

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

To see the final version of this paper please visit the publisher’s website.
Access to the published version may require a subscription.

Author(s): Munro, James; Boldyreff, Cornelia; Capiluppi, Andrea.
Article title: Architectural Studies of Games Engines – the Quake Series
Year of publication: 2009
Citation: Munro, J; Boldyreff, C; Capiluppi, A. (2009) ‘Architectural Studies of
Games Engines – the Quake Series’ International IEEE Consumer Electronics
Society's Games Innovations Conference, 25-28 Aug. 2009 (ICE-GIC 2009) pp. 246 - 255
Link to published version: http://dx.doi.org/10.1109/ICEGIC.2009.5293600
DOI: 10.1109/ICEGIC.2009.5293600

http://roar.uel.ac.uk/
http://dx.doi.org/10.1109/ICEGIC.2009.5293600

Architectural Studies of Games Engines – the Quake Series

James Munro* , Cornelia Boldyreff** , and Andrea Capiluppi**

*Centre of Research on Open Source Software, Department of Computing, University of Lincoln, UK,
jmunro@students.lincoln.ac.uk,

** School of Computing, Information Technology and Engineering, University of East London, UK,
{a.capiluppi, c.boldyreff}@uel.ac.uk

Abstract

The move of commercial companies to “open-source”
their products presents challenges for both the proposing
company and the wider open source (OS) communities. The
former has to align their source code to the OS practices,
while the latter has to cope with large amounts of closely-
developed code.

This paper aims to present relevant data and results from
the analysis performed on the Quake family of OSS game
engines, including findings and an initial interpretation of
the data. This forms the basis for the architectural un-
derstanding necessary to design and develop improvements
and new features to the studied game engines.

The presented approach constitutes a useful resource for
games developers who wish to contribute to the further evo-
lution of these games engines; and it provides insights into
how the Quake engine architecture has evolved in practice
since it was released as an open source project.

1 Introduction

Game engine development is typically performed in a
closed environment overseen by the company leading the
project. These engines are often licensed to other compa-
nies as middleware for use in their own games [5]. In re-
cent years, game engines that have been developed in such
a manner have been released to the public as open-source
projects [15]. This gives a unique opportunity of compar-
ison. On the one hand, a mixed-style software project can
be studied, where the “closed-source” phase was followed
by its release as open source, and new developers are at-
tracted to work on the project. On the other hand, “tradi-

tional” open source projects provide large amounts of data;
patterns of organisation of work in the latter can be com-
pared with the fully-closed, or the mixed closed-open using
quantitative and qualitative analyses.

Analysis of the architecture and structural composition
of these engines could provide a valuable insight into game
engine design and development. In order for this research
to be credible it is important to support it with key soft-
ware engineering considerations with particular regard to
software architecture, evolution and maintenance. The im-
portance of a system’s architecture is well-known as it can
affect many factors such as performance and maintainabil-
ity (Bosch, 2000, cited in [16]); both are critical aspects of
game engines. As any game player knows, performance is
an important factor as game-play can often be affected by
faltering performance of a game engine.

A study of the evolution of a particular series of game
engines, specifically the ’Quake’ series, may identify struc-
tural flaws and common pitfalls that could be avoided in
future developments. This may correlate directly with
Lehman’s laws of program evolution, it is clear even at this
early stage that the Quake series of engines is an exam-
ple of Lehman’s first law of ’Continuing Change’, which
proposes that a program must continually adapt or become
progressively less satisfactory [11]. The Quake series is a
prime example of this because three distinctly unique itera-
tions of the engine, I, II and III are available as open-source
projects [10], each a natural evolution of the former with in-
creasing complexity. This itself is underlined by Lehman’s
second law, ’Increasing Complexity’ that states that regres-
sions in the program’s architecture can be expected unless
the system is adequately maintained as it evolves. By tak-
ing other game engines into account it may be possible to
identify a common architecture existing between separately

1

developed projects; and methods of unifying the approach
to game engine design may be evident.

Little research currently exists specifically in direct rela-
tion to game engine architecture; however, common archi-
tectures have previously been identified in software engi-
neering studies based on different categories of open-source
software; in particular, instant-messaging (IM) applications
by [3]. By replicating aspects of Knowles’ and Capiluppi’s
study of popular open-source IM applications it may be pos-
sible to generate similar findings with regards to game en-
gines. A basic analysis of the architectural composition of
a game engine may be performed using well-known tools
such as Doxygen, a source-code documentation generator.

Apart from stripping all the comments from the source
files of a project, Doxygen extracts also the dependencies
and the method invocations (and function calls) of the el-
ements composing the source code. When aggregated at
the project level, this can provide a structural overview of a
project’s source-code [18], helping to identify the existence
of individual components within the project. At a deeper
level of analysis, manual code observation can be carried
out to gain a thorough understanding of specific function-
ality, providing detail unattainable through the use of auto-
mated tools; however, this technique should be used spar-
ingly due to its time-consuming nature. In this paper, a
mixed approach will be used: automatic extraction of code
dependencies will be followed by a manual analysis of the
elements that could be contained within the architectural
components.

Finally, certain tools exist that can produce visual repre-
sentations from specific data in the form of graphs. In par-
ticular, Graphviz will be used to generate graphs that may
help to clarify the architecture of an engine in a visual man-
ner [7].

2 Selected Game Engines

Table 1 presents the game engines that have been se-
lected for analysis and examination. Initially, various other
engines were considered for analysis but these were later
discarded in favour of focusing purely on the Quake-series
of games. This choice has allowed the study to focus on the
evolution of this family of games and their engines over the
course of their lifetime.

Table 2 highlights key information regarding the source-
code composition of the engines. It is important to note that
these engines were initially developed as commercial game
engines and were later released to the general public years
after their mainstream success. This essentially means that
the engines do not reflect traditional open-source project
characteristics with the exception of theioquake3fork that
has seen continued community development to theid Tech
3 engine after its public release.

Game Engine Available From
Quake I Quake 1 http://tinyurl.com/

43wloy
QuakeWorld QuakeWorld http://tinyurl.com/

43wloy
Quake II id Tech 2 http://tinyurl.com/

3feehm
Quake III id Tech 3 http://tinyurl.com/

cha9q
ioquake3 id Tech 3+ http://tinyurl.com/

c5rjyb

Table 1: Selected game engines.

The type of license for each engine has been determined
by viewing the appropriate text file within each project
directory. TheOrganisedcolumn represents whether the
project is sorted into folders and sub-folders representing
different modules of functionality (see section 4 below for
more details). In traditional OSS projects, it has been noted
that folder structure (orphysicalarchitecture, [2]) plays a
relevant role for the parallel work of distributed developers
in a software release [17]. The objective of the next sub-
section will be to understand whether a similar approach
is used by commercial organisations when developing their
code. Finaly, the date forioquake3has been obtained by
examining the public Subversion (SVN) logs [9].

Engine Lang Organised License Release
Date

Quake I C No GPL v2 21/12/1999
QuakeWorld C No GPL v2 21/12/1999
id Tech 2 C Yes GPL v2 21/12/2001
id Tech 3 C Yes GPL v2 19/08/2005
ioquake3 C Yes GPL v2 26/08/2005

Table 2: Summary characteristics of selected game engines.

3 Characterisation Analysis

This section details the analytical steps to provide initial
analysis results and insights into the evolution of the Quake-
series of game engines.

3.1 SLOC Analysis

A brief analysis using the SLOCCount [19] tool can give
an insight to the size of a software system in terms of pure
source-code. This alone is useful to assess the complexity
of a system, but is also useful to see how the size of a sys-
tem has evolved over time. It should not be assumed that

a system will only increase in size and complexity over its
lifetime. There are methods of corrective maintenance and
preventative maintenance that can reduce the size and com-
plexity of a system through code refactoring [20]. This is
important because as pointed out, the less code in a game
engine the more efficiently it may perform [1].

3.1.1 Quake-series in Comparison

A SLOC count comparison of all the selected game engines
demonstrates an increase in complexity with each version.
The count between major versions highlights an almost
double increase each time. Minor versions of the engine
such asQuakeWorldandioquake3show less of an increase
as expected. Theioquake3engine particularly is described
as a bug-fix release ofid Tech 3, demonstrating corrective
maintenance at the hands of the open-source community.

Figure 1: An increase in SLOC count is consistently visible
across the Quake-series.

3.1.2 Language Composition of the Quake-series

A study of the composition of source files was performed
for each of the engine versions, and the results are displayed
in Table 3. The following observations can be drawn:

id
Tech 1

Quake-
World

id
Tech 2

id Tech
3

ioquake3

ansic 72,542 63,799 122,680 267,449 234,442
asm 7,745 17,587 8,330 1,362 1,080
cpp 59,242
objc 2,458 6,563
perl 6,320
sh 309 179 52 375 720
yacc 185

Table 3: SLOC inQuakeseries – by Language

• As a general trend, the C programming language is
clearly identifiable as the most prominent. C is con-
sidered a fast and efficient programming language and
C++ did not become common in game development
until recently in the late nineties [14].

• The programming language used inQuake 1is pre-
dominantly C by a broad margin. The presence of
other languages can possibly be attributed to the inclu-
sion of the source-code for tools in the project folder.

• There is a higher proportion of ASM inid Tech 2than
prior releases of the engine. This is most likely used
in performance-intensive sections of the engine such
as complex mathematical calculations that are crucial
to the engine’s efficiency. As hardware performance
has increased over the years, the use of ASM in perfor-
mance intensive sections of game engines has reduced.

• The official id Tech 3distribution consists of a wide
selection of programming languages. This is mostly
due to the inclusion of stand-alone tools that are used
to create content for the game engine itself. The main
engine itself still predominantly consists of the C pro-
gramming language.

• A reduction in different programming languages inio-
quake3is most likely due to the project not containing
many of the tools that are distributed with the official
id Tech 3release. A brief manual examination of the
project’s source folder confirms that tools are missing,
such as the level editing toolq3radiant.

4 Extracting the Architecture

There are multiple ways of extracting the underlying
architecture from an existing software system. Different
methods produce different results and so a combination ap-
proach is often beneficial. There is a certain amount of in-
vestigative work required to assess the architecture of a soft-
ware system, especially large systems such as 3D game en-
gines. The following subsections detail the processes used
to examine the architecture of the selected game engines,
a difficult task when considering the sheer size of the en-
gines in question (id Tech 3contains approximately 250,000
SLOC, see Section 3.1).

For each of the selected engines, notable modules and
their purpose are identified from the contents of their
source-code by analysing the following data obtained
through the Doxygen tool:

1. Function names and dependencies,

2. Source-code file names and dependencies, and

3. Original developer source-code comments,

A simple method of determining the overall architecture
of a system is to identify the individual components that
make up the system as a whole. By examining the sys-
tem’s project organisation and folder hierarchy it is possible
to identify portions of source code that have been grouped
into folders, usually by the nature of their functionality, a
common trait of software projects [12]. This has been re-
ported in the OS literature as “state of the art”: when evolv-
ing to large sizes, OS projects tend to organise their source
code into semantically-rich folders, in order to ease the dis-
tributed effort of OS developers [17]. This is a similar ap-
proach to the one used in [3] in their analysis of IM appli-
cation architectures. There is a tendency for newer projects
to have a disorganised folder hierarchy but this improves as
a project reaches maturity through project restructuring, as
highlighted by [3].

The assumption that software projects always separate
system components into individual folders of specific func-
tionality, was challenged in practice; in the first studied
versions of this system (Quake 1), it is evident that it did
not separate modules into individual folders of functional-
ity. The objective in the second part of the paper will be to
investigate whether this pattern has evolved with the other
studied releases of the game engine.

SinceQuake 1does not provide semantically-rich folder
names, or a proper folder structure, a different technique
had to be used to identify the relevant engine modules. On
a manual inspection, the source-code files are prefixed with
letters that easily identify their membership to a particular
module. For example, source-code files that contribute to
the networking functionality of the engine are prefixed with
net , making these files easy to distinguish.

The next section will present the abstract architecture of
theQuake 1engine, extracted through folder hierarchy anal-
ysis and examination of documentation reports produced by
the Doxygen tool.

4.1 Architecture of Quake 1

In Quake 1the main modules are not organised into sep-
arate folders, and the process of identifying modules in-
creases in difficulty. The main project folders here are used
to encapsulate functionality from third-party libraries and
tools such asdxsdk(DirectX SDK) andgas2masm.

4.1.1 Notable Modules

Due to the lack of folder organisation, the key to identifying
the notable modules listed below involved examining the
data extracted using the Doxygen tool. Specifically, func-
tion prefixes and source-file names have been used to iden-
tify which modules of functionality code belongs to. For

Figure 2: The architecture ofQuake 1from a dependency
perspective.

example, source-file names beginning with thenet prefix
can easily be identified as belonging to the network-code
functionality.

Module Functionality
client Responsible for the client-side game code. This is

the client component of the distributed client/server
architecture model.

game Responsible for the server-side game code. This is
the server component of the distributed client/server
architecture model.

vid Handles the graphics rendering functionality. Simi-
lar to therendermodules found in subsequent ver-
sions of the engine.

sys Handles platform specific issues such as indepen-
dent code for both the MS-DOS and Microsoft Win-
dows platforms.

snd Audio playback functionality for client-side sound
effects and music.

net Networking functionality, responsible for commu-
nication betweenclient andservermodules.

Table 4: Notable modules of Quake 1

Table 4 demonstrates the key modules extracted using
the Doxygen-aided process. TheModulecolumn represents
the name of the module functionality extracted from the
source-code. Fortunately, they are named logically, seman-
tically and phonetically which makes the process of identi-
fying them easier.

4.2 Architecture of QuakeWorld

This section presents the physical architecture of the
QuakeWorldengine, extracted through folder hierarchy
analysis and examination of documentation reports pro-
duced by the Doxygen tool. ThoughQuakeWorldcontains
a more organised structure than its predecessorQuake 1,
there is still little information to be obtained from hierarchy
analysis. In order to identify an increased amount of de-
tail the same process of examining source-file and function
name prefixes was used.

Figure 3: The architecture ofQuakeWorldfrom a depen-
dency perspective.

4.2.1 Notable Modules

The key modules identified inQuakeWorldremain largely
unchanged from an abstract perspective. The inner func-
tionality within these modules may have altered but the
same general structure remains.

The most promising result of this analysis is the inclu-
sion of separate sub-folders to encapsulate theclient and
gamemodules (see Figure 3). This may have a direct link to
the fact thatQuakeWorldwas an incremental improvement
of the original engine designed to improve the networking
functionality for multi-player purposes. This could be inter-
preted as an attempt to separate the client functionality from
the game-logic contained in thegamemodule. The arrows
seen in the Figure represent folder-to-folder references (as
in “file dependencies”).

4.3 Architecture of id Tech 2

This version of the Quake engine represents the first
version to contain some order of folder organisation: it
could be argued that one of the effects of “open-sourcing” a
commmercial application has the effect of reorganising the
source code in semantically-rich source folders. As a result
of this, the dependency figure demonstrates an apparently
more complex architecture. As seen above, the arrows seen
in Figure 4 represent folder-to-folder references, the num-
ber indicates the frequency of these references. They are ac-
tually header include references rather than function calls,
though we can assume that a module that does not include
a header from an external module cannot perform any func-
tion calls to this module. The number will be the frequency
of this reference.

Figure 4 demonstrates an interesting separation of func-
tionality between theclient andservermodules, represent-
ing a clear division in purpose. Both of these modules ap-
pear to ’consume’ thegamemodule which provides the
game-logic code. From this it can be assumed that the

game-logic has been written in a reusable way that provides
suitable abstraction that allows it to be used without prior
knowledge of the ’consuming’ module.

Figure 4: The architecture ofid Tech 2from a dependency
perspective.

4.3.1 Notable Modules

These key modules were identified using a combination of
the previously discussed process and by examining the chart
produced automatically by Doxygen using GraphViz.

Module Functionality
client Responsible for the client-side game code.

This is the client component of the distributed
client/server architecture model.

game Responsible for the server-side game code.
This is the server component of the distributed
client/server architecture model.

qcommon Common functionality and data structures used
throughout the engine.

ref gl Responsible for rendering the client-side graph-
ics rendering using hardware acceleration in-
conjunction with the OpenGL graphics library.

ref soft Responsible for the client-side graphics render-
ing by implementing a software accelerated ren-
dering module.

Table 5: Notable modules of id Tech 2

Platform-specific code modules such assolaris, linux
andwin32have been omitted from the analysis as they pro-

vide only simple functionality designed to load the rest of
the game engine onto specific platforms. These modules
were identifiable by name and also their relationship to the
client module that they are responsible for loading.

4.4 Architecture of id Tech 3

This section presents the abstract architecture of theid
Tech 3engine, extracted through folder hierarchy analysis
and examination of documentation reports produced by the
Doxygen tool. The architecture of the engine is becoming
increasing complex with each incremental version in the se-
ries, this can be clearly seen by comparing Figure 4 and
Figure 5. The increase in the amount of individual folders
has also introduced a more complex relationship between
modules.

4.4.1 Notable Modules

These key modules were identified using a combination of
the previously discussed process and by examining the chart
produced automatically by Doxygen using GraphViz.

Module Functionality
botlib Functionality responsible for controlling com-

puter controlled game players using artificial in-
telligence techniques.

cgame Client-side game code, similar to previous en-
gine versions.

client Main client executable. Loads the client-side
game module and can be used to connect to a
game server, either locally or remotely hosted.

game Server-side game code, similar to previous en-
gine versions.

q3 ui User-interface module, provides a visual inter-
face for players. Client-side only.

renderer Graphics rendering library, similar to other en-
gine versions. Implemented as a single module
rather than two individual modules as seen inid
Tech 2.

server Main server executable. Loads the the main
server-side code and provides services to game
clients.

Table 6: Notable modules of id Tech 3

The increase in the total number of modules of function-
ality may be attributed to the clearer abstraction of individ-
ual types of functionality. For example, thebotlib module
functionality may have been present in previous versions
(though likely in a simpler form) but had been simply in-
cluded in the main application module, rather than making
a clear distinction between types of functionality.

4.5 Architecture of ioquake3

This section presents the abstract architecture of theio-
quake3engine, extracted through folder hierarchy analysis
and examination of documentation reports produced by the
Doxygen tool.

The architecture ofioquake3remains largely unchanged
from id Tech 3. The project sees some organisational
changes in terms of its directory structure and different
third-party libraries have been introduced to provide fea-
tures and functionality that did not exist in the parent
project.

Due to the small quantity of differences betweenid Tech
3 andioquake3there is no need to elaborate on the notable
modules as they remain unchanged from the previous ver-
sion.

4.6 Inter-Module Communication

Individual modules of functionality need efficient meth-
ods of communication between themselves. As previously
discussed in this report,virtual functions are a popular
means of facilitating this. The Quake-series of engines are
implemented in the C programming language and do not
make use of this language-specific feature.

In the Quake-series, communication is handled by pass-
ing pointersto C structures that exposes the functionality
contained within a module. This method is efficient and in-
curs considerably less overhead than would be through the
use ofvirtual functions. The Quake-series generally uses
one clear structure per-module of functionality as an inter-
face to other modules, employing smaller structures for in-
ternal purposes and data representation.

One disadvantage of this approach is that third-party
applications or even modules can obtain pointers to these
structures and essentially eavesdrop on the inter-module
communication and exploit the data for their own uses. This
is a popular method used to cheat in online games. To com-
bat this, usually some form of third-party anti-cheat tool
such as PunkBuster [6] is used to protect the engine’s mem-
ory address space from external interference.

5 Cloning and Code Reuse in the Quake-
series

As the final attempt to characterise the source code of
the Quake series, the degree of “cloning” between subse-
quent versions of the engine has been studied. The scope of
this analysis does not concern the existence of code clones
within the Quake-series of engines on an individual basis;
however, the process of detecting clones can be adapted to
provide a summarised calculation of the amount of shared

Figure 5: The architecture ofid Tech 3from a dependency perspective.

Figure 6: The architecture ofioquake3from a dependency perspective.

code between different versions of the engine as a device
for understanding the evolution of the series.

5.1 Code Clones

Code clones are generally considered as bad artifacts of a
software system [13]. They usually occur when a program-
mer reuses a portion of existing code that is known to serve
a particular function. Across different software projects this
is more acceptable, but within the same project this creates
redundancy of code and can cause serious maintenance is-
sues. If the duplicated code contains a bug or exploit, every
single instance of it within the project must be located and
fixed. If a situation arises where code is reusable within a
system, a better solution is to turn it into a reusable function
that will then be the only portion that needs fixing in the
event of a bug.

5.2 Process

To identify how much code was reused between different
versions of the Quake engine, a code clone analysis tool
was used. There are various tools that fit this purpose, but
for convenience and ease-of-use Simian was used. Simian
[8] is designed for analysing code clones within a single
project, rather than duplicate code across multiple projects.
To circumvent this issue, the following process has been
devised:

• Analyse code clones withinProject A.

• Analyse code clones withinProject B.

• CombineProject AandProject Bas two folders of a
new project,Project C.

• Analyse code clones withinProject C.

• From the total clones found inProject C, minus the
sum of the clones found inProject AandB.

• The result of this is the number of code clones shared
between two projects.

From this process the amount of shared code between
two versions of the Quake engine can be quantified. Initially
the accuracy of this method was unproven; however, after
some manual checking of file-to-file differences using the
GNU Diff [4] tool it became clear that this method could
demonstrate the amount of shared code between selected
versions of the Quake engine and provide a simple means
to better understand its evolution.

It is likely that other more accurate tools and methods ex-
ist to measure the amount of shared code between projects,
but for the scope of this study the devised process is suffi-
cient.

5.3 Shared Code with Quake 1 Engine

Figure 7 below shows the amount of shared code be-
tweenQuake 1and other engines in the Quake-series. With
each major revision of the engine there is a reduction in the
amount of shared code.QuakeWorldsees less of a reduction
in shared code due to being a minor re-write of the origi-
nalQuake 1engine designed to introduce better networking
functionality.

Figure 7: The amount of shared code between each version
of the Quake-series andQuake 1.

The ioquake3engine also sees less of a reduction as it is
based onid Tech 3and aims to provide a concise base for
developers to base their own games on.

5.4 Reusable Candidates

A manual analysis of some of the detected shared code
between different versions of the engine indicated that cer-
tain components are likely to be reused consistently. For
example, the 3D mathematical calculation functions are
generic to many 3D uses and are unlikely to change through
different versions of the engine.

5.5 id Tech 4 and Future Versions

The Quake-series sees continued development in a com-
mercial environment to support new games and technolo-
gies. The next version of the engine known asid Tech 4has
not yet been released to the public as an open-source project
and so cannot be analysed as part of this study. It is a known
fact that the engine has been completely redesigned using
C++ with an OOP paradigm instead of C used in its prede-
cessors and so it is highly unlikely that much if at all any
shared code exists betweenid Tech 4andQuake 1.

6 Limitations and Future Works

This study has made use of a number of metrics and a
mixed automated and manual empirical approach to get in-
formation about the architectures of selected releases of a
specific games engine series, the Quake series of games en-
gines. The following limitations and future works have been
identified:

• the used metrics (SLOCs and dependencies among
code elements) could be used in conjunction with other
metrics specifically targeted for software architectures;

• other relevant aspects and views of the architecture
should be included, for example, the runtime behavior
and semantic code analysis;

• in the proposed study, no time has been given to the
comparison of performance between the different ver-
sions and the analysis of the relationships between per-
formance and architecture choices; and

• a broadening of the research to include other series
of games engines would allow a more comprehensive
framework of architectural styles found in games en-
gines to be established.

Future studies are obviously needed to address these limita-
tions and areas of future work.

7 Summary of Results, Conclusions and Fur-
ther Research

This research has examined and identified the evolving
architecture of the Quake series of game engines. It has
argued that, when released as an OS project, a software sys-
tem has to adapt to the common practices of OS developers,
one of which being the partinioning of the source code into
various folders and subfolders, in an attempt to organise it.

The initial Quake engine is initially disorganised, reflect-
ing the closed environment and internal practices of the
company developing it; later, it becomes more and more or-
ganised in terms of its physical architecture. The engine has
also increased in complexity with each release, along with
a large increase in SLOC count in every major version. The
broadening gap between the last entry in the series,id Tech
3 and the first,Quake 1is easily distinguishable through
the identification of rapidly decreasing quantities of shared
code.

During the architectural analysis of the engines, com-
mon modules of functionality have been frequently discov-
ered. The following list refers to these modules by a generic
name interpreted from their original names (which differed
slightly across different versions):

• Common functionality module.

• Game-logic module (abstracted from both client and
server).

• Server specific functionality module.

• Client-side functionality module.

• Sound and video output module (separately split in
later versions).

This common functionality specifically represents suit-
able candidates for the implementation as a reusable code
library, potentially useful for different game engines that are
unrelated to the Quake family due to the commonality of the
functionality the reusable modules would encapsulate.

The results of the analysis described above have recently
been used in the process of identifying suitable improve-
ments and enhancements to a specific engine and have sup-
ported implementing these in an appropriate manner. Dif-
ferent improvements have been considered and justified in
a feasibility study based on these results. The modifications
are aimed at theid Tech 2engine, based on the results of
the architectural analysis. The engine marks the midpoint
in the series before the complexity of both architecture and
size bloomed with the advent ofid Tech 3and it is poten-
tially easier to enhance. The potential for building a library
of reusable code for games engines more generally will be
explored as a topic of further research.

References

[1] A. T. (andy.thomason@snsys.com). Re: Advice for a uni-
versity of lincoln games programming student. Email to
James Munro (james@jamesdesign.org)., Monday 5th Jan-
uary 2009.

[2] L. Bass, P. Clements, and R. Kazman.Software Architecture
in Practice. Addison-Wesley Professional, December 1997.

[3] A. Capiluppi and T. Knowles. Software engineering in prac-
tice: Design and architectures of floss systems. In5th Inter-
national Conference on Open Source Systems (OSS 2009),
2009.

[4] P. Eggert. Diffutils - gnu project - free software foundation
[online], 2008. Accessed Saturday 7th Febraury 2009.

[5] I. Epic Games. Unreal technology [online], 2008. Accessed
Wednesday 5th November 2008.

[6] Even-Balance. Punkbuster online countermeasures [online],
2009. Accessed 8th February 2009.

[7] Graphviz. Graphviz [online], 2006. Accessed Sunday 2nd
November 2008.

[8] S. Harris. Simian - similarity analyser — duplicate code
detection for the enterprise [online], 2008.

[9] Icculus. [quake3] log of /trunk/code [online], 2005. Ac-
cessed Saturday 7th February 2009.

[10] id Software. id software: Technology downloads [online],
2008. Accessed Wednesday 5th November 2008.

[11] M. M. Lehman and L. A. Belady. Program evolution: Pro-
cesses of software change.A.P.I.C. Studies In Data Process-
ing, 27, 1985.

[12] N. C. Mendonca and J. Kramer. Component module clas-
sification for distributed software understanding. In15th
IEEE International Conference on Software Maintenance,
page Page 119, 1999.

[13] T. Mens and S. Demeyer.Software Evolution. Springer,
2008.

[14] A. Rollings and D. Morris.Game Architecture and Design.
The Colriolis Group, Scottsdale, Arizona, 2000.

[15] Slashdot. Slashdot — quake 3: Arena source gpl’ed [on-
line], 2005. Accessed Sunday 2nd November 2008.

[16] I. Sommerville. Software Engineering. International Com-
puter Science Series. Addison-Wesley, 8th edition edition,
2007.

[17] D. Spinellis. Code Reading: The Open Source Perspective.
Addison-Wesley Professional, May 2003.

[18] D. van Heesch. Doxygen [online], 2008. Accessed Sunday
2nd November 2008.

[19] D. A. Wheeler. Sloccount [online], 2008. Accessed Wednes-
day 10th December 2008.

[20] R. J. Wirfs-Brock. Enabling change.IEEE Software, Vol-
ume 25(Number 5):Pages 70–71, September / October 2008.

	ICE GIC cs
	icegic2009_submission_29

