 𝑦𝑖)𝑇}, 𝐺𝑅 ← (𝛼𝑖, 𝛽𝑖)𝑇 , 𝐶𝑂𝑁 ← {𝑐𝑜𝑛𝑖,𝑗}, 𝑖, 𝑗 = 1, … , 𝑛

2 while 𝑟𝑒𝑎𝑐ℎ = 𝑓𝑎𝑙𝑠𝑒 and 𝑓𝑎𝑖𝑙 = 𝑓𝑎𝑙𝑠𝑒

3 | 𝑡𝑖𝑚𝑒 = 𝑡𝑖𝑚𝑒 + ∆𝑡;
4 | Scan: 𝜌(𝜃, 𝑡𝑖𝑚𝑒)

5 | Update 𝐶𝑂𝐿𝑛×𝑛

6 | Graph-Adjust

7 | GraphShortestPath[𝑠𝑝𝑎𝑟𝑠𝑒(𝐶𝑂𝑁), (𝑥𝑐 , 𝑦𝑐)𝑇, (𝑥𝑓 , 𝑦𝑓)𝑇 = [𝑑𝑖𝑠𝑡, 𝑝𝑎𝑡ℎ]

8 | if ||(𝑥𝑐 , 𝑦𝑐)𝑇, (𝑥𝑓, 𝑦𝑓)𝑇|| ≤ 𝜀 then

9 | | 𝑟𝑒𝑎𝑐ℎ ← 𝑡𝑟𝑢𝑒

10 | If 𝑝𝑎𝑡ℎ = ∅ then

11 | | 𝑓𝑎𝑖𝑙 ← 𝑡𝑟𝑢𝑒, Return

12 | 𝑀𝑜𝑣𝑒 ← 𝑑 = 𝑉 × ∆𝑡

ALGORITHM 2: GRAPH_ADJUST

1 𝐶𝑂𝐿𝑛×𝑛(𝑡) = [col𝑖,𝑗(𝑡)], 𝑖, 𝑗 = 1, … , 𝑛

2 for all (𝑥𝑖 , 𝑦𝑖)𝑇 ∈ 𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑟𝑎𝑛𝑔𝑒

3 | if 𝑐𝑜𝑙𝑖,𝑐 = 1 and 𝑐𝑜𝑛𝑖,𝑐 ≠ 0 then

4 | | 𝐶𝑂𝑁(𝑖, :) = 0, 𝐶𝑂𝑁(: , 𝑖) = 0;
5 | if 𝑐𝑜𝑙𝑖,𝑐 = 0 and 𝑐𝑜𝑛𝑖,𝑐 ≠ 0 then

6 | | for all (𝑥𝑗 , 𝑦𝑗)𝑇 ∈ 𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑟𝑎𝑛𝑔𝑒

7 | | | if col𝑖,𝑗(𝑡)=1 then

8 | | | | 𝐶𝑂𝑁(𝑖, 𝑗) = 0, 𝐶𝑂𝑁(𝑗, 𝑖) = 0;
9 | if 𝑐𝑜𝑙𝑖,𝑐 = 0 and 𝑐𝑜𝑛𝑖,𝑐 = 0 then

10 | | 𝐶𝑂𝑁(𝑖, 𝑐) = ||(𝑥𝑖 , 𝑦𝑖)𝑇, (𝑥𝑐 , 𝑦𝑐)𝑇||, 𝐶𝑂𝑁(𝑐, 𝑖) = 𝐶𝑂𝑁(𝑖, 𝑐);
11 | | for all (𝑥𝑗 , 𝑦𝑗)𝑇 ∈ 𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑟𝑎𝑛𝑔𝑒

12 | | | if col𝑖,𝑗(𝑡)=0 and 𝑐𝑜𝑛𝑖,𝑗 ≠ 0 then

13 | | | | 𝐶𝑂𝑁(𝑖, 𝑗) = ||(𝑥𝑖 , 𝑦𝑖)𝑇, (𝑥𝑗 , 𝑦𝑗)𝑇||, 𝐶𝑂𝑁(𝑗, 𝑖) = 𝐶𝑂𝑁(𝑖, 𝑗);

Figure 3. The Graph-Adjust procedure. (a) The original graph before sensing

the obstacle, (b) the obstacles are detected and in-collision edges are
determined as shown by red color, (c) the adjusted graph after removing the

in-collision edges and (d) after the robot moves to another position with a

different sensing outcome, all of the previously removed edges are added
back to the graph if the corresponding uncertainty values are not zero. The

black point is the robot’s current position and the green circle represents the

robot’s vision range.

Now, the graph connection matrix, 𝐶𝑂𝑁 will be updated
based on the changes in 𝐶𝑂𝐿. First, for all nodes within the
vision range, if there is a direct path 𝜎𝐷(𝑐, 𝑖) between robot’s
current position (𝑥𝑐 , 𝑦𝑐)𝑇 and that node (𝑥𝑖 , 𝑦𝑖)𝑇 in the current
𝐶𝑂𝑁, i.e. 𝑐𝑜𝑛𝑖,𝑐 ≠ 0, and the corresponding value of col𝑖,𝑖(𝑡)

has been updated to 1, then all of the connections of that node
will be removed in the graph connection matrix, 𝐶𝑂𝑁(𝑖, :) =
0, and 𝐶𝑂𝑁(: , 𝑖) = 0. The opposite procedure applies on the
nodes that have been disconnected before and now are have a

(a) (b)

 (c) (d)

collision-free connection to the current node. Next, for all
other nodes within the sensing range and connected to the
neighbors of the current node, in-collision connections are
removed and collision-free connections are added to adapt the
graph to the uncertainty of the space. The graph adjustment to
two immediate layers of neighbors enables the robot to detect
collision without getting close to the obstacles. This process
can be extended for more than two layers; however, it worsens
the computational cost of the process since more nodes need
to be checked for collision. Applying the Graph_Adjust
procedure has another benefit that improves the planning
efficiency. According to lines 9-13 in Algorithm. 2, if there are
some nodes that have been removed from the graph in previous
iterations of the algorithm and now the planner can conclude
that they are not in collision, they will be added back to the
graph. This situation happens when an obstacle is blocking a
collision-free node or there is a dynamic object in the
environment. This is more effective than adding back the
edges to the graph as soon as they are out of the vision range.
Adding back the removed edges as soon as they are not visible
anymore may cause a local minimum in which the robot keeps
moving between two positions forever. Figure 4 shows an
example of the local minima situation.

 (a) (b) (c)

Figure 4. A local minimum trap where the robot moves between two local

optima forever. (a) The robot is at 𝑨 and the current shortest path goes

through point 𝑩. (b) When the robot reaches point 𝑩, the graph is adjusted

and now the path goeas through point 𝑪. (c) As the robot reaches point 𝑪,

some parts of the nodes that are out of the vision range are added back to the

graph which forces the robot to move back to point 𝑩. This loop continious

for ever.

Limiting the graph adaptation to the visible region avoids
local minima. Now that the graph was adjusted, the shortest
path from the robot’s current position to the final configuration
will be calculated and the robot continues moving but in the
latest generated path. This procedure repeats with a constant
frequency ∆𝑡 (sec.) until the robot reaches the obstacle or

concludes that no solution exists. As presented in Figure 3, the
proposed planner is capable of disconnecting the in-collision
nodes and reconnecting free nodes.

V. RESULTS AND DISCUSSION

To evaluate the performance of the algorithm and compare
it with similar planners, the algorithm was simulated and
further implemented on a real mobile robot. The results are
described in the following sections.

A. Simulation Studies

The planner was simulated in MatLab R2017a to perform
in four different planning scenarios as presented in Figure 4.
All simulations were run on a desktop with a 3.40-GHz Intel
Core i7 processor with 32 GB of memory. In the first case, a
mobile robot is moving in a 2D bounded environment without
initially having any obstacles. As soon as the robot finishes the
pre-planning, two polygonal obstacles are added to the
environment and the robot starts to navigate without having
any knowledge about them. In the second scenario, the robot
is supposed to move in a known maze, but after reaching the
middle of the maze, a door is closed which blocks the current
path of the robot and the current solution becomes infeasible.
Next, the robot is supposed to move in a plain 2D bounded
environment which later contains two dynamic obstacles
moving in different directions. Finally, the robot is given a
noisy map while the real map of the environment is quite
different. The planner is required to guide the robot through
the actual map only by initially having the noisy map. Since
similar situations are created in the experimental studies on a
TurtleBot, the size of the environments and the robot was set
to be exactly the same as the experiments which will be
discussed later. The performance of the planner is compared to
six similar algorithms as presented in Table 1 for dealing with
different types of planning uncertainty as described in section
II including GCS [5], RR-GP [17], BU-RRT* [18], FIRM
[19], CC-RRT* [20] and RRBT-LAS [24]. The results are
described based on path length (PL) in meters, which is the
total travelled distance by the robot, processing time (RT) in
seconds, which is the total planning time minus the navigation
time, failure rate (FL), which is the percentage of failure, and
the minimum shortest distance to the obstacles (DM) in
meters, which is calculated using the following equation:

TABLE 1. PERFORMANCE COMPARISON BASED ON THE SIMULATION RESULTS.

𝒏 = 𝟐𝟎𝟎 GCS [5]
RR-GP

[17]

BU-RRT*

[18]
FIRM [19]

CC-RRT*-D

[20]

RRBT-LAS

[24]
Proposed Planner

Scene 1

PL(m) / Std 13.38 / 1.63 14.87 / 2.66 13.85 / 1.55 12.44 / 3.55 13.80 / 2.59 14.53 / 2.45 11.71 / 0.57

RT(sec) / Std 18.57 / 2.55 12.36 / 4.00 11.90 / 2.57 15.87 / 4.08 12.39 / 1.89 11.99 / 5.66 4.66 / 0.08

Fail(%) 1 2 2 1 0 2 0

DM(m) / Std 0.20 / 0.02 0.22 / 0 05 0.19 / 0 05 0.19 / 0.06 0.20 / 0 08 0.20 / 0.07 0.21 / 0.03

Scene 2

PL(m) / Std 10.22 / 2.87 12.90 / 1.73 12.38 / 1.85 9.63 / 1.22 13.13 / 2.71 11.64 / 2.99 9.18 / 0.62

RT(sec) / Std 5.80 / 1.32 5.19 / 2.66 4.87 / 1.96 6.16 / 1.24 4.21 / 1.99 6.01 / 2.59 2.19 / 0.11

Fail(%) 6 5 5 4 2 3 0

DM(m) / Std 0.29 / 0.09 0.31 / 0.08 0.32 / 0.11 0.28 / 0.09 0.33 / 0.05 0.34 / 0.08 0.34 / 0.05

Scene 3

PL(m) / Std 18.20 / 3.18 21.04 / 3.80 19.19 / 4.00 18.34 / 3.33 17.55 / 4.50 16.87 / 2.97 15.96 / 2.87

RT(sec) / Std 5.19 / 0.28 4.32 / 0.44 4.08 / 0.60 3.50 / 0.29 4.11 / 0.70 4.08 / 0.22 2.44 / 0.12

Fail(%) 1 1 0 0 0 0 0

DM(m) / Std 0.25 / 0.08 0.27 / 0.06 0.28 / 0.08 0.27 / 0.08 0.29 / 0.07 0.28 / 0.07 0.29 / 0.03

Scene 4

PL(m) / Std 47.44 / 3.19 45.19 / 5.22 40.40 / 5.00 42.99 / 4.13 42.36 / 3.15 41.82 / 3.04 38.69 / 1.88

RT(sec) / Std 12.88 / 0.56 15.90 / 0 78 10.15 / 0.33 10.02 / 0.26 12.55 / 0.52 11.17 / 0.88 8.77 / 0.14

Fail(%) 7 8 8 5 6 5 2

DM(m) / Std 0.28 / 0.07 0.31 / 0.10 0.29 / 0.08 0.29 / 0.09 0.27 / 0.09 0.34 / 0.11 0.35 / 0.09

𝑨

𝑩

𝑪
𝑨

𝑩

𝑪
𝑨

𝑩

𝑪

𝐷𝑀 = min
𝜔

{min
𝜃

(||(𝑥𝑐, 𝑦𝑐)𝑇 , 𝑜𝑏𝑠. ||)} , 𝜔 =
𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

Δ𝑡

where 𝜃 is the sensing angle of the robot and Δ𝑡 is the time
between two consecutive scans of the environment by the
robot. Table 1 shows the results when all planners used a set
of 200 samples per run, Euclidean distance for heuristics and
local planner, and uniform sampling with the sampling radius

with the scaling factor of 𝜆 = 𝑛1 2⁄ . Instead of using a fixed
final configuration, each execution was concluded as
successful if the distance of the robot to the goal was less than
a fixed distance 𝐷𝑓 = 0.1 (𝑚). For tree-based planners, the

fixed step size was replaced by the sampling radius
𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 = 𝑅𝑠(𝑛). During simulations, each actual obstacle
was expanded by the size equal to the radius of the robot which
for a TurtleBot, 𝑅𝑟𝑜𝑏𝑜𝑡 ≅ 0.18 (𝑚). Same radius was used
against the boundaries of the environments. Since no post-
processing was applied to the simulation results, the scanning
of the planner was designed to take place each time the robot
reaches a new node, which gives an equal number of scans and
segments of the final path. The results indicate that the
proposed planner outperforms each one of the studied
algorithms in all performance variables. The planner maintains
a stable path length and distance to the obstacles, while it
significantly reduces the processing time and failure rate. As
stated before, the processing time includes the initial sampling
and roadmap construction time plus the computational cost
related to the graph adjustment procedure. The failure rates
also indicate the applicability of the planner to planning
problems with uncertainty. The planner failed to guide the
robot only in the last test environment and only two times out
of 100 executions due to the elevated level of inaccuracy and
noise in the given map.

B. Experimental Setup

To implement the proposed algorithm on a real robot, few
modifications are required. Since one of the major drawbacks
of sampling-based algorithms is their widely regarded
suboptimal paths, we applied a post-processing procedure [26]
on the results of the algorithm which can remove the redundant
nodes from the final solution. Furthermore, a path smoothing
technique was applied to refine the resulted paths by finding
the inner circle of each three consecutive nodes on the post-
processed path as presented in Figure 6.

Figure 6. The performance of the post processing procedure for a given path.

The original path between yellow and green squares is highly suboptimal

(black line). Redundant nodes are removed and the rest are connected to

provide a shortcut path (blue line). A smoothing technique is then employed

to smooth the sharp edges of the final solution (red dotted line).

Next, the result of the algorithm after post-processing and
path smoothing should be transferred to the robot. The final
solution consists of three vectors, including 𝐹𝑆, which stores
the nodes on the final path, 𝐶𝑈 containing the curvature
information when the robot is moving on a curve and finally
𝐷, which contains the travelled distance between any two
consecutive notes of the final solution. These three vectors will
be used later to compute the control vector of the robot,
𝐶𝑜𝑛𝑡𝑟𝑜𝑙, which includes segmental linear (𝑣𝑖) and angular
(𝜔𝑖) velocity of the robot as well as the during of each segment
(𝑡𝑖).

 D1

 D2

 (a) (b) (c)

 (d) (e) (f)

Figure 5. An instance of the simulation results. (a) A plain environment (3.73×4.03(m)) which contains two initially unknown static obstacle and 282

nodes in the graph, (b) same environment but with two dynamic obstacles and 294 nodes in the graph, (c) a maze (5.97×3.22(m)) where two doors will

close (D1 and D2) as the robot starts to move and 266 nodes in the graph, (d) the actual map of an office (24×15(m)), (e) a noisy map of the same office,

and (f) the solution provided by the proposed planner is shown on the combination of these two maps using a graph with 540 nodes. The robot is a circle

with the radius of 0.177(m). The dimensions of the environments and the robot are chosen carefully to match the simulations with the experimental studies.

𝐹𝑆 = [
𝑥1 … 𝑥𝑚

𝑦1 … 𝑥𝑚
] , 𝑚 = 2 × ||𝑝𝑎𝑡ℎ|| − 2

𝐶𝑈 = [
𝑟1 … 𝑟𝑚−1

𝛼1 … 𝑑𝑚−1
] , 𝛼𝑖 ∈ {−1, 0, + 1}

𝐷 = [
𝑑1 … 𝑑𝑚−1

𝜃1 … 𝜃𝑚−1
]

𝐶𝑜𝑛𝑡𝑟𝑜𝑙 = [

𝑣1 … 𝑣𝑚−1

𝜔1 … 𝜔𝑚−1

𝑡1 … 𝑡𝑚−1

],

𝜔𝑖 =
𝛼𝑖𝑣𝑖

𝑟𝑖
, 𝑡𝑖 =

𝛼𝑖𝜃𝑖

𝜔𝑖
+

(1 − 𝛼𝑖)𝑑𝑖

𝑣𝑖

where 𝛼𝑖 shows the turning direction. The robot goes straight
if 𝛼𝑖 = 0, turns right if 𝛼𝑖 = +1 and turns left if 𝛼𝑖 = −1.
At the beginning, the robot is given an initial control vector
based on the solution found by the original roadmap. As the
robot starts to move, it scans the surrounding area on a fixed
predefined frequency ∆𝑡 = 2 (sec) which means if the robot
is moving on a straight line with the linear speed of 𝑣𝑖, then is
scans the surrounding area every 𝑑 = 2 × 𝑣𝑖 . The sensing
range of the robot was limited to one meter.

C. Experimental Studies

The performance of the algorithm was tested on a
Turtlebot2 with an Asus Xtion Pro Live camera, an A1
RPLIDAR 360o laser range finder, and an onboard computer
with a 2.60-GHz Intel Core i5 processor with 8 GB of memory
in two different planning problems as shown in Figure 7. And
Table 2. First, the robot is navigating in a 2D plain
environment where two unknown static obstacle appear after
the initial planning. This problem is similar to the first
simulation scenario in Figure 6(a). Second, the robot is moving
in an office with a highly inaccurate map and in the presence
of unknown static and dynamic obstacles. During the
experiments, the linear speed of the robot was set to be
0.2(𝑚 𝑠𝑒𝑐⁄) and the angular velocity was calculated
accordingly. The definitions of PL, RT Fail and DM is same
as described before. Even though the initial placement of the
robot is important for successful implementation, but the

planner could adopt to minor errors in the initial pose of the
robot.

TABLE 2. EXPERIMENTAL RESULTS IN TWO DIFFERENT SCENARIOS.

𝒏 = 50 100 500 1000

Experiment 1

PL(m)/Std 12.13 / 0.18 12.08 / 0.13 11.62 / 0.12 11.94 / 0.07

RT(sec)/Std 0.27 / 0.08 0.38 / 0.08 0.48 / 0.11 0.63 / 0.14

Fail(%) 5 0 0 0

DM(m)/Std 0.23 / 0.13 0.24 / 0.12 0.21 / 0.08 0.20 / 0.09

Experiment 2

PL(m)/Std 49.67 / 2.85 48.40 / 2.97 46.18 / 2.65 43.19 / 2.98

RT(sec)/Std 1.34 / 0.08 2.78 / 0.08 4.25 / 0.17 7.25 / 0.15

Fail(%) 53 17 5 3

DM(m)/Std 0.38 / 0.10 0.37 / 0.13 0.38 / 0.07 0.35 / 0.11

Since the postprocessing and smoothing steps were
implemented on the planner, one extra rule had to be added to
the navigation. Whenever the environment scan resulted in
graph adaptation and the solution path was repaired, an
additional smoothing step takes place to prevent the robot from
completely stopping and changing the orientation. Instead, the
robot moves on a curve in order to follow the new path.
Furthermore, Figure 8 shows the changes in the failure rates of
the planner relative to the initial graph size. Having a too small
graph leads to failure but as soon as few samples are added,
the planner performs effectively. It also shows that after
certain values, the size of the graph becomes affectless on the
success or failure of the planner. The stability of the results
presented in Figure 9 indicates that despite the randomized
nature of the planner, it generates stable results with low
variation over different runs. The stability of the results is
because of the sampling-radius and the graph adjustment
behavior. Since the samples are evenly distributed in the space,
the resulted solution and corresponding processing time and
distance to the obstacles change with lower variances. On the
other hand, the graph adopts to the recent changes without
adding new samples to the graph and this procedure keeps the
appearance and behavior of the original graph. The failure rate
was not included in stability analysis since the percentage of
failure was averaged over 100 iterations.

 A B C

 A B C

 (a) (b)

Figure 7. Experimental studies on a TurtleBot including (a) a similar environment to the first simulation example in Figure 6(a), with two static unknown
obstacles where the robot only knows the boundaries of the environment and (b) the TurtleBot is moving in an office-like environment when the only available
map is a noisy map generated by gmapping algorithm.

Figure 8. Performance of the proposed algorithm in terms of failure rate in
during the experimental studies. The results are averaged over 100 different
runs of the planner. The size of the graph plays an important role in the
success rate of the planner.

Figure 9. The performance of the proposed algorithm in generating stable

results. For both experiments, the variations in path length, processing time
and minimum distance to the obstacles are shown for 100 different runs.

VI. CONCLUSION

A multi-query planner was proposed to deal with
uncertainty challenge in robotic motion planning. The
proposed algorithm employs two new mechanism to deal with
unknown changes. First, a sample classification component
takes place parallel to the sampling procedure, which stores the
generated samples in a grid-based matrix. This makes it
computationally free to look for samples in any specific region
of the configuration space during the planning. Since it
requires only a simple calculation, it does not affect the overall
processing time of the planner. Next, a graph adjustment
procedure takes place during the execution of the initial
solution to adapt the to the problem uncertainty. This
mechanism detects the sensible grid cells and the
corresponding nodes by means of a moderate cell recognition
strategy that prevents too optimistic or too pessimistic cell
recognition. Then the selected nodes are checked for collision
and if they are in collision, the corresponding edges from
current node to those will be removed. Furthermore, A second
layer of nodes around the current node will be checked and in-
collision edges are disconnected to reduce the response time of
the planner to uncertainty in the planning. Several simulation
and experimental tests have been conducted which show the
efficient performance of the proposed planner in producing
semi-optimal solutions with low computational cost and
insignificant failure rates even when working with a small
graph. The presented work could be further investigated for
more complex problems when even the boundaries of the
environment Is not known to limit the sampling domain.

ACKNOWLEDGMENT

This work is supported by the Research Council of Norway

as a part of the Multimodal Elderly Care Systems (MECS)

project, under grant agreement 247697.

REFERENCES

[1] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars,

“Probabilistic roadmaps for path planning in high-dimensional

configuration spaces,” IEEE transactions on Robotics and Automation,

12(4), 566-580, 1966.

[2] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path

planning,” Dept. Comput. Sci., Iowa State Univ., Ames, IA, USA, Tech.

Rep. TR 98-11, 1998.

[3] D. Hsu, R. Kindel, J. C. Latombe, and S. Rock, “Randomized
kinodynamic motion planning with moving obstacles,” The International

Journal of Robotics Research, 21(3), 233-255, 2002.

[4] S. Karaman, and E. Frazzoli, «Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research, 30(7),

846-894, 2011.

[5] H. Kurniawati, T. Bandyopadhyay, and N. M. Patrikalakis, “Global
motion planning under uncertain motion, sensing, and environment

map,” Autonomous Robots, 33(3), 255-272, 2012.

[6] H. M. Choset, Principles of robot motion: theory, algorithms, and
implementation. MIT press, 2005.

[7] M. Elbanhawi, and M. Simic, “Sampling-based robot motion planning:

A review,” IEEE Access, 2, 56-77, 2014.
[8] L. Jaillet, J, Hoffman, J. Van den Berg, P. Abbeel, J. M. Porta, and K.

Goldberg, “EG-RRT: Environment-guided random trees for

kinodynamic motion planning with uncertainty and obstacles,” in IROS

2011, 2646-2652.

[9] K. Belghith, F. Kabanza, and L. Hartman, “Randomized path planning

with preferences in highly complex dynamic environments,” Robotica,
31(8), 1195-1208, 2013.

[10] A. Bry, and N. Roy, “Rapidly-exploring random belief trees for motion

planning under uncertainty,” in ICRA 2011, 723-730.
[11] M. W. Achtelik, S. Weiss, M. Chli, and R. Siegwart, “Path planning for

motion dependent state estimation on micro aerial vehicles,” in ICRA

2013, 3926-3932.
[12] P. Leven, and S. Hutchinson, “A framework for real-time path planning

in changing environments,” The International Journal of Robotics

Research, 21(12), 999-1030, 2002.
[13] L. Jaillet, and T. Siméon, “A PRM-based motion planner for dynamically

changing environments,” in IROS 2004,1606-1611.

[14] J. P. van den Berg, D. Nieuwenhuisen, L. Jaillet, and M. H. Overmars,
“Creating robust roadmaps for motion planning in changing

environments,” in IROS 2005, 1053-1059.
[15] L. Jaillet, and T. Siméon, “Path deformation roadmaps: Compact graphs

with useful cycles for motion planning,” The International Journal of

Robotics Research, 27(11-12), 1175-1188, 2008.
[16] B. Burns, and O. Brock, “Sampling-based motion planning with sensing

uncertainty,” in ICRA 2007, 3313-3318.

[17] G. S. Aoude, B. D. Luders, J. M. Joseph, N. Roy, and J. P. How,
“Probabilistically safe motion planning to avoid dynamic obstacles with

uncertain motion patterns,” Autonomous Robots, 35(1), 51-76, 2013.

[18] B. D. Luders, and J. P. How, “An optimizing sampling-based motion
planner with guaranteed robustness to bounded uncertainty,” in ACC

2014, 771-777.

[19] A. A. Agha-Mohammadi, S. Chakravorty, and N. M. Amato, “FIRM:
Sampling-based feedback motion-planning under motion uncertainty

and imperfect measurements,” The International Journal of Robotics

Research, 33(2), 268-304, 2014.
[20] W. Liu, and M. H. Ang, “Incremental sampling-based algorithm for risk-

aware planning under motion uncertainty,” in ICRA 2014, 2051-2058.

[21] D. Li, Q. Li, N. Cheng, and J. Song, “Sampling-based real-time motion
planning under state uncertainty for autonomous micro-aerial vehicles in

GPS-denied environments,” Sensors, 14(11), 21791-21825, 2014.

[22] W. Sun, S. Patil, and R. Alterovitz, “High-frequency replanning under
uncertainty using parallel sampling-based motion planning,” IEEE

Transactions on Robotics, 31(1), 104-116, 2015.

[23] M. Otte, and E. Frazzoli, “RRTX: Asymptotically optimal single-query
sampling-based motion planning with quick replanning,” The

International Journal of Robotics Research, 35(7), 797-822, 2016.

[24] V. Pilania, and K. Gupta, “Localization aware sampling and connection
strategies for incremental motion planning under uncertainty,”

Autonomous Robots, 41(1), 111-132, 2017.

[25] W. Khaksar, T. S. Hong, M. Khaksar, and O. Motlagh, “A low dispersion
probabilistic roadmaps (LD-PRM) algorithm for fast and efficient

sampling-based motion planning,” International Journal of Advanced

Robotic Systems, 10(11), 397, 2013.
[26] R. Luna, I. A. Şucan, M. Moll, and L. E. Kavraki, “Anytime solution

optimization for sampling-based motion planning,” in ICRA 2013, 5068-

5074.

0

100

50 100 500 1000

Fa
ilu

re
 (

%
)

Graph size

Experiment 2 Experiment 1

 Experiment 1 Experiment 2

